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Knowledge of the creep parameters for cubic zirconia and doped
lanthanum gallate allowed for a determination of the intrinsic creep
resistance of each material in the temperature range from 800 to
1000 °C, where they are to be utilized as electrolytes in solid oxygen
fuel cells. The results revealed that the intrinsic creep resistance of
cubic zirconia is much higher than that of doped lanthanum
gallate. This is most likely a result of their different crystal
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Introduction
For a material to be used as an electrolyte in solid oxygen fuel cells
(SOFCs), there are many important primary requirements. These include
(i) high ionic conductivity, (ii) chemical stability with cell components,
and (iii) thermal expansion match with that of the cell components [1–4].
In addition, there are some secondary mechanical property requirements
such as good high-temperature creep resistance and room-temperature
fracture toughness. Investigation of the high-temperature creep properties
is important to gain information about the dimensional stability of the
material at temperature under load.

It was previously shown at 1300 °C that the creep resistance of cubic
zirconia was greater than that of doped lanthanum gallate (La0.8Sr0.2
Ga0.85Mg0.15O2.825 (LSGM-2015)) [5]. I wanted to determine if this com-
parison would hold in the temperature range from 800 to 1000 °C, where
these materials are to be used as electrolytes in SOFCs. Thus, this report
presents the first comparison of the intrinsic creep resistance of cubic
zirconia versus LSGM-2015 over this temperature range.

The creep behavior of a polycrystalline oxide in general can be described
by the following equation [6–8]:

   ε = A σ nL– p P O2
m exp –Qc/RT , (1)

where ε is the steady-state creep rate, σ is the applied stress, n is the stress
exponent, L is the grain size, p is the grain size exponent, P(O2) is the
oxygen partial pressure, m is the oxygen partial pressure exponent, Qc is
the activation energy for creep, A is a constant, T is the absolute tempera-
ture, and R is the gas constant.

What we mean by intrinsic creep resistance is that the creep rate is a
function only of the material’s intrinsic properties (i.e., modulus) and not
a function of external variables such as grain size, oxygen partial pres-
sure, etc. For example, from equation (1) we see that for the same material
of different grain sizes the creep rate will be different if p ≠ 0. Thus, to
obtain the intrinsic creep resistance of the material, the parameter p must
be known for that material. Consequently, from equation (1) we see that
to compare the intrinsic creep resistance of different materials tested at
different stresses, grain sizes, and oxygen partial pressures at various
temperatures, we must know the creep parameters n, p, m, Qc, and A for
each material.
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Determining Creep Resistance
The creep parameters for cubic zirconia [9–13] from several sources are
summarized in table 1 along with those for La0.8Sr0.2Ga0.85 Mg0.15 O2.825
[5,14]. I would like to make several points from table 1. First, both materi-
als exhibit a fine grain size (the linear intercept grain size is ≤␣ 20 µm).
Second, the steady-state creep rate varies approximately inversely with
the grain size, and is approximately squared for both cubic zirconia and
LSGM-2015. Third, the stress exponent is close to unity for both materials.
These three points suggest that both materials deform by the same
mechanism: either diffusional creep or grain boundary sliding accommo-
dated by diffusion [15–18]. Finally, the steady-state creep rate is
independent of oxygen partial pressure (m = 0) for both materials.

Using the information from table 1 with the two assumptions below, the
intrinsic creep resistance of cubic zirconia and LSGM-2015 in the tempera-
ture range from 800 to 1000 °C can be compared to determine which is the
most creep-resistant. The first assumption is that the constant A in equa-
tion (1) is the same for both materials. This is very reasonable since A for
either a diffusional creep or grain boundary sliding accommodated by
diffusion mechanism is primarily a function of grain shape and type of
loading (i.e., compression versus shear) [15–18]. This assumption is
justified since both materials exhibit equiaxed grains, deform by the same
mechanism, and all tests were conducted under compression. The second
assumption is that the same mechanism that controls deformation (i.e.,
creep parameters) in the temperature range shown in table 1 remains the
same in the temperature range from 800 to 1000 ºC. Without experimental
data in this temperature range, this assumption cannot be confirmed. To
obtain creep data in this temperature range would take an exceptionally
long time and, thus, is not feasible within a normal laboratory time frame.
However, in a first approximation, it is reasonable to assume that the
same mechanism controls deformation in both temperature ranges since
the average temperature in the lower range (≈ 900 ºC) is only 150 ºC lower
than the lowest temperature in table 1.

Using the above two assumptions and the data from table 1, the intrinsic
creep resistance of cubic zirconia and LSGM-2015 are shown in figure 1.
The data in figure 1 are plotted as grain size and temperature-
compensated steady-state creep rate versus applied stress on a double
logarithmic scale. From figure 1 several points are observed. First, the
creep data after compensation for cubic zirconia from different sources
with different dopants are in excellent agreement with each other. Second
and most important, at a given value of applied stress, the temperature-
compensated steady-state creep rate for LSGM-2015 is between 1,000 to
4,000 times faster than that for cubic zirconia. This result reveals that the
intrinsic creep resistance of cubic zirconia is much higher than that for
LSGM-2015. One possible explanation for this is the difference in crystal
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structures: fluorite [19] for cubic zirconia versus monoclinic [20] or some
other structure for LSGM-2015 (this might be orthorhombic [21] or cubic
[1,22], as several different crystal structures have been suggested for
single-phase LSGM-2015). More work is needed to understand this
difference.

Table 1. Creep parameters for two materials.

Grain size Temperature Qc
Material (µm) (ºC) n p m (kJ/mol)

La0.8Sr0.2Ga0.85Mg0.15O2.825 [5,14] 8 1050–1300 1.3 1.8 0 521
Cubic zirconia [9–13] 1–20 1050–1600 ~1 ~2 0 460

Figure 1. Grain size and
temperature-compensated
steady-state creep rate
versus applied stress for
La0.8Sr0.2Ga0.85Mg0.15O2.825
[5,14] and cubic zirconia
[9,10]. The dopants for
ZrO2 are shown in the
figure.
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Conclusion
Knowledge of the creep parameters n, p, m, and Qc for cubic zirconia and
LSGM-2015 allowed for a determination of the intrinsic creep resistance
of each material in the temperature range from 800 to 1000 ºC, where they
are to be utilized as electrolytes in solid oxygen fuel cells. The results
reveal that the intrinsic creep resistance of the currently used cubic zirco-
nia is much better than that for the recently discovered LSGM-2015 over
the entire temperature range. This is most likely a result of the difference
in their crystal structures.
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