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The parameters that characterize a rectangular-shaped
pulse-modulated sinusoidal signal are the carrier frequency, the
pulsewidth, the repetition frequency, and the number of pulses in or
the duration of the signal. We use a Fourier series representation to
show the influence of these parameters on the spectrum of a
pulse-modulated signal at a microwave carrier frequency. When an
additional amplitude modulation is applied at audio frequencies, the
resulting transient cannot be efficiently analyzed with numerical
transform techniques. We present approximate numerical and
analytical techniques to obtain the frequency spectrum of such
signals. This approach allows the near-real-time spectral analysis of
modulated signals. Thus, the resulting spectrum can be easily
calculated for idealized modulation waveforms. A typical example is
presented and the effect of pulse modulation on the spectral content
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of an rf signal burst is discussed.
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1. Introduction
A periodic time function f(t) with a period T0 can be represented as an
infinite sum of exponential functions. In particular, with an angular
frequency ω0 = 2π/T0 = 2π (frequency) υ0,

   f(t) = α ne jnω 0tΣ
n= –∞

n=∞
, (1)

is an exponential Fourier series expansion with coefficients

   
α n = 1

T 0
f(t)e –jnω 0t

–T 0/2

T 0/2
dt . (2)

The Fourier series is a valid representation when the Dirichlet conditions
are satisfied, which requires f(t) to be a finite periodic time function.1 The
time function must be finite in the sense that it has a finite number of
maxima, minima, and discontinuities in every finite interval.

For now, f(t) is considered an infinite-duration pulse train,

   
f(t) = f 0 t + nT 0Σ

n=–∞

n=∞
, where f 0(t) =

f(t), t ≤ T 0
2

0, otherwise
. (3)

Then the Fourier integral of f0(t),

   
F 0(ω) = f 0(t)e –jωt

–∞

∞
dt = f(t)e – jωtdt

– T 0/2

T 0/2
, (4)

is the continuous spectrum of one period of the signal f(t). A periodic
rectangular pulse has an approximately band-limited spectrum, or F0(ω)
<< F0(0) for |ω| < ωmax, where we take ωmax = 20π/T0. The Fourier
transform representation of the signal spectrum F(ω) is a sequence of
impulses

   F(ω) = 2π
T 0

F 0 nω 0 δ ω – nω 0Σ
n=–∞

n=∞
, (5)

defined by the spectral envelope, F0(ω). Then the Fourier series coeffi-
cients are F0(ω)/T0, evaluated at ωn 

= nω0 
= 2πn/T0, or2

   α n = 1
T 0

F 0 (ω) nω 0
. (6)

The band-limited representation includes the periodic extensions of the
fundamental spectrum F0(ω) for all frequencies, which implies that f(t) is
infinite in duration. I relied on the band-limited approximation through-
out to develop analytical and numerical PC tools to obtain the spectrum
for this class of signals. I used MATLAB® to calculate the band-limited
spectrum of periodic signals that modulate a single rf carrier at angular
frequency ωc = 2π fc. The physical rf signal is a burst of pulses and the

1Papoulis, A., The Fourier Integral and Its Applications, New York, NY: McGraw-Hill (1987).
2Oppenheim, A. V., A. S. Willsky, and S. H. Nawab, Signals and Systems, 2nd ed, Upper Saddle River, NJ:
Prentice Hall (1997).
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sum in equation (3) would be truncated to 2N + 1 pulses. The pulse train
is truncated with a rectangular pulse window function in the time do-
main (time-windowing) that corresponds to a frequency-domain convolu-
tion.1

Consider a repetitive rectangular pulse-modulated rf carrier, where the
modulating pulse is assumed to be ideal and has negligible rise- and fall-
times compared to the width T. An additional amplitude modulation
(AM) with the periodic function g(t) that has a period T2 ~ kT0 for integer
k is often applied to the pulse-modulated rf signal. The fundamental
spectrum can be obtained from sampled transient data q0(tn) = f0(tn)g0(tn)
over one period using numerical transform techniques such as the fast
Fourier transform (FFT). For low-frequency modulations (i.e., k >> 1), this
approach quickly becomes numerically intensive if the high-frequency
carrier is included in the sampled transient. When all modulations have a
low-frequency spectrum compared to the rf carrier, we need only sample
q0(t) sufficiently to resolve the highest frequency component of the modu-
lation waveform. In this case, the MATLAB FFT routines can be used to
efficiently obtain the spectrum for the modulation waveform, which is
then shifted to the single carrier frequency. I show that the rf modulation
determines the spectral bandwidth (BW) of the modulated signal with
impulses at the rf pulse repetition frequency (PRF). Additional modula-
tions reduce the peak amplitude according to the AM duty factor and
introduce impulses at the AM PRF. When only the spectral envelope is of
interest, Q0(ω) can be directly calculated in the frequency domain (for
idealized modulation waveforms) to approximate the modulated rf
spectrum. Numerical and analytical approaches are compared and used
to investigate the effect of rectangular pulse modulation on the spectral
content of a finite-duration rf burst.

1Papoulis, A., The Fourier Integral and Its Applications, New York, NY: McGraw-Hill (1987).
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2. Pulse-Modulated rf Signal
A rectangular pulse pX(t) symmetric about the time reference (t = 0) with
unit amplitude and half pulsewidth X = T/2 has the frequency spectrum

   
P X(ω) =

2 sin ωT
2

ω , (7)

with peak magnitude 2X = T and full bandwidth (FBW) 1/X = 2/T. We
use this ideal pulse to modulate a microwave carrier where f0(t) = pX(t)c(t)
= pX(t)cos(ωct) is a repetitive pulse-modulated sinusoidal signal. The
carrier spectrum is a single frequency, as represented by C(ω) = 1/2{δ(ω +
ωc) + δ(ω – ωc)}.

Then f(t) is a real, even function of time with Fourier coefficients

 
   

α n = 2
T 0

f(t)cos nω 0t dt
0

T 0/2
. (8)

The partial sum fN(t) ~ f(t) is

   
f N(t) = α 0 + 2 α ncos (2πnt/T)Σ

n = 1

N
, (9)

which can be written as an average over one period of f(t) with the Fou-
rier kernel kN(t) as a weighting function.1 That is, fN(t) can be made to
approximate f(t) to an arbitrary accuracy in the interval |t| < T0/2 by
choosing more sinusoids in the expansion. The Fourier series coefficients
for f(t) are αn 

= F0(nω0)/T0, where

   F 0(ω) = 1
2

P X ω – ω c + P X ω + ω c . (10)

Compared to equation (9), the positive frequency component of this
fundamental spectrum has the same FBW but half the magnitude. Al-
though this band-limited spectrum implies an infinite-duration signal,
there is no ambiguity in considering a finite number of samples. How-
ever, by truncating equation (1) to a finite number of terms, we also
truncate the Fourier series representation of the signal spectrum in equa-
tion (5). This reduces the resolution in the frequency domain so that care
must be taken to adequately sample the modulation waveforms.

2.1 Numerical Results

We consider a repetitive rectangular pulse modulation waveform pX(t)
with constant pulsewidth (T) and PRF. The signal is periodic with period
T0 = 1/PRF and rf duty factor Drf = T/T0 in each period of the modula-
tion. Since the periodic extensions of the fundamental spectrum are part
of the FFT, the FFT result corresponds to an infinite rectangular pulse
train. For example, let the carrier frequency be 1.3 GHz with T = 2 µs and
T0 = 50 µs, assuming a unit amplitude (typically peak transmitted power)

1Papoulis, A., The Fourier Integral and Its Applications, New York, NY: McGraw-Hill (1987).
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signal. A single period of the modulation pulse is shown in figure 1(a),
where 201 time samples per pulse (dt = T/201) were used to define one
period of the transient pX(t). The FFT of this modulation waveform PX(ω)
is the continuous spectrum shown in figure 1(b). Notice that the spectrum
peak magnitude is the signal time-average (or dc-component) in the
transient time window Drf = 4 percent. An rf carrier modulated by this
waveform f(t) is represented by samples at fixed intervals dt and the FFT
used to calculate F(ω). A sample size of dt = (20fc)

–1 is recommended (i.e.,
20 samples per carrier period), and the sampling error increases rapidly
as dt is increased.

One period of the modulated rf signal f0(t) that includes the rf carrier is
discretized for numerical analysis. The FFT result for the fundamental

Figure 1. (a) Single
period of a
rectangular pulse
modulation
waveform and (b)
single rectangular
pulse FFT with 4
percent duty factor.
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spectrum F0(ω) corresponds to the spectral envelope of the infinite-
duration signal f(t). The spectrum is shown in figure 2 for positive fre-
quencies using 20 time samples per period of the 1.3-GHz carrier. The
negative frequency components in equation (10) cannot be ignored as
reflected in the FFT result. For a modulated sinusoid, the power spectrum
peak magnitude is one-half the peak power time-average in one period of
the modulation waveform or one-half the rf duty factor, 1⁄2Drf = 2 percent.
For the fundamental modulation waveform (i.e., one complete period) the
FFT result F0(ω) is the continuous spectral envelope with FBW = 1/X =
2/T about the carrier fc. Thus, the spectrum of the infinite-duration rf
signal F(ω) is a sequence of impulses spaced at nω0 with envelope
|F0(ω)| as in figure 2.

In practice, the modulation pulse shapes and carrier frequency are very
stable, so that the waveform approximates the pulse train in equation (3)
and modulates a single carrier frequency. The power spectrum has FBW =
2/T about the carrier and magnitude 1⁄2Drf with impulses at the rf PRF.
Measurement of the modulation pulse waveform along with the rf modu-
lation parameters is sufficient to completely characterize the transmitted
signal. This measurement is often a digitized version of the pulse wave-
form along with the modulation parameters and peak transmitted power
from which the spectrum can be obtained. In our example of a modulated
rf signal, the required number of time samples is 6.5 × 105, and the analy-
sis required several minutes for the results shown in figure 2. More
typical is PRF << 10 kHz, so that the required number of time samples
rapidly increases to >106. Making such computations would not be a
problem for modern computer resources, but we desire to analyze the

Figure 2. Single pulse-
modulated 1.3-GHz
carrier FFT with 2
percent rf duty factor.
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spectrum for more complex modulations in near real-time. As the time
window required to include one full period of the modulated signal
increases, the number of time samples (with linear spacing) increases
rapidly. Numerical solution on a PC becomes time consuming; therefore,
an analytical approach is desirable to obtain the pulse-modulated spec-
trum for modulations that can be adequately represented by analytic
functions.

2.2 Calculated Results

Fortunately, the modulations of interest have a frequency content that is
significantly lower than the carrier frequency. That is, the modulation
waveform pX(t) has a low-frequency spectrum PX(ω), where PX(ω) ~ 0 for
|ω| < ωmax and ωmax 

<< ωc. This implies that f(t) is an analytic function
of infinite duration, but even when it is truncated we still find that ωmax
<< ωc with PX(ωmax) << PX(ωc), and the spectrum is approximately band-
limited. The positive frequency components of the modulated signal are

   
F0 ω + =

P X ω – ω c

2T0
=

sin X ω – ω c

T0 ω – ω c
= Ac(ω)e jθc (ω) , (11)

with the appropriate normalization and shift the spectrum to be centered
on fc to approximate the positive frequency continuous spectrum F0(w+).2

Figure 3. Calculated
spectrum of a pulsed
rf signal at 1.3 GHz.
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Using the previous example modulation, 1⁄2PX(w) is shown in figure 3
without amplitude correction, so the peak magnitude is X = T/2. As can
be seen from figure 2, the correct amplitude is obtained by normalization
to the time-average or dividing by tmax = T0. That is, the analytical result
is normalized to have the correct rf duty factor in one complete period of
the modulation waveform to correspond to the FFT result. The complete
spectrum F(w) would have impulses at the PRF, but the fundamental
spectrum F0(w) is sufficient to characterize the spectral magnitude and
FBW of the modulated signal. A convolution routine could also be used to
calculate F0(w) = PX(w) ƒ C(w)/4pT0 from the modulation and carrier
spectra. In this manner, more complex carrier behavior could be included,
but a single carrier frequency is sufficient in our analysis.

Thus, the spectrum for the infinite-duration pulse-modulated rf signal
can be readily approximated by FFT or direct calculation. For ideal rectan-
gular pulse modulations, the transform is analytic but, in general, the
modulation pulse is more complicated with only a digitized waveform
representation. We have shown that for low-frequency modulations
compared to a single carrier, the carrier frequency need not be resolved in
the sampled transient. Then measurement of one period of the repetitive
modulation waveform is sufficient to characterize the periodic signal.
Then one can use numerical transform or analytical techniques to obtain
the fundamental signal spectrum, and we must realize that this represents
the envelope of the impulses contained in the actual spectrum. Develop-
ing such tools is a first step in analyzing the spectrum as a function of the
modulation parameters. Once obtained, the spectral content is useful in
estimating the propagation, coupling, and scattering of modulated rf
signals.



8

3. Additional Modulation
Now consider an additional rectangular pulse AM with pulsewidth T1
and AM PRF = 1/T2. The composite signal is then q(t) = g(t)f(t) =
g(t)pX(t)c(t), where g(t) = pX(t) is periodic with a period T2 

~ kT0 for
integer k, and Y = T1/2. Since both g(t) and f(t) are even functions of time,
so is q(t), with fundamental periods T0 and T2 

~ kT0. The Fourier series
coefficients for pY(t) are βn = PY(nω2)/T2, where ω2 = 2π/T2. The partial
sum is

   
q N(t) = α mβ n – me

jnω 2tΣ
m= –M

M
Σ

n=–N

N
= γ ne

jnω 2tΣ
n=–N

N
, (12)

where the sum over 2M + 1 terms is a convolution sum for the 2N + 1
coefficients γn. Then

   
Q 0 nω 2 = γ nT 2 = T 2 α nβ n–mΣ

m=–M

m=+M
, (13)

but this convolution is also numerically intensive. The convolution is
equivalent to scaling the spectral amplitude in equation (11) because the
additional modulation changes the limits of integration in equation (4) to
correspond to the fundamental period of the repetitive modulation
waveform. Thus the Fourier series coefficients for q(t) are weighted by the
new duty factor and

   Q 0(ω) =
T1 Ac (ω)

T2
e jθc (ω) = DAM F0 (ω) (14)

is the Fourier transform of the fundamental signal q0(t). The spectrum for
the infinite-duration signal Q(ω) is a sequence of impulses at 1/T2 (and
1/T0) with the envelope defined by equation (14). For idealized modula-
tion waveforms, the spectrum PX(ω) can be obtained, normalized to the
correct time-average, and scaled by one-half to account for the modulated
carrier.

Consider a numerical approximation where the carrier frequency is not
resolved and the FFT is used to obtain the spectrum of sampled tran-
sients. Here we use at least 21 samples in the smallest pulse and linear
spacing of the transient data for one complete period of the modulation
waveform. The rf carrier is 1.3 GHz, T = 2 µs, with rf PRF = 20 kHz, and
we apply an additional modulation characterized by the AM duty factor
DAM 

= T1/T2 and AM PRF = 1/T2. For example, let T1 = 0.5 ms and T2 =
2␣ ms, so that the AM repetition frequency is 500 Hz and DAM = 0.25. The
modulation waveform contains 10 pulses as shown in figure 4(a) with the
FFT in figure 4(b). The FFT result has been scaled by one-half to account
for the modulated carrier and frequency-shifted to correspond to |Q0(ω)|
for the modulated rf signal. In figure 4(c), I show an 80-kHz frequency
span with dominant impulses at the PRF = 20 kHz, since now the FFT
time window includes repetitive pulses. The FBW of the spectral enve-
lope depends on T (see fig. 4(b)) but the FBW of the impulses depends on
T1, as can be seen in figure 4(c). The impulses appear at the PRF = 20 kHz
and at 1/T1 = 2 kHz with FBW = 2/T1 = 4 kHz. Reducing T1 (while
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holding the other parameters fixed) results in fewer impulses with a
larger FBW, as shown in figure 4(d), where now T1 = 0.25 ms and DAM =
0.125. Conversely, increasing T1 results in more impulses with lower FBW
and the spectral amplitude is proportional to DAM. Although not shown,
this is exactly what is observed on a spectrum analyzer.

The same result can be obtained by the appropriate normalization of the
single pulse modulation spectrum calculated analytically or by FFT of the
modulation waveform. That is, we need only the pulse shape and the
modulation duty factors to generate the pulse-modulated power spec-
trum. The frequency-shifted FFT for pX(t) sampled in a 2-ms time window
is presented in figure 5. The result is scaled for 10 pulses to have the
correct time-average as in figure 4(a), and divided by 2 to account for the
sinusoidal carrier for comparison to figure 4(b). The peak amplitude
1⁄2DrfDAM = 0.005 and the spectral envelope FBW = 2/T are roughly the

Figure 4. (a) Single period of a modulation waveform with 20 pulses, (b) frequency-shifted FFT (times
one-half) of fundamental modulation, (c) FFT (times one-half) of fundamental modulation showing
spectral line characteristics, and (d) FFT (times one-half) of fundamental modulation for T1 = 0.25 ms.
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same as in figure 4(b), with the difference owing to the finite rise- and fall-
times of the rectangular pulse modulation. The fundamental spectrum is
continuous, but since the modulation is periodic, the complete spectrum
Q(ω) would contain sharp impulses at the AM PRF (1/T2 = 500 Hz) and
at the rf PRF (1/T0 = 20 kHz). Alternatively, we could calculate the spec-
trum of Q0(ω) with the appropriate normalization and frequency shift.
The calculated spectral envelope PX(ω − ωc)T1/(2T0T2) is shown in figure
6 and represents the average power, where now there is no reduction in
amplitude due to nonideal rectangular pulses. The calculation of analytic
functions can be more accurate than a numerical approach, but in both
cases, care must be taken to avoid resolution errors due to poor sampling.

Figure 5. Single-pulse
FFT (times one-half)
in 2-ms time window
scaled for 10 pulses.
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Figure 6. Calculated
fundamental
spectrum scaled by
duty factor.
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4. Modulated rf Bursts
Since only a finite number of pulses are transmitted, the rf signal is
actually a transient burst b(t) of a periodic waveform. For a whole number
of modulation periods, the duration does not change the modulation duty
factor since the signal is repetitive, but it is needed to calculate the aver-
age energy transmitted. We show this by windowing the periodic wave-
form with a single rectangular pulse pZ(t) to truncate the pulse train at the
maximum time tmax; so let Z = tmax/2.1 The spectrum PZ(ω) obtained by
the FFT has unit magnitude, since the time-average for this window
function is unity. The fundamental spectrum can be represented by a
convolution with the normalized PZ(ω), B0(ω) = PZ(ω) ⊗ Q0(ω)/2π,  or

B0(ω) =    sin (ωZ)
4πωZ  ⊗ Q0 (ω)  . (15)

Thus, we could calculate the rf burst spectrum as a convolution of analyti-
cal or FFT results and shift the result to ωc, but for measured data, FFT
techniques are often preferred for numerical efficiency. The modulation
waveform is shown in figure 7(a), truncated to tmax = 10 ms, which results
in 50 rf pulses (or 5 AM pulses) with unit peak power transmitted. The
frequency-shifted FFT result (scaled by one-half) for this example is
shown in figure 7(b), and this is the power spectrum measured on a
spectrum analyzer. The FFT result does not depend on the duration when
the modulation duty factors are not modified (i.e., a whole number of
modulation periods transmitted). In figure 7(c), we show an 80-kHz
frequency span for comparison to figure 4(c). The impulses in figure 4(c)
represent another envelope of sharp impulses at the lowest PRF (500 Hz
in this example) as shown in figure 7(d).

The FFT results for q0(t)/2 and pz(t) are shown in figures 8(a) and 8(b),
respectively. The spectral envelope depends primarily on T with fine
features related to T1, while the number of impulses depends on T2.
Truncation of the transient to an rf burst signal does not affect the FFT
result or the power spectrum as measured on a spectrum analyzer. How-
ever, the total average energy transmitted is proportional to the duration
(or dwell time) so that the average energy is obtained by scaling the
power spectrum by tmax. The frequency-shifted energy spectrum for a 50-
pulse burst is shown in figure 9, where the amplitude is based on a peak
transmitted power of 30 dBm (1 W). When only the spectral envelope
B0(ω) is of interest, it can be calculated directly (with the appropriate
normalization). The calculated energy is shown in figure 10 and repre-
sents the average energy spectral envelope. The energy spectrum is still a
sequence of impulses at the modulation repetition frequencies as shown
in figure 9, with magnitude defined by this envelope.

1Papoulis, A., The Fourier Integral and Its Applications, New York, NY: McGraw-Hill (1987).



12

Figure 7. (a) Modulation waveform for 50-pulse rf burst, (b) scaled FFT result shifted to modulated
carrier, (c) FFT result (times one-half) over 80-kHz span for comparison to figure 4(c), and (d) FFT
result (times one-half) over 20-kHz span to show spectral line characteristics.

Time (s)

A
m

pl
itu

de

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Frequency (GHz)

M
ag

ni
tu

de
 (

1/
H

z)
 ×

10
–3

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0
1.298 1.2985 1.299 1.2995 1.3 1.3005 1.301 1.3015

M
ag

ni
tu

de
 (

1/
H

z)
 ×

10
–3

Frequency (Hz) ×104

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0
–4 –3 –2 –1 0 1 2 3 4

M
ag

ni
tu

de
 (

1/
H

z)
 ×

10
–3

Frequency (Hz) ×104
–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

(a) (b)

(c) (d)



13

Figure 9. Energy
spectrum by
convolution of FFT
results.
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Figure 10. Calculated
energy spectrum for
10-ms rf burst signal.
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5. Discussion
I have shown that the spectrum of pulse-modulated signals can be readily
estimated when the modulation waveform has a low-frequency content
compared to the carrier frequency. Given a single period of the modula-
tion waveform, the fundamental spectrum can be obtained by FFT for
digitized data or by direct calculation for idealized modulations. In either
case, the result is the spectral envelope of the power spectrum that con-
tains impulses at all the modulation repetition frequencies. These im-
pulses can be calculated according to the Fourier series representation or
obtained by FFT of several periods of the modulation waveform. The
truncated or rf burst signal spectrum has the same average power spec-
trum with average energy proportional to the burst duration. The rf burst
power spectrum is obtained by normalization to the modulation total
duty factor, with the average energy obtained by scaling for the burst
duration.

The modulation pulse for the rf carrier is typically a nonideal rectangular
pulse with rise- and fall-times of up to 10 percent of the full width and an
amplitude with variations of ±10 percent. The AM modulation wave-
forms, which determine the signal total duty factor, have negligible rise-
and fall-times, so they can be considered ideal pulses. Our approach then
is to obtain the FFT for the digitized modulation pulse and convolve this
power spectrum with the calculated spectrum for the AM waveform. This
is equivalent to normalization by the AM duty factor so that only the rf
pulse modulation waveform is required to calculate the signal power
spectrum. The effect of a finite rise- and fall-time is reflected in the FFT
results shown here since the zero-to-peak rise- and fall-times are dt ~
10␣ ns. The difference between the numerical and analytical results (com-
pare fig. 5 and 6) is associated with the difference in the time-average
owing to different pulse shapes. The error in the peak magnitude is
negligible for rise- and fall-times of up to about 100 ns in this example.

To summarize, the rf modulating pulsewidth determines the FBW of the
spectral envelope about the carrier frequency, with dominant impulses at
the PRF. An additional AM introduces more impulses with a secondary
envelope that depends on the AM pulsewidth (T1). The spectral magni-
tude is reduced according to the modulation duty factor DAM, but the
overall FBW is unchanged. The introduction of another AM reduces the
peak magnitude by DAM but increases the number of impulses in the
spectrum. This is shown in table 1 for some typical rf and AM modulation
parameters. For peak transmitted power P0 = 30 dBm, the spectral magni-
tude represents the average power Pavg = 1⁄2DrfDAMP0. For an rf burst
signal, the average energy is determined from the duration Eavg =
Pavgtmax.

Thus, if one desires a spectral envelope that has a narrow FBW, then a
long pulse should be used for the rf modulation. A broader FBW is ob-
tained for a shorter pulsewidth with a corresponding decrease in the
spectral magnitude according to Drf. The spectrum is a sequence of sharp
impulses whose number and amplitude depend on the AM modulation.
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However, the overall power spectrum envelope is determined by the rf
modulation with peak magnitude given by the time-average of the rf
signal. Given a fixed Drf, the total average power with AM is reduced by
DAM unless P0 is increased to maintain the same time-average. Alterna-
tively, for fixed transmitted power, Drf must be increased to compensate
for DAM to obtain the same average power in the transmitted signal. In
terms of average energy, the duration is a parameter, so different combi-
nations of rf and AM modulations could have equivalent Eavg in the
transmitted signal as shown in table 1. The rf pulsewidth and the lowest
modulation repetition frequency are the important parameters for the
spectral content of the transmitted signal, while the modulation duty
factors control the spectral amplitude. The rf and AM parameters can be
appropriately adjusted to obtain a desired power spectrum with the
energy spectrum determined by the duration of the rf burst signal.

rf modulation AM
parameters (µs) parameters (ms) Impulse

FWB frequency Pavg Eavg
T T0 tmax T1 T2 (kHz) (kHz) (mW) (nJ)

2 1000 500 — — 1000 1 1 500
2 200 100 — — 1000 5 5 500
2 50 25 — — 1000 20 20 500
2 50 100 0.25 1 1000 1 5 500
2 50 100 0.5 2 1000 0.5 5 500

10 2000 200 — — 200 0.5 2.5 500
10 2000 400 2 4 200 0.25 1.25 500
10 1000 200 2 4 200 0.25 2.5 500
10 200 80 0.5 2 200 0.5 6.25 500
30 2000 67 — — 67 0.5 7.5 500
30 2000 133 2 4 67 0.25 3.75 500
— — 200 0.05 10 40 0.1 2.5 500

Table 1. Spectral
characteristics of an rf
burst of duration tmax
and 1-W peak
transmitted power.
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