ARmy RESEARCH LABORATORY

The Distributed Interactive Simulation

(DIS) Lethality Communication Server
Volume Il: User and Programmer’ s Manual

Geoffrey C. Sauerborn

ARL-TR- 1775 FEBRUARY 1999

19990325 063

Approved for public release; distribution is unlimited.
DPTIC QUALITY INSPECTED 1

IRIX™ and Open GL™ are trademarks of of Silicon Graphics, Inc.

Linux® is a registered trademark of Linus Torvalds.

POSIX® is a registered trademark of the Ingtitute of Electrical and Electronics Engineers, Inc.
Silicon Graphics@ and IRIS@ are registered trademarks of Silicon Graphics, Inc.

Sun Solaris® is aregistered trademark of Sun Microsystems Compter Company.

VR Link@ is a registered trademark of MaK.

UNIX™ is a trademark of Bell Laboratories.

Windows NT@ is a registered trademark of Microsoft Corporation.

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not congtitute an official endorsement or approval of
the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Abstract

Volume 1 presented the distributed interactive simulation lethality
communication server, a client-server gpproach to handling battle simulation
lethality. Although Volume 1 explained the approach and its benefits and
limitations, it presented no information about how to set up, run, or modify
the server. In this volume, these vital (yet sometimes tedious) details are
provided.

TABLE OF CONTENTS

LISTOF FIGURES. e e v
LIST OF TABLES . . .ottt vii
PURPOSE. .. e e 1
INTRODUCTION.. . .\ttt et e 1
QUICK START INSTALLATION .ot iiiriiieaeennns !
Unpacking and Installing « o« oo vinene it 2
ComMPIliNG.. oot 2
TESEPIrOGIAMS « o v v ettt te it ie e e 2
THE SERVER'SARCHITECTURE .+« « « e it i i e it iie s iee e e 4
Server Application-ARL DIS Manager « e« evvvoeevernmrneneanennnns 7
Server Application-The DIS SErVer « v v v v e v ineineerieisrneaenenns 7
Server Application-The DISMonitor ..« o vevvivenvviivennnn.. 8
INITIALIZING THE SERVER . ..o v it 8
Server INtAization FilES « v v e v ve it e e it i e iii et ec e 8
COMMUNICATING WITH THE SERVER ...cccciiiiiiiiiiiiiinnns 10
EXPANDING THE SERVER ot v iiiiiiiiiinenenenanceenns 11
Adding a New Vulnerability Taxonomy DesCription -+« «veveveeerenn-. 11
Adding a New (look-up) Table Format. « -« e v v veeeiecninninnennnnn. 26
Adding Remote Access for a New Vulnerability Methodology. « «««« v v v v v v 33
SUMMARY . e s 48
REFERENCES. . ittt it i ittt ittt aaanessnanenns 51
APPENDICES

A. Initial Compilation’s Sample QUPUL « <« e v v e o ee v eev e vnenaeaennn 53
B. Manua “Man” Pages 59
DISTRIBUTION LIST ittt e 169
REPORT DOCUMENTATION PAGEt oo e tieeaen 173

1i

INTENTIONALLY LEFT BLANK

Figure

10.
11,
12.
13.
14.

15.

LIST OF FIGURES

Page
DIS Lethality Server Architecture . .« oo v veeveeieeee e, 5
A Modified View of the Server Architecture .« v v oo veeviiiniiniann. 11
vl_meth.h Code Changes-Adding a New Vulnerability Method «+ .+« oo v v nt 16
V/L API: Lethality Data Delivery, Parameters, and Reader Layers. - -« o+« . - - . 17
Adding an API for a New Vulnerability Method v]_binary_ArIDIS_ProbAll_NoNet() 24

“tol_fmtsh” Used for Data V/IL Data Reading and Initidization. ...+« ... 30
Example of Recordsfor aMeta DataFile « .o eeeeieeivvneint. 31

Prototypes of Data Source Initidization and Reader Functions (in “tbl_rdrs.h”) .. 32

Modifications of DIS Monitor to Listen for New PDU Types « ..« .cocnc--. 36
Removing Collison From DIS Manager's PDU “Filtering” « oo v ceveeeeecnn 36
Defining Client-Server Protocol (adding tokensto vls_tokeh) 39
Enabling viserver to Parse a New Query Type (service query_to_db()) - -« ---- 44
Sample ASCII Query String (sent to the viserver) -« ovvvviveeaee s 44
Change (in dis_mon) to Accept New QUeriescoeeeeeevnnn.. 45

A Function to Process Collison Damage Queries (usng BINARY method) - - - - - a7

INTENTIONALLY LEFT BLANK

Vi

—

D

LIST OF TABLES

MFK “Probability” SPace v v v oot e

Application’s Interface to the Server (VLSclient)................

Some Result Delivery APIs (for the MFK methodology)

Newly Defined Result Delivery APIs (for the BINARY methodology)

Vii

Page

11
18

19

INTENTIONALLY LEFT BLANK

viii

THE DISTRIBUTED INTERACTIVE SIMULATION (DIS)
LETHALITY COMMUNICATION SERVER
VOLUME II: USER AND PROGRAMMER'S MANUAL

1. PURPOSE

This report is a user and programmer’s manua for the distributed interactive smulation
(DIS) lethality communication server (the server). The report can be used to learn how to
initidlize, operate, or modify the server. Ingructions for modifying the server are written for an
expert level audience; therefore, only experienced “C” programmers should attempt this.

2. INTRODUCTION

The ARL DIS lethality communication server is a combination of application program
interface (API) libraries and utility programs that make it possible to allow multiple applications
to access asingle lethality data source. The server is designed for the DIS environment. As such,
the server returns lethality results as described by (the DIS) Institute of Electrical and Electronics
Engineers (IEEE) Standard 1278.1[1,2]. Furthermore, the server expectsinput in DIS standard
protocol data unit (PDU) format (although the equivalent input may be greatly condensed at more
abstracted layers within the APIs). The DIS lethality server has demonstrated a data latency of
less than 1/100th of a second and thus may be useful for awide variety of applications, including
real time [3,4]. This project was jointly sponsored by the Army Modeling & Simulation Office
(asa 1997 Army modeling improvement program project [AMIP]) and by the U.S. Army
Research Laboratory (ARL).

3. QUICK START INSTALLATION

The server is designed to run in the UNIX™ environment but might be portable to most
POSIX® systems with an American National Standards Institute (ANSI) C compiler and the
“csh” or “tcsh” command line interpreter shell* This includes most UNIX™-like systems and
Windows™ NT®, So far, the server has only been tested under IRIX™, Linux®, and Sun
Solaris® operating systems.

IThe server requires an environmkntal variable to be set (VLS HOME). Thisis best accomplished by running the
server or client application under the “csh” or “tcsh” commandline interfaces.

3.1 Unpacking and Installing

The server comes packaged in a*“tar” format archive. This archive needsto be unpacked in
aconvenient location accessible by server users, to be used by those who actually wish to run the
server and by those who merely wish to have accessto its librariesto create client applications.
In the following examples, we assume that the location will be /usr/local/DIS/Lserver, but the
actua location chosen is not significant.

Change to the directory where you wish to install the server and extract the tar archive
there. For example, suppose the tar archive is in the file /home/mystuff/lserver_v123.tar. To
install the server in /ust/local/DIS/Lserver,

nmkdir /usr/local/DIS/
nkdi r /usr/local/DIS/Lserver

cd /usr/local/DIS/Lserver
tar -xf /home/mystuff/lserver_vl23.tar

3.2 Compiling

Assuming no errors were encountered when the tar archive was unpacked, we are now
ready to compile the server. Change to the server’s “home” (installation) directory and type
“ /compile.sh™:

cd /usr/local/DIS/Lserver
./compile.sh

By default, the compiling script uses “cc” to compile source code. Thismay be changed by
using a CC=compiler argument to the script. For example, to compile using /usr/gnu/bin/gec,

type

./compile.sh CC=/usr/bin/gnu/gcc

Output for this procedure should appear similar to that shown in Appendix A.

3.3 Test Programs

Before running a client application, it will be necessary to define the environmental varigble
VLS_HOME. Thisis set to the server’s installation directory. In the C shell (csh), thisis
accomplished by typing the command

set VLS_HOME=/usr/local/DIS/Lserver
set env VLS_HOME /usr/local/DIS/Lserver

These same commands may be added to your $home/.cshre (C-shell initialization “run
command”) file so that you will not have to retype these commands every time you run the csh.
Once VLS_HOME is set, the shell replaces the string “$VLS_HOME” with the argument to
which it was assigned.

Thefirst test program simply tests that the server is able to communicate with asimple
client application. It is executed with the command

$VLS HOWE/ bi n/ t est _Xsi npl e. csh

The output should be similar to the following:

Tests connection to the sinple server.
Uses Xwi ndows xterm (xtermnust be in the current path).
Enter key when ready.

sl eeping for 5 seconds..

[7 3 N C IR N

téffing client program..

The next test program is more complicated since it requires a number of processes to be
sequentially or asynchronously executed. As with the simple test program, connectivity
between the server and client is verified. This time, however, the client will aso query the server
for the results to a specific fire/detonation event. In order for the server to know about the event,
the ARL DIS manager islaunched, DIS PDUs are broadcast to the DIS network, and the DIS
monitor provided with the server is run to monitor the PDUs. If errorsare reported, it might be
because one or more of these programs was not running when it should have because of smplistic
“deep” delays built into the test program. I thisis the case, you might try to run the test
program again or change the amount of time the test program “deeps’ between launch times of
the various modules. This test program is executed with the following command:

$VLS_HOME/bin/test_Xall.csh

In addition to severa windows opening for the various modules, the output should be similar to
the following:

Tests connection to the VLserver attached to the DS nonitor
WIl also run ARL DIS Manager in order to do so.
Uses Xwi ndows xterm (xterm nust be in the current path).

Enter key when ready.

sleeping for 5 seconds...

4

3

2

1 ...

sl eeping for 5 seconds...

4

3

2

1 ...

sl eeping for 20 seconds...

starting client program..

HREFRFFERIEET T H E query W A S HHHHHHHHHHHHHHH
QUERY TYPE nfkDIS Result ARGS nfkDIS_ IDS 135 2 1005 135 2 12
HitHHHE T H E answer W A S ######RHHHAHHH]

"5 Received from server:1: 4 0 *
T EE RIS PSR EES LS S AL L L Lt R S

This neans that: 4 and 0 are the RESULT and FLAG codes,
respectively, returned by the server

RESULT code: 4

RESULT Meani ng: PS_MFK_NCDAMAGE - No Danmge

FLAG code: 0 = Success.
FLAG Meani ng:
0 Success.

The pkh source for the referenced entity and threat
munition (as defined in the DAVAGE SOURCE META DATA FILE)
was successfully found, interpreted, and used in

the calculation of the returned (VL_Result) val ue.

DIS Mnitor seems to be speaking with vlserver. - K

This concludes the execution of the test programs. The following section explains the different
modules and data flow that occur during the execution of these test programs (and through the
server in generd).

4. THE SERVER'S ARCHITECTURE

Figure 1 displays a view of the server’s architectural layout. Boxes enclosed by solid lines
represent independent processes. Each of these processes may be run on separate computers.
The one exception isthe DIS lethality server and DIS monitor; these two processes must
reside on the same host machine, as indicated by the dotted box. Dashed lines separating the

vulnerability/lethality (VL) API and Data Manager indicate that these represent DIS lethality
server service layers (APIs) that reside within a parent process.

DIS Network Traffic
NI IS F PSSy ryyrsry

(romsmemnns TCP/IP link
| CIient D [U UDP ,ink
— | AR v
are | - TCP/
fsmr——— : L ?:Sl f/lr;mor(i/ Link] : link . ARL DIS
i L L] L i 1 . .
“Client > gter?,;? &> DIS Monitor :“1——_ Manager
' ’ . l ' - 3 £
. [{vlserver) i : ' - .
: v }:.7 : l
: S
; bommm-= ol
. I G
.] l |
: 1
: I }
: | Data Manager lil;
pE . t :
e , I
- Client - < ' : I,
— . " I
+ Single Hosf Computer !:.__ _____ IN

Figure 1. DIS Lethalitv Server Architecture,

Not shown in Figure 1 isthe clients' connectivity to the DIS network. To connect to the DIS
network, clients may choose to use the ARL DIS Manager (which is freely provided with the
lethality server), acommercially available product (such as VR Link®), or their own in-house DIS
networking library. It isnot the responsibility of or within the scope of the |ethality server to
decide how clients connect with the DIS network.

An explanation of the components follows:

. The ARL DIS Manager monitors DIS PDUs and sends them its own clients. In this case,
the DIS manager has one client (the DIS Monitor). Because the DIS monitor is currently
only concerned with MFK2 vulnerability resulting from munitions, it only requests to receive
(from the ARL DIS manager) entity state, fire, and detonation PDUs (since these are the only

ZMFK - system damage in terms of mobility, fire power, and catastrophic damage; see Table1 (Section 5.1) for a
further explanation of MFK.

PDUs necessary to caculate MFK results). The DIS monitor may request other PDU types
from the DIS manager as necessary,

» The DIS Monitor monitors all fire/detonation events (along with information concerning
any entities involved). It maintains cached records of these events. In this way, the
parameters involved will be available when the DIS Lethality Server queriesit for the
results of a particular detonation event.

Upon receipt of a query from the DIS lethality server, the DIS monitor calsthe VL API
which sets the appropriate parameters that describe the conditions at the time of the detonation
(e.g., munition type, velocity, etc.). (The API function vip_print_all_params() may be called to
show where the parameter values were set; see viparam(3) in Appendix B.) The VL API then
calls the Data Manager APl which provides data (presumably those data are the vulnerability
analysis results). The VL API layer then returns these data in a format appropriate to query.

The Data Manager APl manages many types of low level data. It maintains records of
where to find data sources for each entity and threatening munition. 1t keeps track of which
functions are used to initialize (or read each type of data source into memory) and (once
initialized) which function to use to extract results (from the cached memory data structures). It
is dso responsble for maintaining which DIS enumerations are used to describe a particular
vehicle, munition, or other item.

The job of the DIS Lethality Server (vlserver) component isrelatively smple. This
component merely passes client queries to the DIS Monitor and returns the DIS monitor’s
results to the client.

The blocksin Figure 1 labeled as“ Client” represent clients of the DIS lethality server. The
current maximum number of clients that the server will accept is32. This arbitrary limit may be
changed by modifying the value of the variable Max_Num_Clients in the source file
$VLS _HOME/src/Server/viserver.c. Inthe case of our test programs (from Section 3.3), just one
client was active. These test programs were simply shell scripts that launch the various server
applications programs. (These programs are shown as separate processes in Figure 1.) When
these applications are not being launched from a shell script, the proper order of execution must
be followed. When sarted, the server components should be executed in the following order:

1st (or 2nd) ARL DI'S nmanager.
2nd (or 1st) DIS lethality server.

3rd DI'S nonitor.
4th client(s) (to DIS lethality server).

The ARL DIS manager must be running before the DIS monitor is running. Thisis because the
DIS monitor isaclient of the DIS manager. The DIS |ethality server must be running before the DIS
monitor because the server creates a common shared memory. Furthermore, administrative details
concerning how to connect to this shared memory location are communicated to the DIS monitor
through a transmission control protocol/intemet protocol (TCP/IP) link, of which the DIS monitor
is aclient. After this initid network “hand shaking,” the remainder of the communication occurs
through shared memory. Finally, clients of the DIS lethality server may join and leave as they wish.
In the following three sections, we explain how to execute and use these applications manudly.

4.1 Sarver Application—ARL DIS Manager

The ARL DIS manager must be running before the DIS monitor is started. The DIS
manager may be started by typing

$VLS_HOVE/ bi n/ di s_ngr. exe -x off

The -xof£ option turns off the DIS exercise identification (ID) number filtering. (This allows

multiple DIS exercises to be monitored.) If you would like to monitor only one exercise, use the
-x option followed by the exercise number. Other command line options may be seen by using

the - hel p command line option or by viewing the dis_mgr(1) “man” page in Appendix B. DIS
manager source code and documentation are presented in $VLS_HOME/src/Libs/DIS.

4.2 Server Annlication-The DIS Server

The DIS server must be started before the DIS monitor. To run the server, type the
following command line:

$VLS_HOVE/ bi n/ vl server. exe
If you recelve an error message Smilar to

pkg_permserver: bi nd: Address already in use
init_server() : Fail ed.

another vulnerability/lethality (V/L) server is probably already
using the Port: 4976. Use the “-p” flag to specify a different
server port.

Thismost likely means that the server is still running (perhaps as a background process or in
another window). Command line options and more details about the server are given in the
viserver(1) manual page in Appendix B. In order for the server to respond to DIS vulnerability

queries, the DIS monitor must aso be running. Starting the DIS monitor is explained in the next
section.

4.3 Server Annlication-The DIS monitor
To run the DIS monitor, type the following command line:
$VLS_HOME/ bi n/ di s_non. exe
You may receive an error message that includes information similar to

Connecting to DI'S nanager on YOUR_HOST NAME...
pkg_open: client connect: Connection refused

Unabl e to connect to DI'S manager on YOUR_HOST_NAME
cl eaning up.

The DIS monitor needs to connect to the ARL DIS manager. This error message most likely
means that the DIS manager was not started or has stopped or that a path (network route) to the
computer whereit isrunning could not be found. There are command line options that allow the
DIS monitor to look for the ARL DIS server at other computer |P addresses or sites. For
information about these and other command line options and details about the DIS monitor, see
the dis mon(l) “man” page in Appendix B.

5. INITIALIZING THE SERVER

This section explicitly notes server starting options, location and formats of initialization
files, and other preparatory information required to start the server.

5.1 Server Initialization Files

Recall that the environmental variable VLS HOME set from Section 3.3 is set to the
“home” directory where the DIS lethality server was installed. Initialization files are located in
the Data/Init subdirectory relative to VLS_HOME. That is, initialization data files are located in
the directory

${VLS_HOME} /Data/Init/

The main initialization file in this directory is vis db_initini. Thisfile tells the server where to
find all the other initialization files. Only three initialization files are identified by vls_db_init.ini:

1. A DIS enumeration file-these are the names and equivalent DIS numerical
representation for entities, munitions, etc. More than 6,000 | EEE standard enumerations are
provided [2].

2. A DIS auxiliary enumeration file-intended for “additional” entities added for a
particular exercise.

3. A lethality “meta data” file-this tells the server al it needs to know about the lethality
data to be delivered upon demand. Themeta data file contains meta data records.

A lethdity meta data record identifies several items for the server. First, it specifies which
type of vulnerability/lethality (V/L) analysis method is used when a particular threat attacks a
certain target. Then it identifies where the data are given that describe the damage state outcomes
(with respect to the type of vulnerability analysis method in question). Finally, the meta data
record identifies which library functions are used to read the data source. (ldentifying a library
function dlows flexibility in how data are stored and retrieved. Vulnerability data need not be
just static “look-up” tables. They may be a reference to a network connection or even a
separately running application that calculates results “on the fly”.)

It was stated that the |ethality meta data file identifies the “V/L analysis method”. One
such example of an analysis method is the mobility, firepower, catastrophic (MFK) method for
describing damage state outcomes (as seen in Table 1).

Table 1. MFK “Probability” Space

QOutcome QOutcome Explanation
MKILL Mobility and only mobility kill.
FKILL Firepower and only firepower kill.
MFKILL Mobility and firepower kills.
KKILL Catastrophic kill.

NoDamage | No Additiond damage inflicted.

In the MFK method, the set of al outcomes of a target-threat interaction are defined in terms
of these conditions. Since these sets are normally treasted as probabilistic events, it is necessary
that the complete set of outcomes contain the universe of al possible events (so that their
probabilities may sum to one). Any number of analysis methods are possible, provided that
mathematical and probabilistic rules are adhered to and a reasonable V/L taxonomy is applied. It is
the responghility of higher level applications (eg., war games) to know what these V/L results

mean and to treat them in an appropriate manner. V/L server technology has potentially powerful
implications to the analysis community, provided the V/L metrics and applications that use them
(e.g., war games) are properly coupled [5]. Currently, the server just implements the MFK
method that is an “end game” description of kill probability given ahit (“PKH"). How another
method is incorporated into the server is explained in Section 7. Other specifics concerning the
formats for the vis db_init.ini, DIS enumerations, and the meta data records are presented in the
vls_db_init(5) manua page in Appendix B.

6. COMMUNICATING WITH THE SERVER

This section shows in a generd sense how gpplication programs may communicate with an
initialized and running server. For the explicit details, see the manual pagesfor viserver(l) and
visclient(3) in Appendix B.

The V/L server has a group of APl calls specificaly designed for high level gpplications
(such as war games and simulators). (That is, these gpplications are high level as viewed from the
perspective of executing high fidelity vulnerability calculations.) This API group is called the
VLSClient (or visclient(3)) library. For war games and other high level applications, this interface
to the V/L server provides the functiondlity and fidelity needed for detailed vulnerability anaysis,
yet, thisis accomplished with arelatively simple interface. These functions communicate directly
with arunning DIS VL server module (viserver) as shown in Figure 2 (a modified view of the
server architecture that was displayed in Figure 1).

To avoid confusion, the VL Sclient library was not shown in Figure 1. The VL Sclient
calsare actually compiled in aclient’s application. Thisis shown in Figure 2 where the font size
of the dashed lines separates Client from VL Sclient. While the APl may appear largein this
figure, the interface itsdf is quite Smple, comprising only the four functions shown in Table 2.

Client applications need only open (vis_open()), a connection to the server. They may
send (vis_send()) and read (vis_read()) the answer to as many queries as they like and may close
(vis_close()) the connection when appropriate. The syntax for sending and receiving answers to
queriesis explained in the viserver(1) and visclient(3) manual pages of Appendix B.

10

Ciient | VLSClient |«

TCP/IPIink

DIS Network Traffic

upbrP

B § e
Ciient | VLSclient |<

Flient : VLSclient L—

Cent |V LSclieat |«

O

v ik
: cormTTe
: S Shared P :
. “vL SeNer . Mamory B N TCF/’P “ARL pIs
(viserver) |l gy PiSMonitor (L TTH) Manager
e i

1 Dats Maoager
|

o v 2

Single Host Computer

Figure 2. A Modified View of the Server Architecture.

Table 2. Application’s Interface to the Server (VLSclient)

APl Purpose
vls open() | open a connection with the vl server.
vls close() | close a connection.
vis send() | send a message (usudly a query) to the server.
vls read() | read data (usudly an answered query) from the server.

7. EXPANDI NGTHESERVER

From a programming point of view, the server is designed to be expandable. However,
many extensons can be accomplished without programming (by manipulating system parameters
and initialization data; see Section 5). Other enhancements require additional software. This
section focuses on modifications that require changes in the software.

7.1 Adding a New Vuinerability Taxonomy Description (vulnerability method)

In Section 5, we described a vulnerability method implemented in the DIS V/L server (the
MFK method, Table 1). The server’s overall architecture is designed to accommodate other

1

vulnerability descriptions upon demand by following the approach outlined in this section (some
assembly is required).

7.1.1 What is a Vulnerability Description?

In the MFK method, al outcomes of a target-threat interaction are defined in a finite set.
Since outcomes in these sets are normally treated as probabilistic events, the complete set of
outcomes must contain the universe of all possible events (so that their probabilities may sum to
one). Other methods of describing a system’s vulnerable state may be defined (with more or less
fidelity) in the same manner (e.g., asimple binary methodology with two states, “dead” or
“aive’). That is, the outcome of a V/L anaysis will result in the subject entity being classfied as
gither “dead” or “dive’. Both the MFK and the dead/dive taxonomies are “vulnerability
descriptions’. They describe afinite (yet comprehensive) set of outcomes that describe a
system’ s performance capabilities following the occurrence of some event. However, asfar as
the VIL server is concerned, it is not necessary for probabilities to be associated with each
outcome. For instance, another vulnerability description could be alist of components. These
components could be identified as functiona or nonfunctional. 1t would then be the
responsibility of the calling application to simulate the system’s behavior when only certain
specified components were working. The process just described follows a very high fidelity
vulnerability methodology known as “degraded states” [6, 7, 8].

7.1.2 Why the Server Needs to Know Which Vulnerability Description is Used

The server needs to know which data to deliver to a client (and in what format). If a client
amulator is designed to operate using an MFK method, it would be meaningless to send this
simulator degraded states or any other V/L description. Secondly, the server needs to know
which battlefield environmental parameters to monitor (in order to initidize conditions for the
vulnerability calculation).

How then does the server distinguish between vulnerability methods and how does a client
communicate its wishes to the server? The short answer is that we first incorporate the
vulnerability method into the server, then select a protocol so that clients may query according to
that vulnerability description. In the next section, we follow the steps for “folding” a new
vulnerability method into the server. Thisinvolves adding new APIs to the V/L API layer.

Later, in Section 7.3, we see how to establish a query-answer protocol (between a client and the
DIS server), which will allow remote access to these new APIs.

12

7.1.3 Incorporating a New Vulnerability Method Into the Server

Thefirst step is to edit data structuresin the vI_meth.h “include” file. By way of example,
suppose we wish to add a new vulnerability method that describes a vehicle or system as strictly
“aive’ or “dead”. Let us cal thisa BINARY method. First, we will edit the file
$VLS_HOME/src/Db/vl_meth.h and add the lines shown as bold in Figure 3. (The code in Figure
3 that is not bold was aready present before any changes were made))

Starting on line 32 of vi_meth.h of Figure 3, we see that base enumerations are created for the
new (BINARY) vulnerability description. The names of these base enumerations are preceded by a
double underscore“__”. The reason behind thisis to force the final revision of these names (for
subsets within the vulnerability description) to start with an enumeration of zero (0). Theresult is
that the first element name will have an internal value of zero (0), the second one (1), the third two
(2), and so on. In this way, when probabilities are returned by a (newly created) lethality server
API for every possible outcome in a vulnerability description set, they may al be returned in a
sngle array. The dlements of that array may be referenced (in order) by using the names defined for
each outcome in the vulnerability description. (Look ahead to the final revision of the names
defined on lines 42 and 43))

In Section 7.1.2, we noted that the server needs to know which data to monitor on the virtua
battlefield in order to have the proper parameters available for the lethality calculation. The next
section of code we turn our attention to (on line 104) is modified so that this may occur. Here, we
are adding a new enumeration for “collison” type interactions. The enumerations aready defined (in
the data type VLSetParam_t), starting on line 86, are used to inform the server’s V/L APIs which
parameters are significant for a particular caculation. These parameters are applicable for any type
of vulnerability methodology (e.g., MFK or BINARY). Online 104, we define the internal
enumeration VL_PARAM_SET_COLLISION toinform server APIs to prepare data parameters for
damage resulting from collison. Damage resulting from munition threats (both direct and indirect
fire) were aready defined on lines 89-90. Later (in Figure 5), we shall see how server APIs use this
information to prepare initid conditions for a lethdity caculation.

TheVLSetParam_t enurnerations (defined between lines 86 and 107) are internal values and
only have meaning within the V/L server code itself. It is aso necessary for the server to be able
to associate these internal values with external representations. This association is made in the
VL_Meth_List[] array defined in Figure 3 on lines 119 through 140. The character string “DIS
Collison” is associated with our newly defined vulnerability parameter type on line 136 of
vl_meth.h (Figure 3). The server looks for these string representations when it reads the external

13

— ORI N R W= OO0 ~IAN NSRRI —

DO DD et et et o e et e et

/* $Id: vl _meth.h,v 0.6 1997/08/21 17:08:58 geoffs Exp geoffs $ */
#ifndef VL_METH H
#define VL_METH_H

typedef enum _mfk_result_enums {
_PS_LOWER_BOUND = -3,

PS_ERROR = -2,

in an array*/

{(* 0 ")
(* 1 %)

__PS MFK_LOWER_BOUND = -1,
PS_MFK M = 0, /+ start at zero so it can be 1st elenent
PS_MFK_F,
PS_MFK_MF,
PS_MFK_K,
PS_MFK_NODAMAGE,
/* if more Probability spaces are added, then
* we will have to add nake the _mfk_result_enums
* hidden enurerations (like: " _PS_MFE M ")
* and add upper an lower bounds for that result
* type (like: __PS_MFX_LOWER_BOUND,)
* then we do this:
* # define PS_MFK_M (_ PS_MFK_M-__PS_MFK_LOWER_BOUND+1)
* # define PS_MFK_F (__PS_MFK_F-__PS_MFK_LCWER_BOUND+1)
* # define PS_MFK_MF (__PS_MFK_MF-__PS MFK_LOWER_BOUND+1) (* 2 *)
*
*
* an array is dinensioned:

*/

all_types_ps_mfk{ PS_MFK_UPPER_BOUND 1
PS_MFK_UPPER_BOUND,
___PS_BINARY LOWER_BOUND,

PS_BI NARY_DEAD,
PS_BI NARY_ALI VE,

_PS_BI NARY_UPPER_BOUND,

_PS_UPPER_BOUND

} VL_Resul

#defi ne
#defi ne

t;

PS_BINARY_DEAD (__PS_BINARY_DEAD-] =~ __PS_BINARY_ LOWER_BOUND)/*
PS % NARY_ALIVE (__PS_BINARY ALIVE- 1-__PS_BINARY_LOWER_BOUND)/*

#ifdef VL_METHC
struct VL Result _strings t {
VL_Result i d;

char
hoo
static str

*string;

uct _VL_Result_strings_t __VL_Result_strings [I= {

{ _PS_LOWER_BOUND, *_PS_LOWER_BOUND" },

{

PS_ERROR, "PS_ERRCR" },

{__PS_MFK_LOWER_BOUND, "__PS_MFK_LCWER BOUND"},

A e e

PS_MFK_M, "PS_MFK_M" },
PS_MFK_F, "PS_MFK_F" },
PS_MFK_MF, "PS_MFKMF" 1,
PS_MFK_K, "PS_MFK K" },
PS_MFK_NODAMAGE, "PS_MFK_NODAMAGE' },

{__PS_MFK_LOWER_BOUND, "__PS_MFK_UPPER_BOUND"},

{ _PS_UPPER_BOUND, "_PS_UPPER_BOUND" }

14

0
1

*/
*/

99

Pt e otk Jrrad o o panad ot o e e itk o o s e e o fd
NI BRI N b ot pd o pre o pd bk ek b O O O O O OO QOO
= OV~ NEBWN— OV NLRWN—O

/* add a BINARY Wulnerability Methodology */

{__PS_BI NARY_LOWER_BOUND, “__PS_BINARY_ LOWER_BOUND"},
{ PS_BINARY DEAD, "PS_BINARY DEAD" },
{ PS_BINARY ALIVE, "PS_BINARY_ALIVE" 1},

{_PS_BI NARY_LOWER BOUND, "__PS_BINARY_UPPER_BOUND"},

{ _PS_UPPER_BOUND, "_PS_UPPER_BOUND" }
Y
#endif

/*
VL_Meth data type.

type used to indicate which data sources (inputs) are sufficient
to set the VL paraneters in order to be able to return the
correct result from the lookup table (or other data source).

=~ % ¥ * T

*/
typedef enum {
_VI_INPUT ENUMS BEGIN = 0 /* bel ow |owest boundary */

., VL_PARAM SET_METH_DIS_HitToKill
, VL_PARAM SET METH_DIS_ProxKill

/*
* VLSetParam_t == VL_PARAM_SET METH_DIS_HitToKill
* (or VL_PAREM SET METH DIS_ProxKill)

* Indicates that passing the DIS PDUS

Enity State (target)
Enity State (firer)
* FirePDU

DetonationPDU
shall be sufficient to set the vL paraneters to return the
* correct result from the lookup table (or other data source).
*/

*

*

, VL_PARAM SET_COLLISION

, _VL_INPUT_ENUMS_ END /* upper boundary */
} VLSetParam t ;

typedef struct _vl _neth_struc {
VLSetParam t jd; /*Analysis input Paraneter Methodology Identifier

char *nane; /* String ldentifier for this method
* {used in the Meta V/L Table list)
* "DAMAGE_SOURCE_META_DATA_FILE"
*/
} VL_Meth;

#i fdef VI_METH_C

/*

* VL _Meth List(] identify the which inputs are needed
(e.g. for DIS - which PDUs are needed)
and it also is used to identify what
special procedures or processes are
required handling to handle the inputs
vul nerability calculation (e.g. when
“DIS HitToXill" i s being used, then
the nunition *MUST* hit the target to
have ANY effect.

% %k % % % R

15

¥/

*/
static VI_Meth VIL_Meth_List[] = {
{ _VL_INPUT_ENUMS_BEGIN, NULL}

, { VL_PARAM SET METH DIS HitToKill, "DIS HitToKill" }
, { VL_PARAM SET _METH DIS_ProxKill, "DIS ProxKill" }

{ VL_PARAM SET_COLLISION, "pxs Collision" '}

, { _VL_INPUT_ENUMS_END, NULL} /* upper boundary */

#endif

Figure 3. vl meth.h Code Changes-Adding a New Vulnerability Method.

lethdity “meta data” records (described in Section 5.1). A sample lethality meta data file (the
DAMAGE_SOURCE_META DATA FILE) is shown on the vls_db_init(S) manua page of
Appendix B. Specificadly, the third field of a DAMAGE_SOURCE_META_DATA FILE

contains the text string that associates a set of (initial condition) parameters with a vulnerability
data source that requires those parameters. In the meta datafile excerpt (shown near the end of the
vis_db_init(5) manual page and repeated in Figure 7), “ DIS HitToKill” is displayed as the string
identifying the wvulnerability initid condition parameter requirements. On line 133 of Figure 3, we
can see that this external string is associated with the interna enumeration

VL_PARAM_SET METH_DIS_HitToKill.

Next, we show how the server internally uses the enumerations (to pass the proper
parameters to server V/IL APIs) and how multiple vulnerability methodologies are accommodated.

7.1.3.1 How the Server Accommodates Multiple Vulnerability Methodologies and
Multiple Types of Parameters

When a new vulnerability method is created, new API routines dso have to be
created to deliver the new type of data.

These routines accomplish the following objectives:

1. They set the appropriate parameters that describe the conditions at the time a
letha event occurs (e.g., munition type, termina velocity, etc.);

2. Once these parameters are set, the delivery routine must then call the appropriate
lethality analysis algorithm (this could be as simple as atable look-up function); and

16

3. They finaly return the data (in aform and format that is appropriate for that
vulnerability method) to the calling function. This architecture is depicted in Figure 4 where we
see a data delivery layer, a lethality data reader (table look-up) layer, and a vulnerability
parameter layer between them. The layers seen in Figure 4 are actualy sub-layers that fal within
the larger VIL API layer, which was shown in Figure 1.

[m==mcm s e mc e e e e e e ==

VL API layer

Result Delivery Routines sub-layer

Step 1. Data delivery layer l

Vulnerability Parameters sub-layer

Step2. Table look-up layer
reads VL Parameters

“Table Look-up” Routines sub-iayer

i
i
1
i
l
1
1
I
1
| sets VL Parameters
I
I
I
I
|
I
I
1
|
I
|
|
|
I
|
I
|

Figure 4.

Because the Result Delivery sub-layer needs to set values in the Vulnerability
Parameters sub-layer, routines in the Result Delivery sub-layer must have prior knowledge of
dl the environmentad information necessary to complete lethality caculation for the vulnerability
method in use. For example, in order to describe the results of a munition impact, the MFK
methodology requires information from the DIS fire, detonation, and entity state PDUs.
Therefore, these PDUs are passed to al Result Delivery sub-layer routines that service the MFK
methodology. We may examine prototypes of some implemented MFK delivery routines (shown
in Table 3). (These APIs are documented in detail in the vi(3) manua page of Appendix B.)
Notice that each routine has aVLSetParam_t enumeration asits first argument. This first argument
(VLSetParam t itype) informs the cadled APl in what form the environmenta variables will appear.
That is, it tells the function which arguments will be substituted for the ...” seenin Table 3.

17

Table 3. Some Result Delivery APIs (for the MFK methodol ogy)

ANSI C Prototype Declaration (for the MFK Methodology).
float* vl mfk ArlDIS_ProbAll NoNet(VLSetParam t itvpe, ...);
double _vl _mfk _ArlDIS_ProbM NoNet (VLSetParam t itvpe, ...);
double vl _mfk ArlDIS_ProbMF_NoNet (VLSetParam t itvpe, ...);
double _ vl mfk ArlDIS_ProbF_NoNet (VLSetParam t itype, ...):
double _vl_mfk _ArlDIS_ProbK_ NoNet (VLSetParam t itype, ...):
double vl mfk Arl1DIS_ProbNoDamage_ NoNet (VLSetParam_t itype, ...);
VL _Result vl _mfk ArlDIS_Result NoNet (int*flg, VLSetParam t itype, ...);

Thus far, the server only has two possible values of type VLSetParam_t (namely,
VL_PARAM_SET_METH_DIS HitToKill and VL_PARAM_SET METH_DIS_ProxKiil).
Each of these parameter setting indicators informs the server to expect DIS fire, detonation, and
entity state PDU arguments to follow as the remaining arguments to the function cal. They aso
inform the server that a “munition” is the damage-causing mechanism. (The delivery routines will
then proceed to set “munition” type variables in the Vulnerability Parameters sub-layer by
using these passed PDU arguments.)

However, we could easily define anew VLSetParam_t type that tells the delivery
routines to expect some other type of arguments (in order to return an MFK result based on
different input parameter formats). For example, non-munition damage (such as damage caused
by a collison between moving vehicles) could be accommodated by adding a new VLSetParam t
type (e.g.,, VL_PARAM_SET METH_DIS COLLISION) in which the resulting delivery
routines would now expect “collision” type variables (as the remaining arguments). In the DIS
environment, a combination of collision and entity state PDUs would suffice as arguments. The
delivery routines could then return MFK results based on these different damage-causing
mechanisms (provided that valid data sources existed in the “ Table L ook-Up” sub-layer that
described MFK damage resulting from those mechanisms [eg., vehicular collisions)).

7.1.3.2 Adding V/L Layer API Routines for aNew Vulnerability Method

We now return to the sample task-adding to the V/L API’s Result Delivery sub-
layer anew vulnerability method that describes an entity’ s vulnerability state as strictly “alive”
or “dead” (our “BINARY” vulnerability method).

18

First, we need to decide what values are useful to be returned by the BINARY
method APIs. These values are then returned by the new V/L API functions we will write. In
this case, we shall have severa returned types. A function will be written for each type. Using
this approach, we outline a new set of APIs in Table 4. We can follow the function-naming
pattern already used in the MFK APIs (shown in Table 3).

Table 4. Newly Defined Result Delivery APIs (for the BINARY methodology)

ANSI C Prototype Declaration (for the BINARY Methodology)
float* vl_binary ArlDIS_ProbAll NoNet (VLSetParam t itype, . . .);
doubl e _vl_binary ArlDIS_ProbDEAD_NoNet (VLSetParam_t itype, . ..);
doubl e _vl_binary ArlDIS_ProbALIVE_NoNet (VLSetParam t itype, . ..);
VL_Result vl _binary ArlDIS_Result NoNet(int*flg, VLSetParam t itype, ...l_d

Briefly, the specific purpose of each APl is as follows.
doubl e _vl_binary_Ar1DIS_ProbDEAD_NoNet (VLSetParam_t jtype, . ..).

returns the probability that the outcome of the event resultsin a“DEAD” state for the system in
question.

doubl e ~vl_binary ArlDIS_ProbALIVE_NoNet (VLSetParam_t itype, . ..);
returns the probability that the resulting outcome of the event isan “ALIVE” (or non-DEAD)
state of the system in question.

fl oat* v1_binary_ ArlDIS_ProbAll_NoNet(VLSetParam_t itype, . . .);:

returns an array containing the probabilities of al possble outcomes occurring. The array elements
are indexed according to the interna definitions we egtablished in the vl_meth.c file (Figure 3, lines
42 and 43). Namely, the “[PS_BINARY _ALIVE]” element of the array contains the probability
that the outcome of the event resultsin an “ALIVE” (or non-DEAD) state of the system in
question. Similarly, “[PS_BINARY_DEAD]" indexes the probability of a “DEAD" date.

VL_Result vl_binary ArlDIS_Result_NoNet(int*flg, VLSetParam_t itype, . ..).

determines the probability of each event occurring, then randomly draws an outcome from the set
of possible events. The outcomes are drawn according to the distribution established by the

19

probabilities. The answer returned is of type VL_Result. Therefore, the only allowed results

returned by this APl are _ PS BINARY-ALIVE and _PS BINARY_DEAD, as we established

in lines 34 and 35 of Figure 3. In fact, any result not falling between _PS_BINARY_LOWER_BOUND
and __PS BINARY_UPPER_BOUND should be considered invalid. For example, if
P(PS_BINARY_ALIVE)=.75 and P(PS_BINARY_DEAD) = .25, then about 75% of the time, a
VL_Result of _PS BINARY_ALIVE will be returned (and _PS _BINARY_DEAD will be

returned 25% of the time).

Each of these APIs will read the passed parameters, use those parameters to set initial
conditions (in the Vulner ability Parameter sub-layer), call the vulnerability analysis routine (in
the Table L ook-up sub-layer), and return the result. By way of example, we will concentrate on
the APl v1_binary_Arl1DIS_ProbAll_NoNet().The other APIs will follow asimilar pattern.

v1_binary ArlDIS_ProbAll_NoNet () will return an array of floating point
numbers that represent the probabilities of achieving the two kill levels (dead or dive). When
caled, thisfunction’ s first argument (itype) could be any of the VLSetParam_t enumerations
we defined on lines 86 through 107 of Figure 3. Figure 5 displays a sample ANSI C function
showinghow v1_binary_ Ar1DIS_Proball_NoNet () couldbeimplemented.

On line 9 of Figure 5, we define a default outcome (binaryPS_HasNoEf f ect) thatis
returned when an exception occurs in which we know that there will be no additiona damage to the
entity or component being threatened. Later (on line 140), we shall see how this default outcome
shal be used to prevent an erroneous result from being returned during certain conditions.

The next significant portion of the code we note is on line 59 where we determine what
input parameters are required in order to establish the proper initial conditions for the vulnerability
caculation. From lines 61 through 74, the “collison” initia condition parameter is handled. We see
that when “callison” is the damage mechanism being evauated, the collison PDU and the entity
state PDUs must be provided as arguments to the API. The entity state PDUs that are provided
are for both the entity whose vulnerability is being evaluated (shown as “tgt” on line 66) and the
entity that is colliding with it (col Ii di ng-entity). The order in which these arguments are
provided is significant. Following retrieval of the arguments (on lines 66 through 68), these PDUs
are used to set parameters in the Vulner ability Parameter sub-layer “VLParam”. (The VLParam
layer is shown on Figure 4 and documented in the manua page VLParam(3) in Appendix B.)
Source code for the function (vlp_setp_all_Collision_Frm_DIS ()) shown on line 71 is not
provided. Its purpose is to decompose the PDUs passed to it, extract applicable information from
them, and use that information to set the appropriate variables in the VLParam layer. It is assumed

20

oo o ot o e ok e fod ek et
OV~ 1AN NP LWN—OWoO~IN NI —

NN
WD —

#i ncl ude <stdlib.h>
#i ncl ude <stdarg.h>

#i ncl ude "v1.h"

#i ncl ude "vl_meth.h"
#i ncl ude *vlparam.h"
#i ncl ude "metatbls.h"

static float binaryPS_HasNoEffect{l={ O, 1.};

~
*

*1

L T T S R CHE I 2

* st

*/

/*

* recall that PS_BINARY DERD = ¢

* PS_BINARY_ALIVE = 1

* therefore binaryPS HasNoEffect[]={ 0., 1.1;

* js structured so that the first (zero'th element)
* may be indexed by PS_BINARY DEAD (i.e.

* binaryPS_HasNoEffect[PS_BINARY_DEAD]).

*/

vl_binary ArlDIS Proball_NoNet()
float * vl_binary ArlDIS_Proball NoNet(VLSetParam t itype, .. .|

This function returns a static array containing probabilities of
certain kill levels.

The first paranmeter argunent is of type VLSetParam t.

This type is used to indicate which data sources (inputs)

are sufficient to set the vL paraneters in order to be able

to return the correct result from the |ookup table

(or other data source). These indicated data sources (inputs)
shall then be the 2nd, 3rd, 4th,.., etc. parameter argunents
to the function.

RETURNS:

An array containing the probability of all possible outcones.
The array elements are defined as follows:

Array E enent (i ndex)

El enent Val ue Val ue Meaning
0 PS_BINARY DEAD Probability that the subject is dead
1 PS_BINARY_ALIVE Probability of not being dead.

float * vl_binary Ar1DIS_ProbAll_ NoNet(VILSetParam_ t itype,
{ va_list ap;

static char *whoami=*vl_binary Arl1DIS_Proball NoNet () *;
float *ret;
int mssed-me, error, do_vl_calc, ok_to_query;

ok_to_query = 0; /* false */
ret = NULL;

error = 0;

va_start(ap, itype);

switch (itype){
case VL_PARAM_SET COLLISION:

EntitysStatePDU *tgt, *colliding_entity;
CollisionPDU *collision;

21

Frd bod ek frd b fd bd pd pod b e o md panad ek ik
NI DD rrd o et ok S pd Yok e ek ek (O O O O
HOWRONIONN R WN— OV ION

vlip_zero_all_params(); /* initialize paranters
vip_setp_all_cCollision Frm DIS(tgt,

/* extract the 2nd, 3rd, and 4th argunents

*/

= va_arg(ap, EntityStatePDU *

tgt
colliding-entity = va_arg(ap, EntityStatePDU

*

col l'ision = va_arg(ap, CollisionPDU *);

ok-to-query = 1;

break;

case VL_PARAM_SET METH_DIS_HitToKill:
case VL_PARAM SET METH DIS ProxKill:

EntityStatePDU *tgt, *shooter;
FirePDU *fire;
Det onati onPDU *det;

}

}

/* extract the 2nd, 3rd, 4th, and 5th arguments */

tat = va_arg({ ap, EntityStatePDU *):
sﬁooter = va_arg(ap, EntityStatePDU *);
fire = va_arg(ap, FirePDU *);

det = va_arg(ap, DetonationPDU *);

*/

colliding-entity,

)
)

.
r

col l'i sion);

/* test to see that we know what type of target is present */

f (tgt==NULL) {

_rpt_error (RE_TGT_UKNOWN , whoami);
++eYXror;

else if (det==NULL) {

_rpt_error (RE_THREAT UKNOWN , whoami);
+terror;

f (exrror==0) {

m ssed-ne = FALSE

i f (itype == VL_PARAM_SET_METH_DIS HitToKill) {

/*
* See if we can

ignore the detonation based on the result field.

*/

if (TRUE == vl_mfk_directFireIsAHit(det->detonation result))

m ssed-ne = FALSE
el se
mssed-ne = TRUE

do_vl_calc=FALSE;
if (error == 0){
if (missed-me == TRUF) {
/* NOT a direct entity impact */
switch(itype) {
case VL_PARAM_SET METH_DIS HitToKill:

do_vl_calc=FALSE;/* | eave as fal se */

/*

* we know we nmissed with a hit-to-kill

* threat. So we attenpt to |ookup
the (wong) answer according
to the vl paraneters.

* But we do return a result.

*/

ret = mfkPS_HasNokffect;

br eak;
case VL_PARAM SET METH_DIS ProxKill:

* s

22

I e e e e el el e e e e
SR LWLILILILWIWLIWILIWN
= OO O~ NP W= O\O

©0 00 G0 00 GO GO 00 00 00 00 ~J ~J ~J ~1~1~-I~J VI~V NN AN

/*we don't care if it did mss -calc anyway. */
do_vl_calc=TRUE;
break;
defaul t:
cprint (CH_WARN,
"s: switch mssing case for method type %d\n*,itype);
break;

} el se {
do_vl_calc=TRUE;/* no errors an we hit tgt! */
}

}

if (do_vl cale) { /* tgt is hit */
vlp_zeroc_all params(); /* initialize paranters */
vlp_setp_all Munition Frm DIS(tgt, shooter, fire ,det);

/*
* vlp_setp_all_Munition_Frm DIS()
* W ll have set VLP_target_id
: VLP_threat_id
and other VLP_* paraneters.
*/
ok_to_query = 1;

} /* end |f error==0 */
) /* end case: stnt. */
br eak;

defaul t:
cprint (CH_ERR, "$s: passed unknown VL net hodol ogy (%d)\n"
,whoami, itype) ;
br eak:

What this final code segnent does:

At this point the paraneters have been added to the
the vLParam |ayer (see VLParam{3} manual page

If no errors occurred, then we are ready to

look for a meta record that matches the tgt, threat.
*AaND vulnerability method (nanely ‘BINARY").

* (nce we have that record, we can retrieve a the

* data source (UrL) and the vulnerability calculation
* function.

* Finally we call that function and return its results.
*/

if (ok_to_query == 1)

{ MetaTable t mquery:;

MetaTable_t *mrec;

extern MetaTable_t *MetaTable_get_rec();

float *f£, *(*funcptr) (void *);

VL_Meth *nptr;

* % o k% F

/* zero meta Table data structure */
memset ((void*) &mquery, (int) 0, sizeof (MetaTable t));

mquery.tgt = (dbEntityType*) &VLP_target_type;
mquery.threat = (dbEntityType*) &VLP_threat_type;
nptr = vl_meth get FromID(itype);

i f (mptr==NULL) {

212

NN NN
DN bt bt et et ek ek ek
OO NP W

cprint (CH_ERR,“%s: internal error\n',whoami);
br eak:

}
myuery. vl _neth= mptr->name;

mrec=MetaTable_get_rec (mquery.tgt,mquery.threat, itype) ;
i f (mrec==NULL) {
/* if nrec == NULL then no record found */
_rpt_error(RE_NO_META_REC ,whoami);
++error;
) else ¢
funcptr = db_tbl_result_func(mrec);
if (funcptr !'= NULL){
f = funcptr(db_tbl retrieve(nrec });
i f (f==NULL) {
/* error reading thl result */
_rpt_error (RE_VLSOURCE_INTERP ,whoami) ;
++error ;

ret = f;
} /* endif(funcptr != NULL)*/
}/* end if (mrec == NULL) else */
}/* end if (ok_to_query == 1)

va_end(ap) ;

return ret;
3

Figure 5. Adding an API for a New Vulnerabilitv Method vl bi ArlDIS ProbAll NoNet().

that additional parameters needed to execute a collison damage assessment have been added to
the VLParam layer (such as the masses of the calliding entities, etc.).

If no errors occurred in setting the VLParam parameters, then the vulnerability
assessment may proceed (on lines 178 through 215).

Meanwhile, we note that the case for “munition” type damage is handled between
lines 76 and 161. Thefirst thing we note about this section of codeis that it is much longer than
the “collison” damage section; yet, it does essentidly the same thing (initidizes the VLParam
layer’s variables). The differenceis that this code section performs robust and proper error
checking throughout. Errors are recorded to rpt_error APIs (See rpt_error on the cprint(3)
manual page in Appendix B). Rpt_error APIs store important information about what went
wrong when errors occur; this information may be extracted by other routines. (Thisis useful
because the application-calling server routines may be removed by severd layers from the APIs
where the error occurred. By the time the program returns to the application level, the nature of
the error may belost.) A second thing this section of code adds isthat it tests for exception
conditions. In thisexample, test for a direct hit against the queried target. If we determine that
the munition requires a direct impact on the target to initiate any significant damage but we

24

“missed” the target, then a specia exception value is returned (on line 126). This is the value we
defined on line 9.

We now return our attention to lines 178 through 215. At this point, the parameters
have been added to the VLParam layer. If no errors or exceptions occurred, then we are ready to
look for a meta record that matches the target, threat, and vulnerability method used. Lines 189
through 196 gather the threet, target, and V/L method identifier. Notice that the target and the
type of threat that is threatening it are extracted from the VLParam layer on lines 189 and 190.
The variables shown here are members of the VLParam layer (vLp_target_type and
VLP_threat_type). The externd form of the vulnerability method is required to retrieve the
meta datarecord. (Remember that we defined externd representations for these types on lines
120 through 140 in Figure 3.) On line 196 of Figure 5, the externa American standard code for
information exchange (ASCII) identifier of this vulnerability method is used to fill the V/L
method field of the meta record being queried. These data items are added to a blank meta data
structure. We then search for the meta record that matches these parameters on line 198. (Recall
that we explained how and where vulnerability meta data records were read in Section 5.1 and in
Appendix B, vls_db_init(5).) Once we have that meta data record, we may retrieve the location
of the appropriate lethality data (in uniform resource locator [URL] format) and the function that
caculates the system’s vulnerability. On line 204, we obtain a pointer to that function from the
data manager APl db_tbl_result_func(). This referenced function operaies on a data et to
return the lethality calculation for a set of initial conditions that are provided by the VL Param
sub-layer. We call this function the lethality “data look-up function” because it often is just
parsing a look-up table. However, it may actudly do the lethdity caculation itsalf or initiate
other processes that do the calculation. How it gets the results is not a matter of concern as long
asit returns the results appropriate to the vulnerability method in use (the “BINARY” method in
our sample case). The APl ap_tbl_retrieve() that we see used on line 206 returns that data
set to be operated upon by the “data look-up function”. Normally, db_tbl_retrieve() returns
a table of vulnerability results that are then used as the look-up table for our table look-up
function. However, éb_tbl_retrieve() need not return alook-up table; it could return a URL,
apassword, or any data structure or value. As with the data look-up function, it does not
matter, as long as whatever it returns will be usable by the table look-up function to return the
correct results for the present vulnerability calculation. The APIs, db_tbl_result_func() and
db_tbl_retrieve (), are documented in the db(3) manual page of Appendix B. How and where
the data look-up functions are placed into the server is the subject of Section 7.2.

25

Findly, on line 206, we cal our data look-up function and return its results (on line
2 19) to complete the vulnerability calculation.

7.2 Adding a New (look-up) Table Format

Every lethality data set type is required to have a data reader (also called data look-up
function) and a data loader function. The loader function initializes the lethality data set. This
may simply involve reading a static table into memory or may involve sightly more complicated
initialization procedures such as opening network connections, etc. Thereisreally no limit asto
what the loader function does. (However, the data loader functions provided with thisinitial
release of the DIS lethality server only read and load static “look-up” tables into memory.) The
second required function, the data reader (or look-up) function, has the responsibility for
accessing the initialized data set. It then returns results that are appropriate for the associated V/L
method. How these two functions are incorporated into the server is explained in this section.

Both the data reader and the data loader functions must be defined and compiled into the
server before“runtime’. The following steps outline the procedure for doing this.

1. Add aninternal identifier to the list of enumerations that identify new data sources.
2. Write prototypes for the two functions and add them to a static table.

3. Add the source code for your prototyped functions.

4, Recompile the server.

These four steps are now covered in detall in the next four sections.

7.2.1 Adding Internal Identifiers for New Types of Vulnerability Data (or formats)

Unique interna identifiers are required for each new type of vulnerability data. A
vulnerability data type may be considered “new” not only if it isnew, but also if it isa previously
defined vulnerability data type that is packaged in a different manner. For instance, alook-up table
of IUA3 data could be for ahigh explosive antitank (HEAT) munition threat, or it could be for a
kinetic energy (KE) munition. Both data sets represent the same type of data (MFK), but both
have tabular formats that differ (IUA HEAT format versus IUA KE). Hence, each needs its own
data reader function (and internal identifier). The file $VLS_HOME/src/db/tbl_fmts.h contains

31UA (individual unit action). This type of data represents loss of combat capability for a given threat. The
tabulated data are formatted in columns and rows according to target range, aspect angle of attack, and kill level
(MFK).

26

references to al the known data formats. Figure 6 displays thisfile. On lines 14 and 15 of Figure 6,
we can see where internal enumerations for [UA data types are provided (for both HEAT and KE
formats).

By way of example, we shal add a new format for the “collison” damage we defined on
line 136 of vI_meth.h in Figure 3. On line 18 of Figure 6, we define PKS_BINARY_COLLISION tO
represent our new data type. This enumeration internally represents a data file format (or
function, network protocol, etc.). Datalook-up (also called reader) functions will be written,
which will return data that are commensuraie with whatever we expect to be returned by this
newly defined datatype. That datatypeisassociated with our “BINARY” V/L methodology.
This may sound rather enigmatic, but the fact is that the data source may be anything (not just a
datic data file of a particular format). It could be a database, a network connection, a “spawned”
program, or just about anything. Our data reader (and initializer) functions (which we will write
later) are the sole entities that need to know these particulars. What isimportant is that the V/L
API, which indirectly calls the data reader function, receives what it expects to receive from the
data reader. The important point is that the data reader function and the V/IL API that cals it
agree about what shall be returned and how it is properly used. In this particular example, it will
expect to receive an aray of probabilities from the “BINARY” vulnerability set. (This is what
we assumed when we wrote the APl function “v1_binary_Ar1DIS_ProbAll_NoNet(}” shown
in Figure 5.) On line 206 of thisfunction (Figure 5), the data reader returnsits set of data, the
results of the vulnerability analysis. This returned value (which isreally of type “void *”)is cast
to a pointer to afloating point array (“float **). Hence, the data reader is expected to return a
pointer to afloating point array that contains the probability of akill and the probability of not
being killed (in accordance with the BINARY vulnerability methodology we established). The
point isthat the V/L API function had better understand quite clearly what type of data set is
going to be returned for a given vulnerability methodology (BINARY method for collison damage
in this case). As we continue to examine the file $VLS_HOME/src/db/tbl_fmts.h in Figure 6, we
shal see how this associaion is established.

7.2.2. Adding New “Table Lookup ” Function Prototypes

On lines 130 through 134, we added a new element to the LookUp_Tbls(] array. Thisisthe
point where the association is made between the data reader function and the data type identifier.
On line 130, the interna enumeration we created on line 18 is used to identify the new type of
vulnerability we are referencing. Following this, the ASCII string “PKS_BINARY_COLLISION”
is used for the “name” field. This is an important field because it becomes the externd
representation of our new data type (and data source format). This name must appear in the

27

— OO0 N W OO N WM -

NI D ot ot ek ek ot o ot e et

#i f ndef _TBL_FMTS
#def i ne _TBL_FMTS

#include <stdio.h> /*
/* local header files */
#i ncl ude <tbl_rdrs.h> /*

#incl ude "vl_meth.h"

enum _TblFmt Enum {
_TBLFMT_ERROR = (/*
, .START_OF_TblFmt_Enum

, IUA_HE
, TUA_HEAT
, IUA_KE

, | UA_STAFF

, PRS_BINARY_COLLISION

, _END_OF_TblFmt_Enum
Y
t ypedef

/*
TblFmt_Enum

*

*/

typedef struct TblFmt2ResultType struct {

TblFmt_Enum fnt; /* format of data source */
VL_Result returned-type; /* the type of result returned
* py the reader function
*/
} TblFmt2Result_t;
/*
* TblFmt2Result[] will have one entry for every
. known table format (that is one for every
TblFmt_Enum) .
*/
typedef struct _Tbl¥mt t { _
Tolfmt_Emum type; | /* enuneration for your table format
- This identifies the format of the
* data in the table.
*/

char *nane, *
char *description; /*
voi d *(*reader_func) (FILE *)

voi d *(*result func) (void *

ANSI C header files */

prototypes of your table reader(s)

err==

enum _TblFmt_Enum TblFmt_Enum;

identifies the table (or data) format.

a single word nane for your table format

a short description of it =/

; /* reader function takes on FILE* arg */

Y;/* VL reporting function */

/* result_func() takes argument pointer

* to the look-up table structure |oaded
* into menory.
*/

/* returns vl data which describes
* the result of the lethality event.
* The format of the data is up to the
* returning function,
* However, it nust agree with the
* output format which is inplied by
* the ‘"name" field.
*

28

go here */

see tbhl _fm _is_valid_typeO */

108

Pt bt fd e ond o ek e fd ok ok
RO DD et e e e o ok sk ok ok ek (D
OV O~ NRWN— OO

*
* For instance if
name = "IUA_HEAT"
* then result _func will return
* a floating-point array of 5 nunbers.
* (Its returned value should therefore
* be cast as (float *}).
*/
} ThlFmt_t;
ifndef DB C

ext em TblFmt2Result_t TblFmt2Result(];
extem ThlFmt_t LookUp Tbls[];

else

static TolFmt2Result_t TblFmt2Result([] =

{

{ IUA_HE, __PS_MFK_LOWER_BOUND } /* returns MFK data */
,{ IUA_HEAT, _ PS_MFK LOWER_BOUND } /* returns MK data */
, { TUA_KE, _ PS_MFK_LOWER _BOUND } /* returns MFK data */

, {IUA_STAFF, __PS MFK_LOWER_BOUND } /* returns MFK data */

, {(PRS_BINARY_ COLLISION,__PS_BINARY LOWER_BOUND}/*returns B|NARY pk data

}:
static TblFmt_t LookUp_Tbls[_ END_OF_TblFmt_Enum+l] = {

{ _TBLFMT_ERROR , "_error" "Not a known table format" , NULL ,NULL}

, {_START_QF_TblFmt_Enum, NULL: NULL , NULL, NULL } .
/¥ o e o e e e e
/* DO NOT ADD ABOVE TH'S LINE */
/*+struct TOrMAL §g oo -—- ——t*/
/*| enum nane descript reader _func result_func|*/
[K o e e e e e +*/
/*

* |f you get a "tblfmt WHATEVER NAME" undecl ared here.

* then you may have not added its prototype to the header file:
#include <tbl_rdrs.h>

*/

, {IUA_HE, "IUA_HE", "(IUA) Hi gh Expl osive (HE)"
,thlfm _iua_heat rd
,tblfmt_iua_heat_result

}

, {IUA_HEAT, "IUA_HEAT®, *(IUA) Hi gh Expl osive Anti-Tank (HEAT)"
,thlfm _iua_heat rd
,thlfmt_iua heat result
}

, {IUVA_KE, "IUA_KE", *(IU2) Kinetic Energy (KE)"
,thlfm _iua ke rd
, thlfmt_iua_ke_result
1
/*
* top attack ("Staff nunition"):
*
/
, {IUA_STAFF, "IUA_STAFF"
" {TUa) STAFF Explosively Formed Penatrator (EFP)*
,thlfm _iua_ staff _rd
,thlfmt_iua_staff result
}

29

*/

Fmd ek ok e e ek pred fd Bk fred frcd fed et
SR LILILILILILILILILILIN
—OWOOIONUN RN —OWO

bomd et et o ek
R T o T S A N
~NION N RN

148

+{ PKS_BINARY_COLLI SION, ™“PKS_BINARY COLLISION”

(" (P-K) For Col lisions returns BINARY V/L Methodol ogy”
(tblfm _binary_collision_rd

(tblfm _binary_collision_result

/* ___ */
/* DO NOT ADD BELOW THI S LI NE */
/* ____________________________ e -t e e e e e e e e S A it e T o e o e S */

, {_END_OF_TblFmt_Fnum, NULL, NULL,NULL, NULL }

}i
endif /* ifndef TBL_FMTS C */

VI_Result db_tbl_fmt_result type(char *fmtname); /* data type returned by Zlcokup*/

#endif /* ifndef _TBL_FMTS */

Figure 6. “thl fmts.h” Used for Data V/L Data Reading and Initialization.

externa meta records thet reference collison damage data returned in a format consstent with the
BINARY vulnerability methodology. Line 13 1 describes the vulnerability data type and format in
human terms and has no logical programming value (but is used in print statements). Lines 132 and
133 are the names of the vulnerability datainitialization and reader functions, respectively.*

When a meta data record is read, the data format's externa representation appears in the
“format” field of the record (“PKS_BINARY_COLLISION” in the case of the collision damage
described in terms of our BINARY methodology). For example, the meta data records shown in the
vis_db_init(5) manua are repeated in Figure 7. On the last line of Figure 7, we see that
“TUA_HEAT” isin the “format” field. This tells the server to use the record shown on lines 112
through 115 (of Figure 6) to determine which data initidization and data reader function to use.
When the data initialization function is called, the last field of themeta datarecord is passed to it as
an argument. The last line of Figure 7 showsthat “file : /Data/ Tabl es/ IUA/smplHEAT.ijud’ is
the argument that is passed to the initializing function under the conditions set forth by the record’s
target, threat, and vulnerability method as dictated on that line.5 Theinitializer function must return
a pointer. Later, when a lethdity query is made, that same pointer will be available for use by the
look-up (or reader) function. The lethality server maintains this pointer and provides it when

4(This naming convention might be confusing since “tblfmt_binary_ecollision_rd” js not the reader function but
the initializer function. (The “_rd” convention originated because, thus far, the server has only been used for Static
look-up tables; hence, the duty of the initialization function was to read [ergo, “ rd”] the static data into memory.)
The duty of the second function (our current “reader” function) was to parse the static table (now in memory) and
return the correct vulnerability results (ergo, the “_result” convention).

SNamely, the conditions are when a “T-SO" tank is attacked by an “AT-5 Spandrel missile” and evaluated using
the “DIS HitToKill” vulnerability methodology.

30

needed by the reader (or table look-up) function (i.e., when a vulnerability anaysis query is made
for the very same target, threat, and vulnerability method). This pointer could point to anything as
long as the data reader (or table look-up) function is able to use the data set (referenced by the
pointer) in such away asto alow the function to return the correct lethality results (for the given
vulnerability initid conditions6).

DS enumerations are |EEE 1278.1-1995 Standard.

Note that the file URL location is taken relative

to the $VLS_HOME directory.

--next line's tgt and threat are: Soviet 125nm KE Threat VS. a T-80 target.

1222111 22222 2 11,"DIS HitToKill","IUA_KE", *file:/Data/Tables/IUA/smplKE.iua"
--next line's tgt and threat are: Soviet 120mm HEAT-FS VS. a T-80 tgt.

1222 111, 22 222 2 18,"DIS HitToKill", "IUA_HEAT", vfile:/Data/Tables/IUA/smplHEAT.iua"
--next line's tgt and threat are: AT-5 Spandrel nissile VS. a T-80 tgt.

1222111 2222 17, *DIS HitToKill","IUA_HEAT", *file:/Data/Tables/IUA/smplHEAT.iua"

Figure 7. Example of Records for a Meta Data File,

o3 e e o S ok e

As mentioned, the lethdity server architecture is designed to alow these functions to return
any type of data. Thus far, however, they have only been used to initialize (and look up the
results) of static look-up tables. This has been implemented by having theinitialization tile look
for (and read) the data file referenced in the meta data record (the URL address in the last field of a
meta datarecord). The last line of Figure 7 shows “file : / Data/ Tabl es / IUA/smplHEAT. j ua" as
this datafile for that meta data record. The initialization function loads this static data table into a
data structure and returns a pointer to the memory location of that data structure. The result (or
table look-up) function knows how to parse this data structure. When the result function is called,
it receives apointer to this data structure and proceeds to parse it and returns the correct results.
Figure 8 displays our two new initidizer and reader functions added (in bold text).

6Recall that those initial conditions are provided by the VLParam sub-layer.

31

NN B LWNI—OWVWOO~IANN R LINII—

/* $1d: tbl_rdrs.h,v 0.4 1998/03/23 04:20:48 geoffs Exp geoffs $ */

extem void *tblfmt_iua ke rd(FILE *in_fp);
extem void *tblfmt_iua_ke_result(void *);

extem void *tblfmt_iua_he rd(FILE * fp);
extem voi d *tblfmt_iua_he_result(void *);

extem void *tblfmt_iua_heat_rd(FILE * £fp);
extem void *tblfmt_iua_heat_result(void *);

extem voi d *tblfmt_iuva_staff rd(FILE *fp);
extem voi d *tblfmt_iua_staff_result(void *);

extern void *tblfmt_binary collision_rd(FILE *£p);
extern void *tblfmt_binary collision_result(void *);

Figure 8. Prototvnes of Data Source Initialization and Reader Functions (in “tbl rdrs.h™).

7.2.3. Adding Source Code for New “Table Look-up " Function

The source code for these two functions is not included in this text since details of how
they are implemented are not important (as long as the initialization function initializes the data
set in some manner and the result function is able to use that initialized data set to return the
correct lethality result). However, it is recommended that the source code for data initialization
and reader functions be placed in the directory $VLS_HOME/src/TblReaders and incorporated
into the directory’s “makefile’. It isrequired that the prototype for the reader and initialization
file be placed in the header file $VLS_HOME/src/TblReaders/tbl_rdrs.h (shown in Figure 8).
Thisis mandatory since “tbl_fmts.h” (Figure 6) requires the prototyped function names before
they may be included into the LookUp_Tbls[] array (Figure 6, lines 94 through 142). The
“tbl_rdrs.h” file is shown in Figure 8 with our two new initidizer and reader functions added (in
bold text).

7.2.4. The Final Step in Adding New Table Look-up Functions (recompiling the server)

In order for these changes to take place, the server must be recompiled. This may be
accomplished by executing the “compile.&” shell script outlined in Section 3.2. (This assumes
that the “makefile” in the $VLS_HOME/src/TblReaders directory has been modified to
incorporate the two new functions.) Following a successful recompilation, the server will be
equipped to handle V/L API queries for the newly added vulnerability methodology and data
source format.

Note, however, that in order to make such queries, an application program must be linked
directly with the server V/L library (i.e., adirect function call must be made to the server API

32

functions). We dill have not provided a method for a remote client application to make queries
(for the newly created vulnerability methodology). To see how this is done, we examine our find
code modification section, Section 7.3,

7.3 Adding Remote Access for a New Vulnerabilitv Methodology

In Figure 1, it is seen that the DIS Monitor is an application that directly calls functionsin
the VL API |ayer (v1_binary aArlDIS_Proball_NoNet()that we defined in Figure 5 would be
one such function). This section shows how a remote client (the client of Figure 1) is able to
have indirect access to the results from the same API. The steps are as follow:

1. Have the DIS Monitor monitor the virtual environment for important parameters.
2. Select a protocol syntax between the client and DIS Server.
3. Enable the DIS monitor to call the newly created VL APIs (to respond to client queries).

We cover these three steps in the next three sections.

7.3.1 Expanding the Environmental Monitoring Capability of the DIS Monitor

Because the server currently implementsjust the “MFK” vulnerability methodology for
munition type damage, the DIS monitor only monitors parameters required by that set of APIs.
(This means that the DIS monitor monitors entity state, fire, and detonation PDUs because these
are the only PDUs required by the V/L APIs to complete the “MFK” analysis for munition
damage.) However, in Sections 7.1 and 7.2, we have provided for a new vulnerability
methodology (BINARY) as a result of collison damage. APIs for this new methodology will
require an additional argument (the collisionPDU). (Note that on line 71 of Figure 5 the collision
PDU is required to set the initid condition parameters for collison damage.)

The DIS monitor (see dis mon(l) in Appendix B) watches DIS PDU traffic and maintains
records of PDUs that are of interest to it. The PDUs it finds interesting are those that are needed
for providing initial conditions for avulnerability assessment. For instance, the AP
“vl_mfkDIS_ProbAll()” needs four PDUs: the entity state PDU for the target, entity state for
the firer, the fire PDU, and detonation PDU (see vI(3) in Appendix B). The DIS monitor then
lisens to PDU traffic, and whenever someone fires (via a fire PDU) or a munition detonates (via
the detonation PDU), it keeps a copy of that PDU, along with an entity state PDU of whoever
did the firing and whoever was targeted a the time (if known). The DIS monitor is then able to
call the API “vl_mfkDIS_ProbAll()” and provide all the required parameters. It would then

33

generate results for the DIS server module via shared memory (see Figure 1 and viserver(l) in
Appendix B). This same procedure should be followed for newly added APIs (such as the APIs
for our collison damage/BINARY methodology). We must modify the DIS monitor to monitor
the DIS network traffic (PDUs). It will have to keep records of parameters that could be used in
aquery. It will then be ready to call V/L APIs when required.

Source code for the DIS monitor is given in the $VLS_HOME/src/DisMon/ directory. The
appropriate place to start modifying dis_mon(1) to listen for new parametersisin the file
“process_pdu.c”, specificdly in the function process_pdu_do () which is reproduced in Figure 9.

The portion of the code in bold has been added in order to keep records of collision PDUs.
The source code for the function process_pdu_coll()that is called on line 60 isleft as an
exercise for the student. All that process_pdu_coll() hasto do is store the collision PDU in a
data structure so that it can be retrieved for later use.

Unfortunately, this section of code will never be activated! Thisis becausethe DIS
manager (see dis mgr(l) in Appendix B) isexcluding all PDUs except those that we have stated
an interest in receiving (and we have not yet told the dis_mgr that we are interested in receiving
collision PDUs). To start receiving collision PDUs, we modify the DIS monitor function
“connect_to_dis_mgr()” (shown in Figure 10).

This section of the DIS monitor references the DIS manager library calls “dis_open()” and
“dis_register_pdu().” The latter call is where we need to add a provision for the collision PDUs
that we want to start monitoring. Lines 20 and 24 of Figure 10 show where we have provided for
collision PDUs (shown in bold text), Now when dis_register_pdu(} is called on line 27, all
the PDU types seen (on lines 21 through 24) will be added to the list of PDU types that we are
registering with the DIS manager (i.e., the list of PDUs we want “see”; all other PDUs will be
excluded).

The DIS monitor is now able to monitor the virtual environment for parameters that are
important to initidizing a collison damage andyss. It is also maintaining a record of those
parameters for later use in vulnerability caculations. We now turn our attention to how remote

clients may access a new damage type by querying the server.

34

P ot ek ok o . o e et e
—~ OO CO~ION NP WOV ~INN-RWNI—

N

/*

~ process_pdu_do({)

¥ int process pdu do(int indx, PDU_Type type, char * pdu)

* handle a pdu { based on which type of pdu it is that we are
* handl i ng)

* return TRUE if the pdu is to be freed (discarded).

* else return FALSE (if the pdu is being held somewhere).
*/

int process_pdu do{ int indx, PDU_Type type, char * pdu)
{ char tmp[256];

int free this_pdu;

static char *whoami="process_pdu_do()"*;

extern char *Dis_Pdu Names[];

free_thisqdu = TRUE

switch (type) {
case DL_NO_DATA:
/* buffer enpty */
br eak;
case EntityStatePDU_Type:
/*
* since we have already handle ES in process_pdu()
there is nothing to do now.

*/
free_this_pdu = process_pdu_es((EntityStatePDU *) pdu):.
break:

case FirePDU_Type:

/*

* allocate a location in the fire/detonation event |ist
; (this list will contain the nost recent
, EntitysState PDUs for the firer,

Target (if one) and for the detonation.
* These PDUs will remain stored and will not be

* freed.

*/

free_this_pdu = process_pdu_fir((FirePDU *) pdu);
break;

case DetonationPDU_Type:

/*

* add the detonation pdu into the fire/detonation event
* o list.

*/
free_this pdu = process_pdu_det((DetonationPDU *) pdu):
break;

case CeolliisionPDU_Type:
/*)
* W saw a Collision PDU. Keep it some where
* for later use as an argument to a VL APl call.

*

* process_pdu_coll(); is a function that would store all

. collision pdu's in sone data structure
B for later retrieval.

*/

process_pdu_coll((CollisionPDU *) pdu):

free thisgdu = FALSE, /* false since we need to keep a
B * copy of this pdu

35

WoO~-1N NP INI—OWVWOO-IN N LIDNI—

ok o ok ok ok ek rred fd fond e

*/
break;

defaul t:
free_thisqdu = TRUE
sprintf (tmp
,"%s:saw a pdu_type %l (%s)...do not know how to handle it.\n"
,whoami
(type
,Dis_Pdu_Names [typel
)i
fputs (tmp, stderr);
break;
}

return free this_pdu;

Figure 9. Modifications of DIS Manitar to | isten for New PDU Types.

/*
~ connect _to_dis_myrO

* Establish a connection with the server on the specified machine.
*/

int connect_to_dis_mgr(char *host)

{char pdu_list[256];

printf('Cormecting to DS manager on %s...\n" host) ;Eflush(stdout) ;

/*
* Open a connection to the dis_mgr server on nachine host.
*/
i f (dis_open(host) == FALSE) ({
return(-1); /* comection failurel exit */
} else {
printf ("Successful! \n");
/*
* Register interest in PDUs.
*/

sprintf (pdu_list," % %d % %4 *
,EntityStatePDU_Type
,FirePDU_Type
,DetonationPDU_Type

,CollisionPDU_Type
yi

printf("Sending : %s\n",pdu_list);

dis_register_pdu{pdu_list};

return(0);

Figure 10. Removing Callision From DIS Manager’ sPDU “Filtering”.

7.3.2 Establishing a Protocol Between the Client and DIS Server

Figure 1 displays remote client applications communicating with the DIS server. The
viserver(1) manual pagein Appendix B explains the syntax for “MFK” queries, W€ will now
add the capability to make “BINARY” queries for collison damage. !N the syntax of client-

36

server protocol established in the vlserver(1) manual page, we shall add new “QUERY” types.
Each query type will correspond to one of the new V/L APIs we listed in Table 4 (presumably,
we have aready written all these APIs and added them to the V/L library). Figure 11 displays
“vls_toke.h” where we add new key words for the client-server simple query language. This file
and other viserver source files are located in the $VLS HOME/src/Server directory.

Changes made in vls_toke.h are shown in bold print. We added tokensto the _VLS Token
enumeration type for internal use, and corresponding ASCII strings to the vLs_TokenString array
for parsng an externa query. Clients send query tokens in the form of an ASCII gtring; these strings
ae then “tokenized” (the ASCIl key words are converted to an internd numerical “token”
representation) by a simple parser in the vis_toke.h file. Here, we added new query types (on lines
32 through 35 and 84 through 87 of Figure 11) to tell the server we wish to query for collision
damage and recelve the answer in a BINARY vulnerability format. On lines 49 and 102, we ae
accommodating arguments needed to complete this query. Specificaly, when a query for collison
damage is made, the querying client shal reference a number that identifies which collison event is to
be evauaed. (DIS provides a unique identifier for each collison event on the virtud battlefield.) We
next modify the behavior of the DIS server (viserver) to respond to the tokenswejust defined. To
do this, we add to the function service_query to_db() in the source code file
$VLS_HOME/src/Server/viserver.c as shown in bold text in Figure 12.

The bold print text in Figure 12 was added to service_query_te_db() to alow the server
to understand and service the collision damage query. The query would be formatted by the
client inamanner similar to the ASCI| string that is shown in Figure 13. (See the viserver(1) in
Appendix B for how to format queries.)

The code segment shown in Figure 12 begins processing this query just after reading the key
word “QUERY”. Onlines 50 and 79, v1s_tokenize() transforms the type of query
(“TYPE_binaryCOLLISION_Proball”) andtheargumentsidentifier (“ARGS_DIS_COLLISION_IDS”)
into their equivalent tokens. On line 97, the tokenized argument identifier is used to drive a switch
statement. Since the tokenized value is equal to the enumeration T_ARGS_DIS_COLLISION_IDS, the
section of code from lines 148 through 192 is executed. There we see that six integers are scanned.
Thefirst three represent the IDs of the target (or subject of our vulnerability analysis); the second
three integers ("4 5 6" in Figure 13) are the unique collison event ID. On lines 179 through 18 1,
these arguments and the token that identifies the type of query being made are placed in the shared
memory link between the DIS server (viserver) and the DIS monitor (dis_men). (The manual page

37

DRI DD = e e i e o it e
N OO 000NN WOV COIAA N W —

/* $1d: vls_toke.h,v 0.20 1998/08/09 21:11:10 geoffs Exp geoffs § */
#fndef _TOKENS H
#define _TOKENS H_

[e start tiny vls_tokenizer—=-————=——-—--=- */
enum _VLS_Token {

T- ERROR

,_T_START_OF_TOKENS
,T_VLS_ECHO
, T_HELP /* ask for help */
, T_HELPL
, T_INFO_SERVER /* get admn info */

, T_VLS_QUERY_SHMEM ID /* ask for shared nemory 1D */

, T_VLS_QUERY_PARSER VER

,T_VLS_QUERY_PARSER_VERSICN

,T_VLS_QUERY_DIS_VERSION
,T_VLS_QUERY_TYPE /* expect the type of query

* to follow this vls_token
*/

| -T START OF T QTYPE TCOKENS
,T_QTYPE mfkDIS_Result /* Requested Format of Answer */
, T_QTYPE_mfkDIS_Proball
, T_QTYPE_mfkDIS_ProbK
, T_QTYPE_mfkDIS_ProbMF
,T_QTYPE_mfkDIS_ProbF
,T_QTYPE_mfkDIS_ProbM
, T_QTYPE_mfkDIS_ProbNoDamage
, T_QTYPE_bi naryCOLLI SI ON_Resul t / *sNnary vul nerability met hod*/

,T_QTYPE_binaryCOLLISION_PrObAl1 [*for danage
T_QTYPE_bi nar yCOLLI SI ON_Pr obALI VE
, T_QTYPE_bi nar yCOLLI SI ON_Pr obDEAD

| -T- END_OF_T_QTYPE_ TOKENS
,__T_START_OF_T_QARGS_TOKENS
,T_VLS_QUERY_TYPE _MFK_BINARY_PDUS /* expect binary pdu args */
, T_VLS_QUERY_TYPE_MFK_DIS_IDS /* expect 1D args - inplies
we have to get the
* applicable pdus elsewhere
* (such as from shared

¥ memory)
*/

,T_ARGS_DIS_COLLISION_IDS /* expect
| -T- END_OF_T_QARGS_TOKENS
,_T_END_OF_TOKENS
}:

typedef enum _VLS_Token VLS_Token;

static char *VLS_TokenString[] = {
"<*ERROR NOT A vls_token*>*®

, NULL

, "ECHO"

, "HELP'

38

from collision*/

sone ID args */

, " ? "
, " INFO_SERVER"
" SHMID"
, "VERSION"
, "DIS_VERSION"

» " QUERY

., "_T START OF T grvyeE TOKENS'/* start of query types-Not a vls_token
*/

, "TYPE_mfkDIS_Result*®

, "TYPE mfkDIS_Proball"

, "TYPE_mfkDIS_ProbK"

, "TYPE_mfkDIS_ProbMF"

, "TYPE_mfkDIS_ProbF"

, "TYPE_mfkDIS ProbM"

, "TYPE_mfkDIS_ProkNoDamage"

, "TYPE_binaryCOLLISION_Result™ /*BI NARY vul nerability nethod */
, "TYPE_binaryCOLLISION_Proball” [*for danmage from collision*/

, "TYPE_binaryCOLLISION_ProbALIVE"

, "TYPE_binaryCOLLISION_ProbDEAD"

. "_T END OF T QrYPE TCKENS'/* end of query types-Not a vls token */
" T START OF T QARGS TOKENS' /*start of argument types */

, "ARGS_mfkDIS_PDUS" /* expect binary pdu args */
, "ARGS_mfkDIS_IDS" \ /* expect ID args - inplies
we have to get the

* applicable pdus el sewhere

* (such as from shared

* menory) - not inplenented.

* Tue oct 14 15:02:14 EDT 1997

*/

, "ARGS_DIS_COLLISION_IDS" /* expect sonme |ID args */
T ED OF T QARGS TOKENS' /*end of arg types - not a vls_token */

, NULL
}; /* the rest of wvls_toke.h not shown...*/

Figure 11. Defining Client-Server Protocol (adding tokens to vls_toke.h).

mk_shm(3) in Appendix B describes the shared memory link between these two applications.) On
line 182, aflag is set to inform the DIS monitor (dis mon(l)) that the vlserver has placed a query in
the shared memory link (and the viserver is waiting for the answer to be returned). Viserver then
enters aloop (between lines 216 and 227) waiting for dis_mon to return the result of the vulnerability
analysis. If an answer was successfully returned by dis_mon, then on line 278 vlserver passes that
answer to the client who requested it in the first place. There is only one problem with dl of this.
The DIS monitor does not yet know how to respond to this query type from the DIS server. In the
next section, we explain how dis_mon is modified to accomplish this task.

39

N— OO NN NKR LI OO LN/

N DD DN bd bk pah o o b e e pd foamd

/*
~ service_query_to_db()
*
¥ static void service _query to_db(pc,query_id,rest_of_guery)
: Service a QUERY type command from the client:
' 1. Gab rest of query command argunents.
* 2. Place query and argunents into shared menory and set
* shared menory flag to let DisMnitor know
that there is a query pending to be answered by the DisMonitor.
* 3. Wit for DisMnitor to answer the query or be timed out.
* 4. Return results to client.
*/
voi d service_query_to_db(pc,query_id,rest_of_query)
struct pkg_conn *pc;
int query-id;
char *rest_of_query;

{

int error, ch;
register char *ptr, *eot:
VLS_Token t, toke query_type, toke_args_type;

char *str_query_type, *str_args_type, *str_args type eot;

/ :‘ str_query_type str_args_type str_args_type_eot
are used for making user-friendly error nessages.

*/

int query-placed, int_args matched;

char error_msg buff{1024];

char buf[1024];

error = 1;
query-placed = FALSE,
int_args matched = FALSE;

i f (pc!=NULL && rest-of-query != NULL) {
ptr = rest-of-query;

/*
* get next vls_tcken of command. - query type.
*/
ptr = sscan_skip_white(ptr) ;/* skip white space characters */
eot = sscan_next_white(ptr);
if (eot I'= NULL) ¢
ch = *eot;
*eot='\0";
}

toke_query_type = vls_tokenize(ptr):

if (FALSE == vls_token_is_guery_type(toke_query. type)){
++error;
str_query_typesptr;
sprintf (error_msg buff,"sytax error. unknown query type seen
,Str_query_type);
got0 out; /* sytax error */
}

/‘k

* restore rest-of-query for scaning
*/

if (ch 1= 0) {

40

+%30s"

ke o o pomd et ek ek ek et e fed et ek pd
DI BRI DD =t bt et st et et e et b = O O O O
N—= OO O~IAN NI — OO0~

o
NN
RSN US)

*eot = ch;
}
ptr = eot;
/*
* get next vls_token of command. - args type.
*/

ptr = sscan_skip white(ptr);
str_args_type = ptr;

eot = sscan_next_white(ptr);
str_args_type_eot = eot;

if (eot !'= NULL) {
ch = *eot;
*eot="'\0";

}

toke_args_type = vls_tokenize(ptr):

i f (rFALSE == vls_token is_arg type(toke args_type)) {
++@rYor;
sprintf(error_msg_buff
,"snytax €rror. unknown argument(s) identifier seen: %30s*
, Str_args_type);
goto out; /* sytax error */
}

/*

* restore rest-of-query for scaning
*/
if (ch 1= 0 ¥
*eot = ch;
}
ptr = eot;

switch (toke args_type){
int tgt_id[3],event_id[3], collision_id[3];

case T_VLS_QUERY_TYPE_MFK_DIS_IDS:
/* scan Tgt and Event |ID (2 sets of (3 ints))*/
if (Verbose)
printf (*#**scammer sees Tgt and Event: $s\n*,ptr);

if (6 != sscanfiptr,"” % %4 % %l %d %4 *,
&tgt_id[0}, &tgt_id([l]}, &tgt_id[2],
&event_id[0], &event_ id[l], &event_id[2]
l
) {
int_args_matched = FALSE;
++eYYOor,;

ch = *str_args_type_eot;
*str_args_type_eot="\0;

sprintf (error_msg _buff
,*sytax error. expected 6 integers to follow \ "gs\"
,Sstr_args_type

*str_args_type_eot=ch;

break; /* syntax error expected 6 ints */
1 else {
/* set shared nemory */
int_args_matched = TRUE;
if (Verbose) ¢
printf (“***puting to shm Tgt: %l %d %d *,

41

b ek ot o ok amd ot fed o gk ol el
SR UWLILILILILILILLIWNIN
— OO0~ N PR WO — OO 0o

b it it
e R T
(WL RIS]S

i en L L e g S S e e e S Y Y S Y VU
Neleloolooloodedosle oo lrle AALAENERENERLNENEN LA o 3o 1o o Moo N oo Yo Yo NV AV L0 LT LV IV 10)]
— OV~ NRAR WL OOONION N LWL OOV IN N AW IOV CO~IANNIWL

tgt_id[0], togt_id[l}, tgt_id[2]);
printf("***puting to shm Event:%d %l % ",
event_id[0], event_id[l},event_id[2]);
}

(voi d) shmSet_TargetID(tgt_id);

(voi d) shmSet_EventID(event-id);

(voi d) shmSet_QueryArgsType(toke args_type);

(voi d) shmSet_QueryType(toke_query_type);

(voi d) shmClear QueryAnswered();

i f (1== shmSet_QueryPlaced()){
query_placed = TRUE;

} else {
++error;
sprintf (error_msg_buff, "could not set share nmemory! “);
;/* error could not set share nenory */

}

}

br eak;

case T_ARGS DI S COLLI SI ON_I DS:
/*
« W just saw "ARGS_DIS_COLLISION_IDS" in
* Following this we expect to see three integers
* that together are the collision event ID
*/
if (6 != sscanf(ptr," %d %d %d %d %d %d ",
&tgt_id[o01l, &tgt_id [11,
&collision_id[0], &collision_id[1l],

):

int_args_matched =
++error;

FALSE;

ch = @ str_args_type_eot;
® str_args_type_eot='\0;

sprintf(error_msg_buff
,"sytax ewco.. expected 6
,str_args_type
)i
*str_arqgs_type_eot =ch;
break; /* syntax error expected 6 ints
} else {
/* set
int_arqgs_matched =
if (Verbose) {
printf("***puting to
collision_id[0],

shared nmenory */
TRUE;

shm collision
collision_idIl1ll],
}

(void)
(voi d)

tgt_id);
collision_id):

shnSet _Tar get | D(
shnBet _Event | I(
(void) shntet_QueryType(
(void) shmClear_QueryAnswered();
if (1 == shmSet_QueryPlaced()) {
qguery-placed = TRUE;
} else {
++@Irror;
sprintf (error_msg_buff,"could not
/* error could not set

set

42

integers to

toke_query_type);

/* expect someID args */

the query statenent.

&tgt_id[2],
&collisgion_id[2],

follow \"%s\""

*/

ID:%d %d %d ",
collision_id[2]);

share menory!"™}):
share nenory */

NN NN NN NN
N bt ot ot ph foh pad ommd prd
OV ~IAN NP WNIF

br eak;

case T_VLS_QUERY_TYPE_MFK_BINARY_PDUS: /* not inplenented yet */
defaul t:
+terror,
sprintf(error_msg buff, "unsupported query type");
br eak;

)

if (query-placed == TRUE) (
static struct tineval tineout;
int polls;
int answered;
/*
* query is placed,
* Now wait for DisMonitor to answer the query.
*
/
polls = 0;

Db_TimedOut_Clear(); /* set Ib Timedout==FALSE and start tinmer */
/*
* when tiner goes off, then
Db Timedout is set to TRUE

*/
while((l!=shmGet_QueryAnswered()) && (FALSE==Is_Db TimedOut())}) {
/*
* sleep a short tine
*/

timeout.tv_sec=0;
timeout.tv_usec= SERVER DB POLLING; /* sleep for
* SERVER DB POLLING
* mcro seconds
*/
select (NullFile fd , (f£d_set *)NULL, (fd_set *)NULL,
(fd_set *)NULL, &tinmeout):

answered=shmGet_QueryAnswered() ;

if (Verbose) (
i f (answered==1) {
printf(*server query answered after about %7.3f seconds\n"
. ((doubl e) (polls*SERVER_DB_POLLING) }/ 1000.);
} else {
printf(
"server query NOT answered after %7.3f seconds (and %l polls).\n"
((doubl e) (DB_TIMEOUT))/1.e+06
. polls);
}
}

if (answered) (

/*

* Read answer from shared nenory.

*/

error = FALSE; /* Success - finally */
) else {

++error; /* ERROR! query tineout! */
sprintf(error_msg_buff,
"Timed-out walting for VL DataManager response.");

)
} else if (FALSE == shmIsAttached()) {
++eXYor;

43

sprintf(error_nsg_buff,
"vL, server internal error: could not place query into shared menory!");
) else if (FALSE == int_args_matched) {

/* leave error message as is - it describes #of ints expected */
} else { /* oNkowW ERROR - hopeful Iy never will get here */
++eXror;

sprintf(error_nsg_buff,
"I, server internal error: could not propperly process query!");

out:

if (error) {
int len;
char msg[128];
if (Verbose)
printf("Query not understood from client %d\n",pc->pkc_£d);
sprintf (msg, "%d: VLS ERROR %s",query._id,error_msg_buff);
len=strlen{msg)+l; /* add 1 to al so send the NULL term nator*/
(void) pkg_send(VL_MSG_TC_CLIENT,msg,len,pc);
} el se {
if { TRUE != send_query_answer (pc,query_id, toke_query_type)) {
/* error could not read shared menory
* or else could not send client the answer...
* But is alnost certainly is the later,
* since we already tested for shm witing
* when query placed was set to true.

*/
printf(**** server could not send to client %l (query %) !! !\n®
,pc->pke_£d, query_id) ;
}
}
}
Figure 12. Enabling vlserver to Parse a New Query Tvne (service guery_to db()).

"123 QUERY TYPE_binaryCOLLISION_ProbAll ARGS_DIS_COLLISION_IDS 1 23 4 56

Figure 13. Sample ASCII Querv String: (sent to the viserver).

7.3.3. Remote Access to New VL APIs (responding to client queries)

In addition to monitoring the DIS environment (and storing certain PDUs for later use), the
DIS monitor also periodically monitors the shared memory link (mk_shm(3) in Appendix B) for new
queries placed by the viserver. When it discovers that a query is pending, dis_mon uses the function
vls_link_service_guery()to servicethequery. Changesin vls_link_service_query() that
address collison damage queries (using the BINARY vulnerability methodology) are shown in bold
text in Figure 14. This function and other DIS monitor source code is located in the
$VLS_HOME/src/DisMon directory.

44

/*

~ vls_link_service_guery()

* int vls_link_service_guery(void);

*

* Extract the VL server query and attenpt to service it.
* |f serviced the query result is place in shared nenory.
¥ (A successful service includes placing indicators into
, Shared nemory which tell the server to return an error
, message to the client.)

*

returns 1 (TRUE) if success (in placing the query into shared nenory).
* 0 (FALSE) i f unsuccess.

*

*/

i nt vls_link service_guery(void)

{ VLS_Token ans_t, args_t;

int ret;

static char *whoami="vls_link service_query() ";

ret = FALSE;

_rpt_error (_RE_CLEAR_ERRORS,NULL); /* clear error flags in rpt_perror*/
args_t = shmGet QueryArgsType():;
ans_t = shmGet_QueryType(); /* called by DisMonitor */

switch (args_t){
case T _VLS_QUERY TYPE_MFK_DIS_IDS:
ret = vls_link _serve_mfkDIS_IDS(ans_t);

br eak:
case T_ARGS DI S COLLI SION_IDS:
ret = wvls_link_serve_binaryCollision DIS_IDS(ans_t):
br eak;
defaul t:
cprint (CH_ERR, "%s: cannot handl e \"%s\" (¥d) arguments in gquery\n®
, Wwhoami
,vls_token name(args_t)
,args_t
)i
br eak;
}
shmClear_QueryPlaced(); /* clear query pending flag */
shmSet_QueryAnswered() ; /* set query answered flag */

return(ret);

Figure 14. Chancre (in dis mon) to Accent New OQueries.

Figure 14 shows on line 32 that the type of query is passed (viathe variable ans_t)to a
function that calls the appropriate VL API routines and returns the results. That function
“v1s_link_serve_binaryCollision DIS_IDS()“ isshowninFigurel5. This whole function
would have to be written since it does not yet exist.

45

OWOO~-YTNERIN—OWOO-IA N LW —

B o bt ot et e et e ek ek b

/*

~ vls_link_serve binaryCollision_ DIS_IDS()

static

return 1
0

* % ¥ X

*/
static int

i Nt vls_link_serve binaryCollision DIS_IDS(VLS_Token ans_t)

Service a query for a collision damage using BINARY nethodol ogy.

(TRUE) if successful in placing the query into shared nenory.
(FALSE) if not.

vls_link_serve_binaryCollision DIS_IDS(VLS_Token ans_t)

{ DisID entityID[3], eventID[3];

int i,
VL_Result

flg, ret, set_err msg, int3[3];

result;

float *probspace; 1
doubl e prob;

static const char *whoami="vls_link_serve binaryCollision DIS IDS() *;

static char answer buff(128];

VLSetParam_t Dmg_Type;

set_err msg = FALSE;
ret = FALSE;

/* get entity and event IDs */

(voi d) shmGet_TargetID{ int3);:
for (i=0; i<3; i++)

entityID[i] = (DisID) int3[il:/* intl6 = int */
(voi d) shmGet_EventID{ int3 };

for (i=0; i<3; i++)
eventID[i] = (DisID) int3({il;
printf("%s:IDs are: % % % % % %d\n",whoami
,entityID(0]
,entityID([1]
,entityID [2]
, eventID[0]
,eventID[1]
,eventID[2]

Yi

Dmg_Type = VL_PARAM_SET_COLLISION;
switch(ans_t) {

case

case

case

case

set_prob:

T _QTYPE_binaryCOLLISION Result: /* Requested Format of Answer */
result = vl _binary_DIS_Result(
&flg, DmgType, entitylID ,eventID);
if (£lg!=0) /* result not from found table */
set_err_msg = TRUE;
ret = shmSet_VLResult(result,flg); /* called by DisMonitor */
br eak;

T_QTYPE_binaryCOLLISION Proball:
probspace = vl_binary DIS ProbAll(Dmg_Type, entityID, eventID);
i f (probspace==NULL) /* a type of error */
set_err_msg = TRUE;
ret = shmSet_binaryPS(probspace); /* called by DisMenitor */
br eak;
T_QTYPE_binaryCOLLISION ProbDEAD:
prob = _vl_binary DIS_ProbDEAD(Dmg_Type, entityID, eventID);
goto set_prob;
br eak;
T_QTYPE_binaryCOLLISION_ProbALIVE:
prob = _vl_binary DIS_ProbALIVE(Dmg_Type, entityID, eventlD);
goto set_prob;
br eak;
i f (prob<0.) /* a type of error */

set_err msg = TRUE;

46

}

ret = shmSet_prcb(prob); /* cal l ed by DisMonitor */
br eak;
defaul t:
ret = FALSE;
cprirt (CH_ERR, "%s: cannot handle %s vl result in query\n'
, whoami

,vls_token name(ans_t));
sprintf (answer_buff,"**DB Handler ERROR') ;
break:

(set_err_msg == TRUE) {
char *b, buff[256];

/* Place error msg in shm (to be sent by server to client) */

* this is enough info:
* shmSet_ErrorMsg(rpt_error_getMsg());

*

*/

memset (buff, 0, sizeof (buff));

stxnecpy (buff, rpt_error_getMsg(), sizeof(buff));

buffsizeof (buff)-11="\0";

/*

*+ See if there is more to report that sheds [ight on the error
(that is nore than the standard error msg).

but the following is even more info:

*/
if (WLL != (b= _rpt_error_getlLastAddedMsg())){
int len;
| en = strlen(buff);
if (len+3 < sizeof(buff)){/* add *“."*/
strcpy (buff+len,". *);
len+=2;

}
strncpy {(buff+len,b, sizeof (buff)-len); /* add extra msg*/
buff[sizeof (buff)-len-1 1='\0"';

}

shmSet_ErrorMsg(buff);

return (ret);

Figure 15. A

The first thing *© notice about “vis_link_serve_binaryCollision DIS_IDS() “18 that it
derives the arguments from the shared memory link between dis_mon and the viserver. Thisis
seen on lines 24 and 27 where the ID of the entity whose damage we are assessing and the ID of
the collison event that causes the damage are retrieved. The switch statement on line 39 is used
direct the program to cal whichever V/L APl will return the answer in a format that appropriately
reflects the client’s query. If you have a keen eye, then you may have noticed that the function
“shmget _bi naryPS ()* called on line 50 does not yet exist (and was not listed under the shared
memory library calls shown in the mk_shm(3) “man” page in Appendix B). This function would
have to be written, along with the corresponding “shntet _bi naryPs (), and a space in the shared

47

memory areawould have to be allocated to store the data. Thisis because roomisallocated in
shared memory for the existing “MFK” methodology probability space, but thereis no room as
yet for our newly defined “BINARY” vulnerability method. Fortunately, there is only enough
room for two floating point numbers (one for each of the outcomes we defined as possible for or
BINARY probability space) (namely, pS_BINARY_DEAD and PS_BINARY_ALIVE aswe defined in
Figure 3, lines 42 and 43). Another thing missing from Figure 15isthe VL APIs that we call. We
do have some VL APIs defined for the BINARY methodology (as shown in Table 4), but those
APIs require PDUs as their arguments. However, the V/L APIs shown in Figure 15
(vl_binary_DIS_Result (), vl_binary_ DIS_ProbAll(), _vl_binary DIS_ProbDEAD(), and
_v1_binary DIS_ProbaLIVE()) al require DIS “IDs” as arguments. Fortunately, writing these
functions is fairly straightforward. Remember that the DIS monitor is keeping track of all PDUs of
interest. 1t is simply a matter of finding the PDUs that are associated with the given IDs and then
using those PDUs as arguments to the V/L APIs that are not defined. Those defined /L APIs
(Table 4 and Figure 5) use PDUs as arguments to initialize the vulnerability analysis, and therefore,
we simply call them and return their results. If further assistance is required, the source code for
any of the “MFK” “DIS-ID” functions may be examined. (These are the functions:
v1_mfkDIS_Result (), vl_mfkDIS_ProbaAll (), _vl_mfkDIS_ProbK (), v1_mfkDIS_ProbMF(),
_v1_mfkDIS_ProbF (), _vl_mfkDIS_ProbM(), and _vl_mfkDIS_ProbNoDamage ().) Thesource
codeisgiveninthefile $vLs HOME/src/vlapi/vl_dis.c.

Notice in Figure 15 that the results of these VL APIs (assuming they are eventualy written)
are placed directly into shared memory (on lines 45, 5 1, and 64). The DIS server will retrieve them
from there and pass them to the client who originally asked for the analysis, thus completing the
remote query.

8. SUMMARY

To review, in Section 3 we showed how to unpack, ingtal, and compile the DIS lethality
server, as well as make someinitial test runs.

We then explained the overdl architecture of the server and the disposition of its major modules
in Section 4. Section 5 described the data tiles needed to initidlize the server and their location.

Section 6 explaned how client applications may connect to the server and pose remote queries.

48

In Section 7, we showed in detall how the server may be expanded to service just about any
vulnerability methodology (beyond just “MFK”) and how it could be used to describe damage
derived by other mechanisms (beyond just “munitions’).

49

INTENTIONALLY LEFT BLANK

50

REFERENCES

1. I[EEE Computer Society. “Standard for Distributed Interactive Simulation-Application
Protocols.” |EEE Standard 1278.1-1995, Indtitute of Electrical and Electronics Engineers, Inc.,
NY, 1995.

2. Indtitute for Simulation and Training. “Enumeration and Bit Encoded Vaues for Use with
Protocols for Distributed Interactive Simulation Applications.” 1ST-CF-97-23 (Section
4.3.1.1, Platforms of the Land Domain), Institute for Simulation and Training, Orlando, FL,
3 June 1997.

3. Sauerborn G.C. Proceeding ' istribu Y3
Smulation and Red Time Aunllcatlons “The DIS Lethallty Communications Server " |EEE

Computer Society, pp. 82-87, 1998 (ISBN O-8186-8594-8).

4. Sauerborn, G.C. “Communicating Platform Vulnerability in a Distributed Environment.”
Paper: 98F-SIW-130, Simulation Interoperability Workshop Papers, The Simulation
Interoperability Standards Organization (SISO), pp. 809-8 15, September 1998.

5. Deitz, PH., et d. “The Generation, Use, and Misuse of ‘PKS' in Vulnerability/Lethaity
Analysis” ARL-TR-1640, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD,
1997.

6. Roach, LisaK. “A Methodology for Battle Damage Repair (BDR) Analysis.” ALR-TR-330,
U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, 1994.

7. Walbert, JN., et al. “ Current Directionsin the Vulnerability/L ethality Process Structure.”
ARL-TR-296, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, 1993.

8. Roach, L.K. “Fault Tree Andysis and Extensions of the V/L Process Structure.” ARL-TR-
149, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, 1993,

INTENTIONALLY LEFT BLANK

52

APPENDIX A

INITIAL COMPILATION'S SAMPLE OUTPUT

53

INTENTIONALLY LEFT BLANK

54

INITIAL COMPILATION'S SAMPLE OUTPUT

Sample output from compilation script $VLS_HOME/compile.sh IS given here. Warnings and
other messages will vary, depending on which compiler and operating system are used. The
output from this example was generated using a Silicon Graphics@, Incorporated (SGI) IRIX™

5.3 OS with SGI’s ANSI C compiler (v3.19).

> Jecompile.sh
dtarting in /ust/people/geoffs/Lserver
libs

cd sre/Libs/CommaDelim
make CC=cc RANLIB=¢cho ingtall
cc-g -¢ -l -ccdfic
ar urv libedf.a cdf.o ‘
a-cdfo
s - creating archive symbol table. Wait...
s~ done
Jusr/lib/ar: Warning: cresting libcdf.a

echo libcdf.a
libedf.a
cp libcdfa../.././lib/
cpcdfh.././. /include
cd /usr/people/geoffs/Lserver
cd sre/Libs/cprintf
make CC=cc RANLIB=echo ingtall
cc -DANSIIC ¢ cprint.c
ar urv libcprint.a cprint.o
a-cprint.o
s- Credting archive symbol table. Wait...
s done
Jusr/tib/ar: Warning: creating libeprint.a

echo libeprint.a
libcprint.a
cp libeprint.a../.././lib/
cp cprint.h../../. finclude
cd /usr/people/geoffs/Lserver
cd src/Libs/Scanner
make CC=cc RANLIB=echo ingtall
CC -C =g -C scanner.c
ar urv libscanner.a scanner.0
a- scanner.0
s - creating archive symbol table. Wait...
s~ done

Just/lib/ar: Warning: creating libscanner.a

echo libscanner.a
libscanner.a
rm scanner.0
m -f ../.././lib//libscanner.a
cp libscanner.a .././../lib/
chmod -w ../...../lib//libscanner.a

chmod ugo+r ../../.. /lib//libscanner.a
Cp -p scanner.h .././../include/scanner.h

cd /usr/people/geoffs/Lserver

cd src/Libs/Matrx

make CC=cc RANLIB=¢echo ingtall
CC -g -C -¢ matrx.c
CcC -g -¢ -¢ disXforms.c

ar urv libmatrx.a matrx.o disXforms.o

a. matrx.o
a- disXforms.o

s - creating archive symbol table. Wait...
s~ done

Just/lib/ar: Warning: creating libmatrx.a

rm matrx.o disXforms.o
m -f ../.././lib/libmatrx.a
mv libmatrx.a ../.././lib/libmatrx.a
chmod -w../../../lib/libmatrx.a
chmod ugo+r ../.././libllibmatrx.a
Cp -p matrx.h ../../. /include
cd /usr/people/geoffs/Lserver
cd sre/Db/TblReaders
make CC=cc RANLIB=echo ingtall
cc -DANSIIC -g -1../../..finclude -I../../../include/H «¢
iva_ke.c
cc -DANSIIC -g -1../../..finclude -I../../. /include/H -¢
jua_heat.c
cc -DANSIIC -g -1../../../include -L../../. /include/H -¢
others.c
ar urv libtbl_rdrs.a iua_ke.o iua_heat.o others.0
a- iua keo
a- iua heat.o
a- others.0
s - creating archive symbol table. Wait...
s- done
fusr/lib/ar: Warning: creating libtbl_rdrs.a

echo libtbl_rdrs.a
libtbl_rdrs.a
cp libtbl_rdrs.a /... Nlib/
cp tbl_rdrs.h.././. /include
m libtb]_rdrs.a
cd /usr/people/geoffs/Lserver
cd src/VLapi
make CC=cc RANLIB=echo ingall
cc -l../../include -g -c -I../Libs/DIS/include -1../Db/ -¢ vl.c
cc -1../.finclude -g -¢ -1../Libs/DIS/include -I../Db/ -¢
vi_bnry.c
cc -I../..finclude -g -¢ -I../Libs/DIS/include -1./Db/ -¢
vl_dis.c
ar urv libvl.a vLo vl_bnry.o vl_dis.o
a-vlo
a- vl_bnry.o
a.vl_diso
s - creating archive symbol table. Wait...
s- done
fusr/lib/ar: Warning: creating libvl.a

echo libvl.a
libvl.a
cplibvl.a././lib
cp vLh.././include
m libvl.a
cd /usr/people/geoffs/Lserver
DIS manager is made a little differently--------- :
/ust/people/geoffs/Lserver
cd src_sgi5.3/LIB
make CC=cc
cc -g-DBSD c log.c
cc-g -DBSD -¢ pdu.c
cfe: Warning 665: pdu.c, line 607: Modified an rvalue.

((ArticulatParamsNode *)* n) = (ArticulatParamsNode
)0

A

cfe: Warning 665: pdu.c, line 610: Modified an r-vaue.
{(SupplyQtyNode *)*n) = (SupplyQtyNode *) 0

cfe: Warning 665: pdu.c, line 613: Modified an rvalue.
((VarDatumNode *)*n) = (VarDatumNode *) 0;
A

cfe: Warning 665: pdu.c, line 616: Modified an rvalue.
((FixedDatumNode *)*n) = (FixedDatumNode *) 0 ;

cfe: Warning 665: pdu.c, line 619: Modified an rvalue.
((VarDatumValue *)*n) = (VarDatumValue *) O
A

cfe: Warning 665: pdu.c, line 622: Madified an rvalue.
((QueryDatumValueNode *)*n) =
(QueryDatum ValueNode *) O ;
N

cfe: Warning 665: pdu.c, line 629: Modified an rvalue.
((TrackJam *)*n) = (TrackJam *) O
A
cfe: Warning 665: pdu.c, line 632: Modified an rvalue.
((BeamDesc *)*n) =(BeamDesc *) 0;
A
cc-g -DBSD -¢ pkg.c
cc-g-DBSD ¢ print.c
cc-g-DBSD-c byte bnd.c
cfe: Warning 709: byte_bnd.c, line 2027: Incompatible pointer type
assignment
u32_ptr = ptr

cc-g-DBSD -¢ dis client.c
cc -g -DBSD -cclient_pdu_utils.c
cc -g -DBSD -¢ coords.c
cc -g -DBSD -cutm.c
ar urv libdis.a 10g.0 pdu.o pkg.o print.0 byte bnd.o
dis_client.o client_pdu_utils.o coords.o utm.o
a-log.0
a-pdu.o
a-pkg.o
a. print.0
a- bvte bnd.o
a-dis_client.o
a- client_pdu_utils.o
a- coords.o
a-utm.o
s Cregting archive symboal table. Wait...
s- done
Jusr/lib/ar: Warning: creating libdis.a

cc -g -DBSD -c dis_server.c
cc -g -DBSD -cmgr_pdu_utils.c
ar urv libdis_mgr.a 10g.0 pdu.o pkg.o print.o byte bnd.o
dis_server.o mgr_pdu_utils.o
a-log.0
a-pdu.o
a-pkg.o
a- print.0
a- byte bnd.o
a - dis_server.o
a-mgr_pdu_utils.o
s- Cregting archive symboal table. Wait...
s- done
fusr/lib/ar: Warning: creating libdis_mgr.a

cd./.

cd src_sgis.3/MGR

make CC=cc
cc -g -DIGN_SIGIO -DSGI -¢ dis_mgr.c
cc -g -DIGN_SIGIO -DSGI -c client_rout.c
cc -g -DIGN_SIGIO -DSGI -c net.c

56

cc -g -DIGN_SIGIO -DSGI -c server.c

cc -g -DIGN_SIGIO -DSGI dis_mgr.o client_rout.o net.0
server.0 ../LIB/libdis_mgr.a -Im -o dis_mgr
cd./.
cd sre_sgi5.3/CLIENT
make CC=c¢

cc -g -cckr -c client.c

cc -g -cckr client.0 ../LIB/libdis.a -Im -0 client
cd./.
cd src_sgi5.3/PLAYBACK
make CC=cc

cc -g -DDEBUG -DSYS5 -c playback.c

cc -g -DDEBUG -DSYSS playback.0 ../LIB/libdis.a -Im
-0 playback
cd./
cd src sgis.3/UTIL
make CC—cc

cc -g -DDEBUG -DSYS5 -¢ btoa.c

cc -g -DDEBUG -DSY$5 btoa.o ../LIB/libdis.a -0 btoa
cd./.
cd src_sgi5.3/UTIL/ByteBound
make CC=cc

cc-l././H-g-DMAIN -¢ byte bnd.c
cfe: Warning 709: byte bnd.c, line 2027: Incompatible pointer type
assignment

u32_ptr=ptr;
___________ 2l

cc byte_bnd.o -L../../LIB -ldis

a.out
DISLIB: byte_bounds_pr() unknown "OtherPDU" 0

byte boundanes for pdu type 1: EntityStatePDU
112 2

1
1
4

PA—~DNpPREPN

byte boundaries for pdu type 2:

pd
4 21
2 2 2
8 8 8
2 22

PR AN
RN
[N
N 0O N

byte boundaries for pd
1111 4
2
4

2
4

AN

2 2
4 4
byte boundaries for pdu type 5: ServiceRequestPDU
111142112 2

22221111 -l<varparams start>

byte boundaries for pdu type 6: ResupplyOfferPDU
1111421122

22221111 -l<varparams start>

byte boundaries for pdu type 7: ResupplyReceivedPDU
1111421122
2 2 2 2 1 1 t1-1<varparams start>

byte boundaries for pdu type 8: ResupplyCancelPDU
1111421122

2 22 2

byte boundaries for pdu type 9: RepairCompletePDU
1111421122
2222211

byte boundaries for pdu type 10: RepairResponsePDU
1111421122
22221111

byte boundaries for pdu type 11: CreateEntityPDU
1111421122
2 22 2 4

byte boundaries for pdu type 12: RemoveEntityPDU
1111421122
2 22 2 4

byte boundaries for pdu type 13: StartResumePDU
111 21122
2 2 2 2 4 4 4 4 4

byte boundaries for pdu type 14: StopFreezePDU
1111421122
2222441111
4

byte boundaries for pdu type 15: AcknowledgePDU
1111421122
2 222 2 2 4

byte boundaries for pdu type 16: ActionRequestPDU
1111421122
2 22 2 4 4 4 4 -l<varparams start>

byte boundaries for pdu type 17: ActionResponsePDU
1111421122
2 2 2 2 4 4 4 4 -l<varparams start>

byte boundaries for pdu type 18: DataQueryPDU
1111421122
2 2 2 2 4 4 4 4 -l<varparams start>

byte boundaries for pdu type 19: SetDataPDU
1111421122
2 222 411114
4 -]1<var params Start>

byte boundaries for pdu type 20: DataPDU
1111421122
2 222 411114
4 -l<var params start>

byte boundaries for pdu type 21: EventReportPDU
11142112 2
2 2 224111114
4 -1<var params Start>

byte boundaries for pdu type 22: MessagePDU

57

1111421122
2 22 2 1111 4 -I<varparams start>

DISLIB: hyte bounds_pr{) unknown
"ElectromagneticEmissionsPDU" 23
DISLIB: byte_bounds_pr() unknown " " 24

byte boundaries for pdu type 25: TransmitterPDU
1111421122

22811118 8 8
4 4 4 2 2 8 4 4 8 2
2 1 1 1 1 -1<varparams start>

byte boundales for pdu type 26: SignalPDU
1 4 2 112 2
2 2 2 2 4 2 2 -1<var params Start>

byte boundaries for pdu type 27: ReceiverPDU
111114 112 2
2 221142222

2

byte boundaries for pdu type 28: DesignatorPDU

1111421122

2 22 22114 44

4 4 8 8 8
DISLIB: byte_bounds_pr() unknown "CommentPDU" 29
DISLIB: byte_bounds_pr() unknown “NO SUCH DEFINED PDU”
30
DISLIB: byte_bounds_pr() unknown “NO SUCH DEFINED PDU"
31
cd.f.
UX:mkdir: ERROR: Cannot create directory “lib": File exists
UX:mkdir: ERROR: Cannot create directory “bin”: File exists
UX:ls: ERROR: Cannot access lib/libdis.a: No such file or directory
src/Libs/DIS/lib/libdis.a
data manager

ar UN libtbl_rdrs.a iua ke.o iua heat.o others.0

a-iua_ke.o
a- iua heat.o
a- others0
s - cregting archive symbol table. Wait...
s- done
fusr/lib/ar: Warning: cresating libtbl_rdrs.a

echo libtbl_rdrs.a
libtb!_rdrs.a
cp libtbl_rdrs.a../././ib/
cp tbl_rdrs.h ././. finclude
rm libtbl rdrs.a
cc -I../.Jinclude -g -¢ -1../Libs/DIS/include -c db_entity.c
cc -I.J./include -g -¢ -1../Libs/DIS/include -c db_entmem.c
cc -1./.Jinclude -g -¢ -I../Libs/DIS/include -¢ striink.c
cc -I.././include -g -¢ -L../Libs/DIS/include -c db_init.c
cc -lL././include -g -c -1../Libs/DIS/include -c util.c
cc -L.././include -g -¢ -I../Libs/DIS/include -¢ misc.c
cc -l.J./include -g ~¢ -I../Libs/DIS/include -c metatbls.c
cc -L././include -g -c -1../Libs/DIS/include -c db.c
cc-I../../include -g -¢ -1../Libs/DiS/include -c meta_mem.c
cc -1../.finclude -g -c -1../Libs/DIS/include -c tiny_url.c
cc -1.././include -g -¢ -1../Libs/DIS/include -¢ tbl_fmts.c
cc -1././include -g -¢ -I../Libs/DIS/include -¢ viparam.c
cc -l./.finclude -g -¢ -I../Libs/DIS/include -c vl_meth.c
ar urv libvidb.a db enttty o db_entmem.o strlink.o db init.o
util.o misc.0 metatbls.o db.o meta_mem.o tiny_url.0
tbl_fmts.o vlparam.o vl_meth.o
a-db_entity.o
a- dh entmem.o
a. strlink.o
a-db_init.o
a-util.o

a- misc.0 DIS lethality server finished

a- metatbls.o installing libs and header files

a-db.o in $VLS_HOME/lib and $VLS_HOME/include.
a- meta_mem.o set $VLS HOME to: /usr/people/geoffs/Lserver
a-tiny_url.o

a- tbl_fmts.o

a - vlparam.o

a- vl_meth.o

S. cregting archive symbol table. Wait...

s- done

Just/lib/ar: Warning: cregting libvidb.a

echo libvldb.a
libvidb.a
cp libvidb.a ./, /lib
cp vl_meth.h /. /include
tm libvldb.a
[— TCP Lethdity Server --uuvene-.-.
cc -g -DBSD -I.././include -1../../include/H/LIB
-1..1../include -¢ client_lib.c
cc -g -DBSD -1../../include -1../../include/H/LIB
-1../../include -¢ pkg.c
ar urv libvisclient.a client_lib.o pkg.o
a- client_lib.o
a- pkg.0
S« cregting archive symbol table. Wait...
S. done
fusr/lib/ar: Warning: creating libvisclient.a

echo libvsclient.a
libvisclient.a

cp libvlsclient.a .A.Mib

cp vis_toke.hvlserver.h mk_shm.h .././include

cc -g -DBSD -1.././include -1../. /include/H/LIB
-I../../include -¢ server.c

cc -g -DBSD -1../../include -../../include/H/LIB
-I../../include -¢ mk_shm.c

cc -g -DBSD -1../../include -1../../include/H/LIB
-1../../include -¢ server_lib.c

cC -0 server.exe -g -DBSD -L../../include
-L.././include/H/LIB -1. /. /include server.0 pkg.o mk_shm.o
server_lib.o -L../../lib -|scanner -Icprint -lvisclient

cc -g -DBSD -I...../include -1../../include/H/LIB
-1../../include -¢ client.c

cC -o client.exe -g -DBSD -1../../include
-1../../include/H/LIB -1../. /include client.O -Ivlsclient -L./

- DIS MONItOr weeemsammmen comsenan

CC -¢ -L../../include/H -1../../include/H/LIB -I../..//include -g
-DNOCURSES -DCONNECT_TO_VL_SERVER Main.c

cc -¢ -1../../include/H -1../. /include/H/LIB -1../. //include -g
-DNOCURSES -DCONNECT_TO_VL_SERVER dis misc.c

cC -¢ -I../../include/H -1../../include/H/LIB -1../..//include -g
-DNOCURSES -DCONNECT_TO_VL_SERVER process_pdu.c

cc -¢ -1../..finclude/H -1../../include/H/LIB -I./Jinclude -g
-DNOCLJRSES -DCONNECT_TO_VL_SERVER usremd.c

cc-¢ -1../../include/H -1../../include/H/LIB -L ./Jinclude -g
-DNOCURSES -DCONNECT_TO_VL_SERVER munitions.c

cc -¢ -1../../include/H -1../../include/H/LIB -1../..//include -g
-DNOCURSES -DCONNECT_TO_VL_SERVER ent_list.c

cc -¢ -I./../include/H -1../../include/H/LIB -1../..//include -g
-DNOCURSES -DCONNECT_TO VL_SERVER fire_detc

CcC ~¢ -1../../include/H -I../../include/H/LIB -L../..//include -g
-DNOCURSES -DCONNECT_TQ VL_SERVER mk_shm.c

cC-¢ -1../../include/H -1../../include/H/LIB -L ./Jinclude -g
-DNOCURSES -DCONNECT_TO_VL_SERVER vls_link.c

cc-o0 dis_ mon.exe-g -DNOCURSES
-DCONNECT TO_VL_SERVER Main.0 dis misc.o process_pdu.o
usrcmd.o munitions.o ent_list.o fire_det.o mk_shm.o vis_link.o
-L../../Aib -dis ~fcprint -fcurses -Im -Ivisclient -Ividb -Iv] -Itbl_rdrs
-Iscanner -lmatrx -lcdf
UX:m: ERROR: Cannot access
Just/people/geoffs/Lserver/bin/*.exe: No such file or directory

58

APPENDIX B

MANUAL “MAN” PAGES

59

INTENTIONALLY LEFT BLANK

60

MANUAL “MAN” PAGES

These manuals are presented in the UNIX™ “man page” format. The directory
$VLS_HOME/doc/contains these manualsin “man” page (.man) format. In addition, there are
versions in Hypertext Markup Language (HTML) (-html), PostScript (.ps), plain text (.txt), and
rich text format (.rtf).

The man pages are presented in aphabetica order:

cdf(3)
cprint(3)
db(3)

dis mon(1)
dismgr(1)
matrx(3)
mk_shm(3)
scanner(3)
vi(3)
viparam(3)
vls_db_init(5)
visclient(3)
viserver(1)

The“(1)*, “(3)”, and “(5)" delineations are conventions used for “man” pages. These indicate
the genera category of application that the manua addresses.

Some variants of UNIX™ stray from this numbering scheme (e.g., IRIX™ and Sun Solaris®
use “(4)” to describe file formats instead of “(5)”). In general, these are the applied manual
section numbers:

Section “(1)” man pages are for gpplications and user commands.

Section “(2)" indicates an operating system level library call.

Section “(3)" manuals are for user library calls (such as math library functions, etc.)
Section “(4)" manuals document devices (such as memory, tape, €fc).

Section “(5)" manuals describe file formats.

Section “(8)” are for “miscellaneous’ other things (such as a man page describing the
ASCIl codes, etc.).

The directory structure and how it relates to the various modulesin the DIS |ethality server
are shown in the Figures B-l and B-2. Figure B-I isareplaction of Figure 2 showing where
module source code is located. Figure B-2 shows the current directory organization.

61

The directory structure and how it relates to the various modules in the DIS lethality server
are shown in the Figures B-I and B-2. Figure B-l is areplaction of Figure 2 showing where
module source code is located. Figure B-2 shows the current directory organization.

DIS Nehvork Traffic

TCP/IP link

D772 2 .

Shared

TCP/AP
link

$VLS_HOME/src/VLapi
$VLS_HOME/src/Db

$VLS_HOME/src/Server

$VLS_HOME/src/Libs/DIS/
$VLS_HOME/src/Libs/DIS/src/dismgr

$VLS_HOME/src/DisMon

Figure B-I . Major Module Source Code Locations.
VL Server Directory Structure
$VLS: HOME- :
it
SRR po] -] i T Sr— S
include lib i sre “bin L doc i G0 Data s
library tibrary holds many source T executable holds manusls ar‘d,; vanous data™ -
header files object files | cotle directories i programs other documentation L S
: ——
I] 1 i I 1 - l .
DisMon ThiReaders Viapi Libg 7 > ‘Server : ‘Db - ’ Hh)it‘ iy Tables)
DIS Monitor data initalizers | VL API L suppont - Cyiserver 'Datd Manager ; - initalization 5 Sample static
result retumers layer iliranes & exampile client Layer 5 files “Flookup tables
I
I T e s | 1 - 1 gt | " I
Dis ! | Minor Libraries Matrx ! - iSamer cprintf 7.2} | CommaDeim ™ AUA
IS Manager | | matrx, scamner, . | - minoriibrary 5 iminor library ‘iminot iieary - “minor brary - sample HUA
home dir cprint o, oﬂersf math routings } nputscanning corint, rpteermor” O3] ; data tables

-

Figure B-2 . Directory Structure.

62

CDF(3)

NAME

CDF(3)

odf_strtok() odf_scan_fields()

Read ASCII data in comma-delimited fields.

SYNOPSIS

#Hinclude "edfh"

char *cdf_strtok(char *str int *flag, int literal);
int cdf_scan_fields(char *fields[], int num_fields, char*buffer,int *cdfflag);

DESCRIPTION

BUGS

cdf_strtok() is similar to strtok() but specialized for comma-delimited fields. cdf _strtok() reads aud

returns pointers to the comma separated field(s) within the argument strings#r. The returned string will be
the characters found between field separators (the comma). [Note: If the field between commasis empty,

(eg. "»" then an empty string will be returned). On subsequent calls if st is set to NULL, edf_strtok(will

return subsequent commardelimited fields from within the original string until no more fields are found (at

which point a NULL is then returned). The integer pointed to by S is set to -1 if the field ended before a
comma or newline was found (this can only occur in the case of a quoted string field being read. That is
when (") is the first character in a field, (at which point edf_strtok(Q expects a quoted string field). When a
quoted string is read the whole field content is return (including the enclosing quotex(")). Within a string
field the quote character (") itself may be quoted by placing the literal character directly in front of the

quote character. The literal character is defined by passing it to edf_strtok() via the literal argument.

Some databases may use the quote " character asthe literal (e.g. ‘ Thisisastring with ““embedded

quotes’). Also the literal character is often the backdlash ' (e.g. ‘Thisis a string with /“embedded

quotes\"").

cdf_scan fieldsQ scans the comma separated fields found in the string buffer pointed to by buffer. The
number of fields expected is specified by num_fields. cdf scan fields() will attempt to read this number of
fields and will return the memory allocated (via malloc()) s& g duplicates of these fields in the string
pointer array pointed to by fields. cdf_scan_fieldsQ returns 0 on an error. If a quoted comma separated
field ends prematurely, then -1 is returned in cdfflag. If there was no error, then the number of fields read is
returned and the (malloc’ d) string contents of those fields are returnedin fields[]. 1t is the caller’s responsi-
hility to free this alocated memory (by calling free(3)).

The quote character is fixed (as ") (this might be made user selectable).

SEE ALSO

strtok(3) free(3) malloc(3)

AUTHOR

Geoff Sauerbom <geoffs@arl.mil>1996, 1997, 1998.

$Revision: 0.7 $ Jan 1998 1

CPRINT(3) CPRINT(3)

NAME
cprint_control, cprint, cprint_fflush, cflush

1pt_perror, rpt_error_getErmo, rpt_error_getMsg, _pt_error_getLastAddedMsg,

SYNOPSIS
#include "eprint.h"

int cprint control(int channel, int onoff, FILE*dest);
int cprint(int channel, char *fmt, . ..).

int cprint_fflush(int channel);

int cflush(int channd);

void _rpt_error(int re_msg num, char *addedmsg);
void rpt_perror(char *moreinfo);

int rpt_error_getErrno(void);

char* rpt_error_getMsg(void);

char *_rpt_error_getLastAddedMsg();

DESCRIPTION
This library provides some error handling routines and a means for printing to and redirecting channeled
text messages.

The cprint routines are used to print to a channel. Three channels are predefine& CH_ERR, CH_WARN,
and CH STAT. These ate intended for printing error, warning, and status messages respectively. By
default these channels start as"stdert"', however, applications can turn on/off or redirect any of these chan-
nels by calling eprint_control(). Channels are written to via cprint(.

The error message functions are meant to assist library writersin tracking errors in lower level functions.
When an error occurs in a lower level library _rpt_error() is called. The higher level library has the option

of ignoring the message or using it (via rpt_perror()). Thisis similar to the way perror(3) works. The

advantage to rpt_error() is that you may add your own system error codes and messages. Additionally there
is provision for calling error handling functions. These changes are made by editing the static structure of
error signals and messages. This structure is an array calledre_msg_messages[] found in cprint.c

Library function details:
Vi
: cprint_control();

*

: int cprin_control(intmsg_type, int on-off, FILE* destination);

* an interface to allow applications to control lower LIBRARY

: msy level & destination.

i msg_type is one of: CH_ERR

* CH_WARN

* CH_STAT

* on_off isone of: O (turns off reporting all msgs of msg_type)

: 1 (turns on reporting message of msg_type)
: destination if not NULL, will redirect

and write all messages of typemsg_type to

$Revision: 0.4 § Feb 1998 1

CPRINT(3) CPRINT(3)

* the file pointed to by destination.
*

¥ returns 1 on success 0 on failure,

*

*/
/*

~ cprint_fflush() and cflush()

* int cflush(msg_channel)
* int cprint_fflush(msg_channel)

* channd is one of

* CH_ERR

' CH_WARN
: CH_STAT

mimics return value of fflush(FILE *)
* On successful completion these functions return a value of
* zero. Otherwise EOF is returned. For fflush(NULL), an
: error is returned if any files encounter an error.
* cprint,_fflush() and are synonyms for themselves cflush(
*/
/*
'; cprint()
* int cprint(msg_channel, fmt, args....)
prints a message on a PRG Error channel.
defined default channels("msg_channel") are:
CH_ERR

CH_WARN
CH_STAT

fmt is standard formatted print format (see printf())
args are optional variable arguments for formatted print.

Return value:
mimics vprintf (returns #of characters transmitted or - 1 on err).

On successful completion these functions return a value of
zero. Otherwise EOF is returned. For fflush(NULL), an
error is returned if any files encounter an error.

se d:
cfiush(), cprint_control()

¥ X K X K X X X X X X R ¥ X ¥ ¥ X ¥ X ¥ ¥

$Revision: 0.4 $ Feb 1998 2

CPRINT(3) CPRINT(3)

*/

[*== == m==== =*/
/* error handler (for known errors) */
/*= == === ==*/
/*

~ _rpt_error()

*
: void _rpt_error(int re_msg_num, char * addedmsg)

report a known message number to error system for processing.
re_msg_num is the numeric id of the error.
addedmsg is an additional string of text to be printed
along with the system default message.

The system default message, (and addedmsg), are only
printed when rpt_perror() is called.

. 3

if addedmsgy == NULL, then just the system default
message is printed (only after rpt_perror() is called).

An internal PRG system error handling function is called
for each known error (re_msg_num).

L T I)

X

/ *
~ 1pt_perror()
*

: void rpt_perror(char *s)

* print to stderr the last reported error
(which was generated by a_rpt_error() call.

*/

1*

:rpt_error _getErmo()

: int rpt_error_getErmo(void);

returns the integer value of the last error generated.
The integer returned is not the same as the values defined
in the unix intro(2),
This vaue should never be compare to a number (e.g. "3")

Rather, compare the value with the enumerations defined
inpt_errh

*
x*
*
*
*
*
*
*

$Revision: 0.4 $ Feb 1998 3

CPRINT(3) CPRINT(3)
* See cprint.c for alist of errors numbers and messages.
%
e.g. if (rpt_error_getErro() == RE_EISCONN)
* printf("socket in use");
*
*/
/*
~ rpt_error_getMsg()
*
char rpt_error_getMsg()
®
* Return a text message associated with the last error generated.
* The last error was generated via the last call to _rpt_error().
*
*/
/%
;_rpt_error -_getlLastAddedMsg()
: char *_rpt_error_getl astAddedMsg(void);
* Get the last “added message” that was
* added to the standard error message
* via the _rpt_error(int error-no, static char *an_added msg)
%
* RETURNS
* apointer to the"an_added_msg" string.
* NULL if no message was ever added on the last call to _rpt_error().
::
*/
Defined error messages (for use in _rpt_error()):
RE_EPERM No permission match
RE_ENOENT No such file or directory
RE_ESRCH No such process
RE_EINTR Interrupted system call
RE_EIO VO error
RE_ENXIO No such device or address
RE_E2BIG Arg ligt too long
RE_ENOEXEC Exec format error
RE_EBADF Bad file number
RE_ECHILD No child processes
RE_EAGAIN Resource temporarily unavailable

RE_EWOULDBLOCK
RE_ENOMEM
RE_EACCES

$Revision: 0.4 $

Operation would block
Not enough space
Permission denied

Feb 1998 4

CPRINT(3)

RE_EFAULT
RE_ENOTBLK
RE_EBUSY
RE_EEXIST
RE_EXDEV
RE_ENODEV
RE_ENOTDIR
RE_EISDIR
RE_EINVAL
RE_ENFILE
RE_EMFILE
RE_ENOTTY
RE_ETXTBSY
RE_EFBIG
RE_ENOSPC
RE_ESPIPE
RE_EROCFS
RE_EMLINK
RE_EPIPE
RE_EDOM
RE_ERANGE
RE_ENOMSG
RE_EIDRM

RE_EDEADLK
RI_ENOLCK

RE_ENOSTR
RE_ENODATA
RE_ETIME
RE_ENOSR
RI_ENOPKG
RE_EPROTO

RE_EBADMSG

RE_ENAMETOOLONG
RE_EOVERFLOW

RE_ELIBACC
RE_ELIBBAD
RE_ELIBSCN
RE_ELIBMAX
RE_ELIBEXEC

RI_ENOSYS
RE_ELOOP
RE_ERESTART
RE_ESTRPIPE

RE_ENOTEMPTY

RE_ENOTSOCK

$Revision: 0.4 $

CPRINT(3)

Bad address

Block device required

Device or resource busy

File exists

Cross-device link

No such device

Not a directory

Is a directory

Invalid argument

Too many open files in system
Too many open filesin a process
Inappropriate I0CTL operation
Text file busy

File too large

No space left on device

lllegal seek

Read-only file system

Too many links

Broken pipe

Argument out of range

Result too large

No message of desired type
|dentifier removed

Deadlock situation detected/avoided
No record locks available

Not a stream device

No dam available

Timer expired

Out of stream resources

Package not installed
Protocol error

Not a data message
File name too long
Value too large for defined dam type

Can not access a needed shared library

Accessing a corrupted shared library

lib section in a.out corrupted

Attempting to link in more shared libraries than system
Cannot exec a shared library directly

Operation not applicable

Too many symboalic links in path name traversa
Restartable system call

If pipe/FIFO, don't deep in stream head
Directory not empty

Socket operation on non-socket

Feb 1998 5

CPRINT(3)

RE_EDESTADDRREQ
RE_EMSGSIZE
RE_EPROTOTY PE
RE_ENOPROTOOPT
RE_EPROTONOSUPPORT
RE_ESOCK TNOSUPPORT
RE_EOPNOTSUPP
RE_EPFNOSUPPORT
RE_EAFNOSUPPORT
RE_EADDRINUSE
RE_EADDRNOTAVAIL
RE_ENETDOWN
RE_ENETUNREACH
RE_ENETRESET
RE_ECONNABORTED
RE_ECONNRESET
RE_ENOBUFS
RE_EISCONN
RE_ENOTCONN

RE_ESHUTDOWN
RE_ETOOMANYREFS
RE_ETIMEDOUT
RE_ECONNREFUSED
RE_EHOSTDOWN
RE_EHOSTUNREACH
RE_EALREADY
RE_EINPROGRESS
RE_ESTALE
RE_ECANCELLED
RE_EDQUOT
RE_ENFSREMOTE

CPRINT(3)

Destination address required
Message too long

Protocol wrong type for socket
Option not supported by protocol
Protocol not supported

Socket type not supported

Operation not supported on socket
Protocol family not supported
Address family not supported by protocol family
Address aready in use

Can't assign requested address
Network is down

Network is unreachable

Network dropped connection on reset
Software caused connection abort
Connection reset by peer

No buffer space available

Socket is already connected

Socket is not connected

Can't send after socket shutdown
Too many references. can't splice
Connection timed out
Connection refused

Host is down

No route to host

Operation aready in progress
Operation now in progress

Stale NFS file handle

Cancelled

Disc quota exceeded

Too many levels of remote in path

the following are examples of application
system specific errors which have been added
to the library. You may renwve these and add
your own.

RE_DBERR
RE_DBFLDERR
RE_DBBADKEY
RE_TGT_UKNOWN
RE_THREAT_UKNOWN

RE_DET_EVENT_UKNOWN

RE_NO_META_REC
RE_VLSOURCE_INTERP
RE_NO_ENVIRON_DATA

RE_NOSHM

$Revision: 0.4 $

General Master Data Base Error
Invalid field in database element
Invalid or dangling key pointer

Invalid or undefined target entity
Invalid or undefined threat entity type
Invaid or undefined detonation event
V/L Datameta record not found.

Error interpreting V/L source data.
Could not find or set V/L environment
(initial) parameters for this case.
Shared memory not attached.

An attempt was made to access or set
shared memory which has not been attached
to the current process.

Feb 1998 6

CPRINT(3) CPRINT(3)

BUGS
Redlly this should be separated into two libraries (cprint and rpt_error).

SEE ALSO
printf(3), perror(3), errno(3), strsignal(3)

Author
Geoff Sauerbom <geoffs@arl.mil>, US Army Research Lab. 1996, 1997, 1998.

$Revision: 0.4 $ Feb 11998 7

DB(3) DB(@3)

NAVE
A Data Management API layer.

SYNOPSIS
db_init, db_MetaTable_query, db_MetaTable_retrieve, db_tbl_retrieve, db_tbl_reader func,
db_tbl_result_func, db_tbl_fmt_type, db_tbl_fmt_result_type

DESCRIPTION
DB (which should really have a name change to DM) is an Application Programming Interface (API) to
the data management layer of the Distributed Interactive Simulation (DIS) Lethality server.

The Data Manager (db) keeps track of vulnerability tables, and DIS entity IDs. It is mostly data driven in
that you specify which entities are associated with which tables. This is done in the in the DAM-
AGE_SOURCE META DATA FILE record of the initialization file (see vls_db_init(5)). The file
names for the DAMAGE_SOURCE_META_DATA_FILE, DIS ENTITIES FILE, and DIS_AUXIL-
JARY_ENTITIES_FILE are found in the data manager initialization file. The file name of the data man-

ager initialization file is passed to db_init(). db_initQ assumes that the filename passed is relative to the
current working directory, or if the environmental variable VLS_HOME is set, relative to the
$VLS_HOME/Data/Init/ directory. Once db_init(is called (and does not return an error), other Data
Manager API calls may be made.

Internaly the data manager maintains correlations between p/k tables and their associated entities via meta
data records. These records are structures which contain DIS enumerations for the target and threat as well
as identifiers for the Vulnerahility/Lethality methodology to be used, the location of the lethality data, and
an identifier specifying what the format is for that data. This meta data record contains the following fields:

TargetiD

ThreatlD

VL method used (defines how to interpret data results)
Table format (how to parse the data to find results)
Table location (how/where to get data)

The Table format field serves a second purpose. It isalso used to determine what type of data is returned by
the data reader function for that particular table format. (Currently only MFK probabilities are returned by
any data reader function known to the data manager (see the VL(3) api vi_mfk_ArIDIS_ProbAll_NoNet()
for further explanation of the MFK data). Any type of data may be returned by a reader-function (not just
MFK data), The apidb_tbl_fmt_result_type(is used to determine the type of data that is returned).

After calling db_init(), meta data for all targets/threats will have been read. However, none of the actual
data sources (Tables) will have been loaded into memory. To read a source data (tabl€) into memory, first
identify the meta data record associated with the entity and target of interest. This is done via the
db_MetaTable_query(Q API

unsigned int* db_MetaTable query(MetaTable_t *qrec, int*nfound);

db_MetaTable_query() returnsindex key(s) which can be used to access the meta record(s) queried from
the metadata database. The passed argument (grec) points to a meta record in the form of a query. In this
passed query record, the target, threat, analysis method, and table format to be sought are entered. NULL
fields will match all records in a category. For example:

TargetID
ThreatID

T72
M829

$Revision: 0.6 $ March 1998 1

DB(3)

DB(3)

vL nmet hod used = Munition
Tabl e format = IUA_KE

Note that the above examples are illustrative only of the type (meaning of) data passed to db_MetaTl-
able-query{). For example the ThreatID is actually set to a record of seven (7) integers (the DIS enu-

meration} and not the itteral text M829. See db_MetaTable_query(for information on the actual
data structure formats which are passed and returned. db_MetaTable_queryQ returns akey(s). Using a
key obtained in this manner, the table's meta record can be retrieved from the data manager’s internal

database via db_MetaTable_retrieve(.

MetaTable_t *db_MetaTable_retrieve(unsigned int key);

Since the meta record returned by db_MetaTable_retrieve() contains the actual location of the lethality
data (in URL format), db_tbl_retrieve() cant hen be used to retrieve a pointer to the actual source data of
that table (and load its data structure in memory).

void *db_tbl_retrieve(MetaTable_t *mrec)

If this table has never been read into memory, the table will be loaded into memory (and remain there) at
this time. Subsequent. calls to db_thl_rettieve() will not re-load the table into memory, rather they will just
return a pointer to the data structure of the (already loaded) table. There is currently no facility (API) to
unload tables and free memory or force a re-read.

After a successful call to db tbl_retrieve(results from this table may be looked-up. However, first the
appropriate data look-up function must be obtained by calling db_tbl_result_func(). To actualy look up
the lethality results, the function pointer returned by db_tbl_result_func(is then used and passed a pointer
to the internal data structure of that lethality data. (That is, it is passed the value returned by
db_tbl_retrieve()).

An important point to note is that before caling the lookup function, al parameters which define the lethal-
ity event’s initial conditions must first be set. These parameters are global variables defined in the
$VLS_HOME/src/Db/viparam.h and are set in the _vlp APl (see viparam(3)). For instance
vip zero all paramsQ may be called set al these parameters to zero and should be called prior to setting
initial conditions. See vlparam(3)

Often this is referred to as the VLPARAM layer. The lethality result function (which was returned by
db_tbl_result_func()) will use these parameters to calculate (or look-up) the vulnerability effects.

To review, these are the steps needed to retrieve lethdity results:

1. Set the parameters which define lethality initial conditions (viathe VLPARAM layer).

2. Call db_MetaTable_query(to find out if there is data available which applies to the target and threat
ofinterest.

3. If s, then call db_MetaTable_retrieve() to retrieve ameta record for the data of interest.

4. Using the this meta record, call db_tbl_result_func(to get a pointer to a data retrieval function that
will lookup and return the lethality result (when it is called).

5. Using the same meta record, call db_tbl_retrieve() to get apointer to the lethality data (in memory).

6. Pass this |ethality data pointer as an argument to the data retrieval function that was obtained in step 4.

7. The data retrieval function will then return the appropriate lethality results.

The following code segment example is based on the undocumented test application
$VLS_HOME/src/Db/dbtest.c:

$Revision: 0.6 $ March 1998 g 2

DB(3) DB@3)

{ MetaTable_t nqguery, *nrec;
VL_Meth *method_struct;
float *f, *(*funcptr)(void *);
static dbEntityType _Mk_82 = {2, 9, 225, 2, 73, 1 }; /* 500 |b bonmb */
static dbEntityType _T80 = {1, 1, 222, 1, 1, 1, O, /* Russian tank*/

if (0 == db_init("vls_db_init.ini")) {
perror("could not open vls_db_init.ini");

exit(l);
]
/*
* Get meta record.
*/
myuery. t gt = &_T80;

mguery. threat = &_Mk_82;
mguery. vl _met h= "DIS HitToKill";
/* "DIS HitToKill"
* indicates that VL_PARAM SET METH DI'S Hit ToKill
* is the method ID.
*/
/*
* yI_PARAM_SET_METH_DIS_HitToKill
*
Identifies both the type of output and the type
of inputs (PDUs) required to do the | ook-up.
It also defines certain actions that nmay be taken.
For instance (in higher APl layers (the VL layer)) the
DI'S server will ignore the returned results if the
muni tion did NOT neke.a direct hit against the target.

[T

*

nmec = MetaTable get rec(nguery.tgt, mguery.threat, VL PARAM SET METH DI S Hi

if (nrec == NULL) {
puts("Error not such data record");

exit(O;
1
/*
* data retrieval function.
*/

funcptr = db_thl _result _func(nrec);

if ¢ funcptr != NULL)

*

use data retrieval function to | ookup results.
Pass a pointer to the | ook-up table.
The | ook-up table is already |oaded into menory.

*
*
*

*/
f = funcptr(db_tbl _retrieve(nrec)):
el se
f = NULL;
if (£t= NULL) { /* The reader function returned sone data...*/

int j;

$Revision: 0.6 § March 1998 3

DB(3)

DB(3)
VL_Result type_of _out put;
/*
*we now print what this data returns as its output.
*/
type_of _output = db_tbl _fnt_result_type(mrec->tblfmt);
if (type_of output == _PS MFK_LONER BOUND){
/* - Note: by examining the meta record describing this data's
* format "mrec->tblfmt" with db_tbl fnt result _type()
* (whi ch returned " __PS_MFK_LOWER_BOUND"),
* we now know that the data returned are an array of
* Kill probabilities (MF, M~ K and No Danmge).
*/
for (j=PS_MFK_M 3j<=PS_MFK_NODAMAGE; | ++) {
printf("sd: %O j,f[j]); /* show sonme data*/
3
}
} else {
puts("no results from table |ookup! -ERROR');
}
Synopsi s ofthe APl functions are now giveninthefol | owing order:
db_init()
db_MetaTable_query()
db_MetaTable_retrieve()
db_tbl_retrieve()
db_tbl_reader_func()
db_tbl_result_func(
db_tbl_fmt_type()
db_tbl_fmt_result_type()
/*
~ db_init()
*
* int db_init(char *db_init_filenane)
* General initialization for database |evel.
* Initialization file name (in string form is passed as an argunent.
* This file is opened and parsed. In the file various filenames wll
: be found identifying things |ike:
* all DS dbEntity ID's (DI'S_ENTI TI ES_FI LE)
* extra DI'S dbEntity ID's (DI'S_AUXI LI ARY_ENTI TI ES_FI LE)
*
* and where to find damage nechanism and data for different
: target/threat interactions: (DAMAGE_SOURCE_META DATA FI LE)
* These files are opened and read by there appropriate initialization
: function.
: Ret ur ns:
$Revision: 0.6 $ Mar ch1998 4

DB(3) DB(3)

* 1 if successful.

*

* 0 if an error occurs sonewhere (either in reading the

i db_init_filename filename itself or one of the

* other files to be read). e.g.:

. DI S_ENTI TI ES_FI LE,

* DI S_AUXI LI ARY_ENTI TI ES_FI LE, etc...
*

*/

int db_init(char *db_init_filenane);

~
*

db_MetaTable_query()
unsigned int *db_MetaTabl e_query(MetaTable_t *nrec, int *num el enents)

Try to find record(s) matching portions of the data record passed.
El ements are logically aNped together.

Wildcard is a NULL field. (all zeros in the case of the DIS entity
fields.

If the query is successful (data itens found), their database keys
are returned in an array. The length of the array is returned

by setting the int pointed to by num_elements to the nunber of

el ements (keys) in the array. These keys can be used with
mtbl_retrieve_data() to retrieve the record(s).

currently only the fields:

tgt - DS ID of tgt

threat; - DIS ID of threat

v1l_meth; - type of analysis identifier
tbl fnt; - format of |ookup table

are queried on. (all other fields are ignored).

RETURNS NULL is returned by the function if there were no natches
otherwise (if there were matches) the the function returns
a pointer to an array of keys. (A key is used to retrieve
the record - see db_MetaTable_retrieve()).
The nunber of elenents in recored is passed by setting num_elements.

NOTE: this array nust be free by calling functions.
NOTE: MTBL_QUERY MAX js an internally defined constant of the Maximm
nunber of elements that will be returned in the array...

W o o o ok o ¥ o o o % o o % o o * o o * o+ ¥ * * * % *& ¥ * * * * * *

*/
#def i ne MTBL_QUERY_MAX 100
unsigned int *db_MetaTabl e_query(MetaTable t *nrec, int *num_elements);

/*

$Revision: 0.6 $ March 1998 5

DB(@3) DB(3)

~ db_MetaTable_retrieve()

*

* MetaTable_t *db_MetaTabl e _retrieve(unsigned int key);

*

* db_MetaTable_retrieve() returns the meta record associated with
* a database index value "key".

*

* RETURNS

* pointer to the table meta record (MetaTable t *)

* NULL if no record found or an error occurred.

*/

MetaTable_t *db_MetaTable_retrieve(unsigned int key);

/*
~ db_tbl_result_func()

*

void * db_tbl _result_func(MetaTable t *nrec)

returns a pointer to the result function

whi ch knows how to interpret the set
VI_Parameters, |ookup the approprate results
in the | ookup table.

I I S S

The Table data is in the format specified
found in the thlfm field of the passed mata record
paramet er argument (mrec->tblfmt).

Returns: pointer to the table |ook-up (result) function.
NULL on error.

See also: db_tbl_reader_func()
db_tbl_fmt_type()

i S

*/
void * db_tbl_result_func(MetaTable_t *nrec):

/*
~ db_tbl_retrieve()

*

void *db_tbl _retrieve(MetaTable t *);

Retrieve a pointer to the data structure which holds

the source data of a table |oaded into memmory.

This pointer is passed to the table |ook-up function which
the function that knows how to parse this data structure.

RETURNS: pointer to a table |oaded into nemmory.
NULL if table is not |oaded into nemmry or other error.

See al so:
_db_tbl_load_source() - called only once. (not needed)

*
*
*
*
*
*
*
*
*
*
*
*
*

$Revision: 0.6 $ Mar ch1998 6

DB(3) DB(3)

*/
void *db_thl _retrieve(MetaTable_t *metr_ptr)

/ *
~ db_tbl_fmt_type()

TblFmt_Enum db_t bl _fnt _type(char *fntname)

returns a TblFmt_Enum that corresponds to the string "fmtname"
(positive integer) if the string represents
a recognized format.
_TBLFMI_ERROR (0)otherwi se (a failure).

I .

See also: db_tbl _fnm _returned_data_type()

* the ThlFmt_t structure (struct _TblFmt_t)

* the LookUp_Tbls[] and TblFmt2Result[] arrays.
*

*/

int db_tbl_fmt_type(char *fntname)

/*
N db_tbl _fm _result_type();

* VL_Result db_tbl fnt _result_type(char *fntnane)

*

RETURNS the data type returned by the table's reader function
whi ch reads the data source described by "fmtname".

a returned value of _PS MFK_LOMER BOUND neans "MFK" type.

PS_ERROR is returned if "fmtname" i s unrecognized
or another error occurs.

SEE ALSGC db_tbl_fmt_type()
db_tbl_result_func()

B T T S .

*/
VL_Result db_thl _fnt _result_type(char *fntname)

FI LES
$VLS_HOME/Data/Init/vls_db_init.ini
vis db_initini Btheinitialization file for the data manager. The environnental variable VLS HOME
mustbe setto t he root directory of the DIS Lethality server or if not, the initialization file is looked for rela-
tive to the current working di rectory of t heparent process.

SEE ALSO
Q her DIS Lethdity server conponent s:
vis_db_init(5) vI(3) viparam(3)

AUTHOR
Geoff Sauerbom <geoffs@arl.mil>, US Army Research Lab. 1997, 1998.

$Revision: 0.6 $ March 1998 7

DIS_MON(1) DIS_MON(1)

NAME

dis_mon

SYNOPSIS
dis_mon -d DIS_mgr_host -e exercise-ID -F [biglittle] -D Dport -v Vport -s

DESCRIPTION
Dis_mon (DIS Damage Monitor) is a part of the DIS Lethality server, but may also be used to monitor DIS

exercises for lethality effects in a stand aone mode.

When dis_mon runs in conjunction with the DIS Lethality server viserver, it serves as a ‘back end" for
viserver - doing the grunt work for the server. (e.g. looking-up lethality results).

Dis_mon usesthe ARL DIS Manager to connect to the DIS network, therefore theARL DIS Manager must
be installed and running first. (See dis_mgr(1)).

Dis_mon listens to DIS Protocol Data Units (PDUSs) paying attention to only certain PDUs that may have
an influence on the damage state of simulation entities. Currently the DIS Monitor only listens to Fire,
Denotation, and Entity State PDUs. The reason only thesePDUs are monitored is because the DIS |ethality
server only knows how to respond to queries relating to “munition” type damage. Other vulnerabil-
ity/lethality methodologies which might require other types of “trigger” events might require the monitoring
of other types of PDUs. For example, system damage caused by some means of electronic warfare may
require monitoring the Electromagnetic Emissions PDU.

When started the DIS Monitor will attempt to connect to the DIS lethality server viaa shared memory link.
Thisimplies that the DIS lethality server (viserver) must already be running on the same computer. Once
connected to vlserver the DIS Monitor may respond to queries made by the viserver on behaf of viserver's
clients.

Note, if for any reseason the viserver is stopped or restarted, the DIS monitor must also be restarted. This
is because the viserver creates a shared memory location for joint use during start up. When dis_mon is
started, viserver communicates to dis_mon the location of the shared memory resources. If dis_mon is
aready running when viserver is started, they will both be using different shared memory locations. Thus
if viserver is restarted, dis_mon must also be restarted. Of course, restarting dis_mon means that all
knowledge of lethaity events aready monitored will be lost up to the point of the restart.

Stand Alone Mode:

Dis_mon does not need to operate in conjunction with viserver. If run by itself, dis_men may be used to
monitor DIS entities and their lethality states. The following commands are accepted from the keyboard

r - provides a"rollup report” to the console.

g- may be used to quit and exit dis_meon.

Datain therollup report merely reflect what is being broadcast by the DIS simulations controlling the enti-
ties. A rollup report output will produce alist (one entity per ling) showing certain entity states as reported
from the ‘Entity Appearance Field” of the Entity State PDU. Its output will look similar to the following
example;

tracking 2 Entities in Exercise 37

Mon Mar 9 16:13:40 EST 1998

$Revision: 0.3 $ March 1998 1

DIS MON(1) DIS_MON(1)

--Bntity------------------ ---KILL--- ------ Damage------ =---- Smoke---- Times
Frc 1D Type Mobi | Firep Sl ght Modrt Dstryd Pl m Eng PlmEng Hit
1 1005 » FMC M113 Arnor 0 0 0 0 0 0 0 0
2 1006 " BRDM 2 Reconna 0 0 0 0 0 0 0 0
FRI ENDLY FCES
(Force 1D 1) (Force ID 2)
(bl ue) (red)
KKilled 0 0
MKilled 0 0
FKilled 0 0
MFKilled 0 0

The columnsseenrepresent the fol | owi ng information. Vaues denoted by "Bool:" are boolean values
(where avaue of 1 means ‘TRUE” and 0 means ‘FALSE"). Unless otherwise stated, these data are al
extracted from the Entity State PDU:

$Revision: 0.3 $ March 1998

r

Meaning

Entities Force ID. Thisinformation
comes from the Force ID Fidld of the
Entity State PDU. Valid Force IDs are:
0 = Other

1= Friendly

2 =Foe

3= Neutra

This is the Entity ID Field portion
of the PDU’s Entity Identifier Record.

This column reports the name of the

entity type. The entity type a numeric

vaue defined in the Entity Type Record

(of the Entity State PDU). The name seen

in this column is the text name associated
with that numeric entity type ID. The

text name comes from the V/L Data Manager
initialization file's "DIS_ENTITIES_FILE"
record. (See vis_db_init(5)).

Book Reports if entity is mobility killed.
Book Reports if entity is fire power killed.

Book Reports if entity is dightly damaged.

Bool: Reports if entity is moderately damaged.

Book Reports if entity is destroyed.

Bool: Smoke plume is rising from the entity
Book Entity is emitting engine smoke
Book Entity is emitting engine smoke

and smoke plume is rising from the entity

DIS MON(1)
Column
Entity
Frc
ID
Type
KILL
Mohil
FireP
Damage
Slight
Modrt
Dstryd
Smoke
Plm
Eng
PlmEng
Times
Hit

This field displays the number of times that
dis_mon saw the entity ‘hit" by a munition.
This is a derived number an does not appear
in the Entity State PDU.

trophic) (KKilled).

OPTIONS

running.

SRevision: 0.3 $

March 1998

DIS MON(1)

Following the entity appearance rollup report, a summary is provided for friendly and foe kills (Mobility
MKilled, Fire Power FKilled, Mobility and Fire Power MFKilled, and completely destroyed (or Catas-

Naturally, when run If run by itself, dis_men will not be able to provide damage state (look-up table)
results since it will not be receiving queries from the viserver.

-d DIS mgr_host The ARL DIS Manager is running on the computer whose IP address/name is
DIS mgr_host. By default dis_mon |ooks for the ARL DIS Manager to on to the same host on which it is

-e exercise_ID This tells dis_mon to monitor the DIS exercise whose exercise identification number is
exercise. By default dis_mon monitors exercise number 1.

DIS MON(1) DIS MON(1)

-F [big ! little] The -F options forces big (or little) endian conversion of the incoming binary DIS traffic.
Normally this option is unnecessary since dis_mon will auto-detect whether it is running on a big endian
(MIPS (SGI), RISC etc..) or little (Intel, DEC Alpha, etc) computer architecture. The byte order of DIS
traffic is supposed to be network byte ordered (big endian). However, if another DIS host is publishing
PDUs in the incorrect (little endian) format, then this option may be used to interpret the incorrectly broad-
cast data in @ meaningful way.

-D Dport Dport isthe port number used by the ARL DIS manager (which isrunning on DIS_megr_host
host computer. By default the ARL DIS manager uses port 4978.

«v Vport This option tells dis_mon to connect to the viserver on TCP/IP port number Vport. dis_mon
makes this connection in order to find out what shared memory identification is being used for viserver to
dis_mon communication. Thisis the same port the viserver uses to communicate with al its clients. By
default Vport is 4976.

-s The -s option runs the DIS Monitor in stand alone mode (not communicating with the viserver).

FILES
Jroleup.out provides Damage state (as reported by the DIS entities).
Jroleup.det Lists of Detonations events and the entities involved.
$VLS_HOME/Data/Init/vls_db_init.ini
vis_db_init.ini is the initialization file for the DIS Monitor. (Thisis the sameinitialization file needed by
the datamanager (db) API layer of the DIS Lethality server). The environmental variable VLS_HOME
must be set to the root directory of the DIS Lethality server.

SEE ALSO
Other DIS Lethaity server components:
dis_mgr(1), viserver(l), vls_db_init(5)

AUTHOR
Geoff Sauerbom <geoffs@arl.mil>, US Army Research Lab. 1997, 1998.

$Revision: 0.3 $ March 1998 4

DIS_MGR(1) DIS_MGR(1)

NAME
dis_mgr - run the ARL DIS Manager (server)

SYNOPSIS
dis_mgr [-v] [-B bridge-host] [-c num_clients] [-n network-interface] [-r recv -s send] [-MP port] [-BP
port] [-m][~g groupname] [-t time] [-SiteIDMask mask-file] [-H host-id] [-S site-id] [-V version] [-X exer-
cisg] [-x ONIOFF]{-F pdu_type}{-P1 -1 filename] [-ap] [-overl-overwritg] [-il-inl-incoming] [-ol-outloutgo-
ing] [-h] [-hn] [-a] [-b] [-ab] [-P]

DESCRIPTION
This application is part of a suite of utilities and libraries collectively called the DIS Manger. This particu-
lar program is also called the DIS manager (hut it is not to be confused with the collective suite).

This program monitors DIS (Distributed Interactive Simulation) Protocol Data Units (PDU) on a UDP
(User Datagram Protocol) network and transmits the data to clients applications listening on aTCP/IP net-
work connection. Client applications use local library calls (supplied as part of the ARL DIS Manager
suite) to receive these PDUs as an interna (C language) data structure representation of these PDUs. Pro-
viding PDUs this way in a native language data structure makes it easier for application programs to manip-
ulated and use the PDU data.

The DIS Manager server (dis_mgr or Dis_Mgr) has the following command line options:

-y verbose mode. Incoming UDP and outgoing TCPAP traffic and other information is reported.

<P print alist of al PDU types.

-B bridge-host where bridge-host isthe name of the machine running another instance of Dis_Mgr to be
bridged. Bridge mode uses the intemet tunneling wherein one may simulate a local (PIS UDP) network
connection across a long distance network (like the intemet). The dis_mgr is run on both computers (See
options -MP and

-BP).

-c num_clients where num_clients is the maximum number of clients thedis_mgr will support (the default
is 8).

-n network_interface - where network-interface is the name of the ethernet interface (e.g., 1e0, ecO, 100
{for loopback}). As a default, the Dis_Mgr will attempt to determine this (via the internal function call
get_ethemet_interface()). Use this option to bypass the defaullt.

Port information;

-r recv Whererecv is a port number for receiving PDUs (DIS traffic) on the UDP network (default is port

3000).
-s send Where send is a port number for sending PDUs on the UDP network (default is port 2099).

-MP port Where port is the port number for internal DIS_Mgr and Client TCP/IP communication. By

default this is port number 4978.
-BP port Where port is the port number for DIS_Mgr to remote site DIS_Mgr bridge (intemet tunneling)

connections.

Multicast information: If you wish to avoid the intemet tunneling method to facilitate long distance net-
working you may use multicast if your network supports multicast. A network administrator will have to
do additional configuring to prepare the multicast group.

-m Use multicast communication mode.
-g groupname Set the multicast group to groupname.
<t time time to live for multicast.

Specific to DIS:

$Revision: 3.6 $ 27 Jan 1998 1

.

DIS_MGR(1)

DIS MGR(1)

DIS site ID masking:

-SitelDMask mask-file Where mask-file is the name of a file with list of valid site IDs. The file
is expected to be a list of integers. the number of integers in this file is between 0 and
MAX_SITE_ID. Where MAX_SITE_ID is an internally defined integer (whose default value is
FD_SETSIZE, which is normally equal to the maximum number of open files supported by the
operating system). Use this option to list valid DIS application “sites’. The “site” is a number

placed in the DIS PDU header as part of the DIS standard.

DIS PDU header information:

As a service to client applications the DIS Manager pre-fills certain header fields in PDU the
header. Thisis done at the time that client applications request a new PDU. These fields are the
site, host, and exercise field. In aDIS exercise these field collectively identify the host computer
from which PDUs originated. The Dis_Mgr determines the values for these fields via environmen-
tal variables or the following command line switches.

-H host-id Specifies that host-id will be the DIS host ID number (the host field in the PDU
header). This overides the environmental variable DIS_HOST_ID and the default internal value
used by the DIS manager.

-S siteid Specifiesthe DIS site ID number (in the site field of the PDU header record). This
overides the environmental variable DIS_SITE_ID and the default internal value used by the DIS
manager (adefined constant SITE_ID_ABERDEEN).

-X exercise Specifies the DIS exercise ID (which will appear in the exercise field of the PDU
header record). This overides the environmental variable DIS_EXERCISE_ID and the default
internal value of 1 used by the DIS manager.

-V version Where version isone of 2, 3, or 4 (for DIS versions 2.0.2, 2.0.3, and 2.0.4 respec-
tively). This changes the default DIS protocol version number to be associated with out going
PDUs and overides the default which was set in the DIS Manager at compile time. Note: that the
interna structure of PDUs will not be changed to match a particular DIS protocol version. This
option merely changes the value placed in the “version” field of the PDU header. To change the
PDU format to conform to a different DIS version you must edit H/protocol_ver.h and define
either DIS2_0_2, DIS2_0_3, or DIS2_0_4. Following this, recompile the DIS Manager and all its
utilities. (See the recompilation script ${MGR }/compile.sh).

PDU filtering:

-x ON|OFF |If -x if followed by ON, then al PDUs which do not match the DIS_EXERCISE_ID
will be filtered out of the stream and not passed on to client applications. If-x OFF is used, then
any PDUs seen will be passed to clients (so long as the clients have requested that type of PDU).
Client applications have the option to request that all or only certain types of PDUs get sent to
them by the dis_mgr. This is done via the dis_register_pdu () API call.

LOGGING

The DZS Manager can create binary jiles containing a log of the PDU traffic. The following options apply
to DZS traffic logging:

$Revision: 3.6 $

-1 filename - tum logging on. Use filename to hold the record of PDUs.
-ap - appends logged PDUs to the log file.
-over|-overwrite - overwrites the log file.

27 Jan 1998 2

DIS_MGR(1)

SEE ALSO

DIS MGR(1)

-il-in|-incoming | ogs incoming PDUs only. (PDUs coming into the Dis_Mgr viathe DIS UDP
network).

-ol-out|-outgeing L ogs outgoing PDUs only. (These are PDUs sent by clients to the dis_mgr).

-h Prepends header to each logged PDU. (This is the default). The header information is needed
for the DIS Manager utility playback to work properly. (Playback is used to play back PDUs
from a recorded exercise).

-hn Logs PDUs with no header information.

-aLogsin ascii format.

-b Logsin binary format. (Thisisthe default).

-ab Logs in ascii-binary format,

“Digtributed Interactive Simulation (DIS) Network Manager",.Dec 1994, ARL-TR-780, Ken Smith.
Other DIS Manager utilities. playback(l), client(l), btoa(1)/btoab(1). Look in ${MGR }/doc for man
pages to these applications.

FILES

The collective DIS Manager isin afile system starting from its own “home” directory. This directory may
be located anywhere but, naturally, should be accessable by users who are building client applications. (In
order for them to link the manager’s object libraries with their application). In the list of files below we use
"${MGR }" to represent the DIS Manager’'s “home” directory . From thisroot, the subdirectories hold the

following files:

AUTHOR

${MGR}Y/stc/H - C header “include’ tiles.

${MGR }/src/MGR - source code for the dis,_megr.

${MGR }/src/CLIENT . source code for an example client application.

$ {MGR }/src/CLIENTX . source code for a Motif X client (unsupported).
$ {MGR }/src/PLAYBACK - source code for logged exercise playback utility.
$ {MGR }/src/UTIL - source code for other utilities (btoa, btoab).
${MGR }/stc/LIB . library source code (for clients and the dis_mgr).

${MGR }/lib - object code libraries.

${MGR }/bin - compiled executables.

${MGRYdoc - some documentation.

${MGR}/compile.sh - shell program to compile everything.

${MGR }/scrub.sh - shell program to remove compiled objects and executables, etc..

Original Author: Ken Smith, US Army Research Lab. 1994, 1995, 1996. with additional help from others:
Holly A. Ingham, <kollyo@arlmil> and Geoff Sauerborn <geoffs@arl.mil> Mark Thomas
<markt@arl.mil>. James Bowen made an early port to the PC and wrote the original PLAYBACK. Geoff
Sauerbom is the most recent maintainer of this software.

$Revision: 3.6 §

27 Jan 1998 3

MATRX(3) MATRX(3)

NAME

(Matrix Single precision floating point routines)

mat_mult, mat-pm, mat_fpm, mat_fread, mat_fwrite, mat-build-psi, mat-build-phi, mat_build_theta,
mat_build_ident, mat_build_rot3, mat-distance, mat_distance xy, = mat_build_DISEntity2World,
mat_build_DISWorld2Entity, mat_build_DISEntity2World3x3, mat_build_DISWorld2Entity3x3

(Matrix Double precision floating point routines)

mat_dmult, mat dpm, mat_fdpm, mat_dfread, mat_dfwrite, mat_dbuild_psi, mat_dbuild_phi,
mat_dbuild_theta, mat_dbuild_ident, mat_dbuild_rot3, mat_ddistance, mat_ddistance_xy, mat_dbuild_DIS-
Entity2World, mat_dbuild_DISWorld2Entity, mat_dbuild_DISEntity2World3x3, mat_dbuild_DIS-
World2Entity3x3, mat_calcDISPsiWrtXAxis

SYNOPSIS

#include "matrx.h"

void mat_mult(float *dest, float *ml , float *m2, int rowsL,int cold, int rows2);

void mat_pm(float *m,int rows,int cols); /* PRINT A MATRIX */

void mat_fpm(FILE *fp, float *m,int rows,int cols); # PRINT A MATRIX to file */

int mat_fread(FILE *fp, float *m,int rows,int cols); # READ A MATRIX from afile ¥/

void mat_fwrite(FILE *fp,float *m,int rows,int cols); # WRITE A MATRIX to file ¥/

void mat_build_psi(float*psimat, float psi); ¥ rotate clockwise about thez axis by psi radians */
void mat_build_phi(float *phimat, float phi); * rotate clockwise about the y axis by phi radians */
void mat-build theta(float *thetamat, float theta); rotate clockwise about the x axis by theta radians *
void mat_build_ident(float *ident, int n);/* make ident an NxN identity matrix */

float *mat_build_rot3(fleat *mat, double psi, double theta, double phi);

double mat_distance(float *pntl , float *pnt2); /* distancein 3 space*/

double mat_distance_xy(float *pntl , float *pnt2); /* ignore Z ¥/

fioat *mat_build_DISEntity2World(float *mat,double psi,double theta,double phi);
float *mat_build_DISWorld2Entity(float * mat,double psi,double theta,double phi);
float *mat_build_DISEntity2World3x3(float *mat,double psi,double the& double phi);
float *mat_build_DISWorld2Entity3x3(float *mat,double psi,double theta,double phi);

void mat_dmult(double *dest, double *ml , double *m2, int rowsL,int cold, int rows2);

void mat_dpm(double *m,int rows,int cols); # PRINT A MATRIX ¥

void mat_fdpm(FILE *fp, double *m,int roews,int cols); # PRINT A MATRIX to file ¥/

int mat_dfread(FILE *fp, double *m,int rows,int cols); # READ A MATRIX from a file ¥/

void mat_dfwrite(FILE *fp,double *m,int rows,int cols); # WRITE A MATRIX to amat */

void mat_dbuild_psi(double*psimat, double ps); /* rotate clockwise about the z axis by ps radians */
void mat_dbuild_phi(double *phimat, double phi); /* rotate clockwise about the y axis by phi radians */
void mat_dbuild theta(double *thetamat, double theta);/* rotate clockwise about the x axis by theta radians ¥
void mat_dbuild ident(double *ident, int n);* make ident an NxN identity matrix ¥/

double *mat_dbuild_rot3(double *mat, double psi, double theta, double phi);

double mat_ddistance(double *pntl , double *pnt2); /* ignore Z */

double mat_ddistance_xy(double *pntl , double *pnt2); /* ignore Z ¥/

double *mat_dbuild_DISEntity2World(double *mat,double psi,double theta,double phi);
double *mat_dbuild_DISWorld2Entity(double *mat,double psi,double theta,double phi);
double *mat_dbuild_DISEntity2World3x3(double *mat,double psi,double theta,double phi);
double *mat_dbuild_DISWorld2Entity3x3(double *mat,double psi,double theta,double phi);

$Revision: 0.10 § Jan 1998 1

MATRX(3) MATRX(3)

double mat_calcDISPsiWrtXAxis(double x, doubley); /*calc psi in Entity coord. sys*/

DESCRIPTION
This library provides some general matrix manipulation functions. It is small and simple.

All library functions treat matrices as a continuous block of memory (that isin asingle array). Matrix ele-
ments are stored ((R)*(NCOLS) + (C)) elements from the matrix base address. Where "NCOLS" are the
total number of columns in the matrix, R and C are matrix number of rows and columns of interest respec-
tively. (Note: with the exception of NCOLS, we start counting at 0. Therefore the very first row and first
column are indexed as the 0’th row and 0°th column.) For example, let M be the 3 row by 4 column matrix:

Then the following C language statments are true:

ML ((O)(4) + (0)) 1==1
ML ((1)*(4) +(2) 1==7
ML (()*(4) + (3)) 1==8
ML ((2)*(0) + (2))] ==9

The convenience macro MAT _INDX s provided for indexing matrix elements.
usage: MAT_INDX(row, col, NCOLS)

For example, using matrix M above the following C language statments are true:
M[MAT_INDX(0, 0, 4)]==

M[MAT_INDX(1, 2, 4)]=7

M[MAT_INDX(1, 3, 4)]==8

M[MAT_INDX(2,2,4)}=11

A second convenience macroMAT_MTRX s also provided.

usage: MAT_MTRX(matrix, row, col, NCOLS)

Using matrix M above and the MAT_MTRX macro the following C language statments are true:
MAT_MTRX(M, 0,0, 4)==1

MAT_MTRX(M, 1,2, 4==7

MAT_MTRX(M, 1,3, 4)—8
MAT_MTRX(M, 2,2, 4y==11

There are afew functions which are not generd at all but specificaly apply to the Distributed Interactive
Simulation standard (DIS). These are conversion routines used to trandate points to and from the DIS
world coordinate system and the DIS Entity coordinate system. (These are functions with the capitalized
letters "DIS" found in their name).

The DIS standard specifies that the following sequence of rotations occur to transform from the DIS World

$Revision: 0.10 $ Jan 1998 2

MATRX(3) MATRX(3)

to the DISEntity coordinate systems. First rotated about the Z axis (by psi radians). This produces atrans-
formed X and Y axis (called X' and Y’). The next rotation occurs about the transformed Y axis (Y') by
theta radians (producing anew X axisagain [X"]). The last rotation is by phi radians about the X” axis.
These three rotation angles (ps, theta, phi) are cdl the Euler angles. Positive angles of rotation about an
axis are clockwise about the axis (“clockwise” as viewed from axis origin out towards the positive path of
the axis). The functions mat_build_DISWorld2Entity() and mat_build_DISEntity2World(and their
double precision counterparts may be used to create matrices which may be used to accomplish these DIS
transformations. The transformation matrix produced would then be used to multiply a point (or set of
points) to trandate that point(s) to the other DIS coordinate system.

For ingtance, the following code segment will use the Euler angles psi, theta, phi to build the transformation
matrix (XMat). This matrix wil then be used to transform the matrix MEntity (which contains 2 pointsin
the first two rows) to the DIS world coordinate system:

#include <math.h>

#include “matrx. h"

double XMat[16]; /* will hold transformation matrix a 4x4 */
static double psi=M PI , theta=M Pl , phi=MPI :/* maded-up angles */
double MENntity ={ O, O, 0,1 /*1stpt. (0,0,0) */
1., 2.,3., 1. /* 2nd pt (1,2,3) */
¥

double Mwor1d[8];/* will hold the transformed points */
if (NULL !'= mat_dbuild_DISEntity2World(Xmat, psi, theta, phi)) I

mat_dmult(MWorld, MEntity, Xmat, 2, 4, 4);
/*
: Mworld now hol ds the transforned points
*/

1;

The reason for the fourth matrix column is because these functions transform homogeneous coordinates

whose usefulness is not covered here but is found el sewhere [ROGERS]. Therefore matrices used in these

functionsmust have a 4th column (even if not used) as a place holder. Any number will suffice as aplace
holder, but the use of the number one (1) is preferred. There are alternate functions mat_build_DISEn-

tity2World3x3(0, mat_build_DISWorld2Entity3x30 and their double precision counter parts

mat_dbuild_DISEntity2World3x3(0 and mat_dbuild_DISWorld2Entity3x30. These functions do not

use the heterogeneous fourth dimension. Therefore only a3 dimensional point (matrix with exactlythree

(3) columns) will be returned by these functions.

Note that rotation matrices produced by mat_build_psiQ, mat_build_theta(), and mat_build_phiQ and

their double precision counterpart functions apply to asingle rotation about the ordinal (untransformed)

coordinate axis. This differs from the DIS standard method for translating between the DIS Entity (some-
times called the “missile coordinate system”) and the DIS World coordinate systems (sometimes called the
“earth centered earth fixed, or the geocentric Cartesian coordinate system”).

One important final note before introducing the functions. The function mat_build_rot() and its double
precision counter part mat dbuild_rot() have nothing to do with the DIS coordinate rotations. These func-
tions build a rotational matrix based on the assumption that the ordinal axis (the (original X, Y, and Z axis)

remain fixed and are never transformed (into X', Y’, Z', and X", Y" Z”). (See the IEEE standard 1278.1).
Therefore never use these functions in combination to build a DI'S world to entity coordinate transformation

$Revision: 0.10 $ Jan 1998 3

MATRX(3) MATRX(3)

matrix. Use the DIS specific functions instead (the ones with DIS in their function name).

Further details on library functions:

/ %
: mat_dmult()

* void mat_dmult(double *dest,double *ml ,double *m2,int rowsl ,int cold ,int rows2)
*
" Matrix mutiply [dest] = [m1]{m2]
*
*

Multiply matrix "m1" by "m2" and store the results in "dest".
' ml is a rowsl, by colsl matrix
* m2 is a rows2, by colsl matrix
' dest is a rowsl, by colsl matrix

*

* for example: dest ml m2

* 1230 =112 3 0] [1 00 0l
) * 1010 0]
* |0 01 0]
* [0 00 1]
¥ dest is 1 row by 4 columns

* ml is 1 row by 4 columns

m2 is 4 rows by 4 columns

*
: In this case the proper call to mat_dmult is:

' mat_dmult(dest, ml, m2, 1,4,4);

*

*/

/ %
; mat_fdpm()

* void mat_fdpm(FILE *fp, double *m,int rows,int cols)
E3
* Print a double precision matrix to the file pointed by
* thefile pointer fp. misamatrix with"rows" rows
* and"cols" columns.
* The purpose is to present the matrix in a fairly human
* readable format.
%
* BUGS:

Thisis Just for a‘popular range’ of numbers.

(It assumes 6 decimal places an no more than 19 digits).

*
£
*
* SFE ALSO:
* mat_fdwrite()
*

*/

$Revision: 0.10 $ Jan 1998 4

MATRX(3) MATRX(3)

/ *
~ mat_dpm()
%

i void mat_dpm(double *m,int rows,int cols)

* Print a double precision matrix to the standard output

¥ thefile pointer fp. m is a matrix with “rows’ rows
and "cols" columns.

The purpose is to present the matrix in a fairly human

readable format.

BUGS:
Thisisjust for a‘popular range’ of numbers.
(It assumes 6 decimal places an no more than 19 digits).

S S

* SEE AL SO:
: mat_fdpm(), mat_fdwrite()

*/

/%
i mat_dfwrite()

* void mat_dfwrite(FILE *fp,double *m,int rowsint cols)
*

* Write a matrix to a file showing more precision

* but in a less human readable format. The purpose

* is for storing matrix contents (which can then be read
¥ back (by mat_dfread()).

BUGS

Limited to about 21 digits of precision, but you can
aways change the source code if you have say a 64 bit
architecture (with 128 bit double precision floating point
numbers).

format to scientific notation numbers
Disadvantage: Therefore this may cause common digital to
real numbers conversion ambiguities.
Advantage: However this alows portability of your data

*
*
®
®
*
*
* Numbers are converted from their native binary
®
%
*
*
* between systems.

X

* SEE ALSO:
* mat_dfread(), mat_fdpm()

*/
/ %
; mat_dfread()

* int mat_dfread(FILE *fp, double *m,int rows,int cols)
*

$Revision: 0.10 $ Jan 1998 5

MATRX(3)

$Revision: 0.10 $

MATRX(3)

* Read a matrix from file, storing it interndly in the
: (matrix) double precision array "m".

: Stored matrix values are ASCIl numbers.

* Once a matrix reading is started (from the

* file), only the matrix elements are expected (i.e. NO
* comments are alowed in the file (unless they proceed
: or come before the matrix).

* SEE ALSO:
* mat_dfwrite()
*/

/*
* mat_dbuild_psi()

* void mat_dbuild_psi(double* psimat,double psi)

psimat - the 4x4 matrix
psi - the rotation angle psi (about the Z axis in radians)

Build a Psi rotation matrix of doubles. (Psi, rotation about the Z
axisin radians) and return it in psimat.

RETURNS
The transformation matrx is returned in the passed array psimat.
Note that a 4x4 matrix is returned therefore
"psimat" must be an array of at least 16 doubles.
Furthermore if psimat is then used in a multiplication,’
“4" columns must be specified as an argument to mat_dmult().

¥ % K X K X ¥ X o X X R X ¥

*
~

/¥
; mat_dbuild_theta()

void mat_douild_theta(double* thetamat,double theta)

thetamat - the 4x4 matrix
theta - the rotation angle theta (about the Y axis in radians)

Build a theta rotation matrix of doubles. (theta, rotation about the Y
axisin radians) and return it in thetamat.

The transformation matrx is returned in the passed array thetamat.
Note that a 4x4 matrix is returned therefore

"thetamat" must be an array of a least 16 doubles.

Furthermore if thetamat is then used in a multiplication,

*

*

*

*

*

*

*

E3

* RETURNS
*

*

*

£

%

* “4" columns must be specified as an argument to mat_dmult().
*

Jan 1998 6

MATRX(3) MATRX(3)
%/

/ %
; mat_dbuild_phi()

* void mat_dbuild_phi(double* phimat,double phi)

phimat - the 4x4 matrix
phi - the rotation angle phi (about the X axis in radians)

Build a phi rotation matrix of doubles. (phi, rotation about the X
axis in radians) and return it in phimat.

RETURNS
The transformation matrx is returned in the passed array phimat.
Note that a 4x4 matrix is returned therefore
"phimat" must be an array of at least 16 doubles.
Furthermore if phimat is then used in a multiplication,
"4" columns must be specified as an argument to mat_dmult().

¥ X X X X X K X KX X X X X ¥

*
-~

/ E 3
~ mat_dbuild_ident()
E3

: void mat_dbuild ident(double *ident, int N)

¥ Make ident an NxN identity matrix

: For example if N equals 3 then
100

0 10

001

*

* will be returned in "“ident". Naturally
¥ ident must be an array with at least N*N doubles.
E3

¥ RETURNS

: An NxN identity matrix in"jdent"
*/

Vi

~ mat_ddistance xy()
double mat_ddistance xy(double *pntl , double *pnt2)

pntl and pnt2 are arrays containing the X and Y coordinates
for each of the points in question. mat_ddistance xy() returns
the distance (root sum square) between these points.

(Z if present is ignored)

* X X X ¥ ¥ *

$Revision: 0.10 $ Jan 1998 7

MATRX(3)

[*

* % % X R

*/

/%

RETURNS

The distance between two points in the XY plane.

i mat_ddistance()

: double mat_ddistance(double *pntl , double *pnt2)

*
*
*
*

pntl and pnt2 are arrays containing the X, Y, and Z coordinates
for each of the pointsin question. mat_ddistance() returns
the distance (root sum square) between these points.

: RETURNS

*/

/*

The distance between two points in 3 space.

; mat_dbuild_rot3()

: double *mat_dbuild_rot3(double *mat, double psi, double theta, double phi)

* % % ok sk ok Sk ok k% ¥ X * X % ¥ ¥

E

2%

Build the 3 angle rotation matrix (rotating

psi about the Z axis,

theta about the Y' axis

phi about the X axis)
the rotation matrix is returned in the 4x4 matrix argument
"mat" (which is a double precision floating point

array of at least 16 elements).

NOTE: The ordind axis are not themselves transformed
between rotations. Therefore this function may
NOT be used to create transformation matrices for
DIS Euler angles.

RETURNS
mat or NULL if an error.

SEE ALSO:

mat_dbuild_DISWorld2Entity(), mat_dbuild_DISEntity2World()

J*

1*

$Revision: 0.10 $

float functions---—------===mreeee- */

float functions---------=-==smmm-= */

float functions---------e-sesnzuans %/
Jan 1998

MATRX(3)

MATRX(3) MATRX(3)

%
'; mat_mult()

: void mat_mult(float *dest,float * ml float *m2,int rows1,int coldl,int rows2)
: Matrix multiply ~ [dest] = [m1][m2]

: Multiply matrix “ml " by "m2" and store the results in "dest".

¥ ml is a rowsl, by colsl matrix

¥ m2 isarows2, by colsl matrix

¥ dest is a rowsd, by col sl matrix

*

* for example : dest m n

* (12 301 = J1230] 100 Ol
* * 10 10 0}
* {0 0 1 0l
* 100 0 1]
¥ dest is 1 row by 4 columns

i m is 1 row by 4 columns

*

m2 is 4 rows by 4 columns

*

: In this case the proper call tomat_mult is:

*

mat_mult(dest, ml, m2, 1,4,4);
*/

/ %
~ mat_fpm()

* void mat_fpm(FILE *fp, float *m,int rows,int cols)
*

* Print a single precision matrix to the file pointed by
the file pointer fp. m is a matrix with ‘Tows’ rows
and "cols" columns.

* The purpose is to present the matrix in a fairly human
’: readable format.

* %

BUGS
Thisis Just for a‘popular range’ of numbers.
(It assumes 6 decimal places an no more than 19 digits).

* % % F

* SEE ALSO:
mat_fwrite()

* *

*/

/*
~ mat_pm()
%

$Revision: 0.10 $ Jan 1998 9

MATRX(3) MATRX(3)

* void mat_pm(float *m,int rows,int cols)

%

* Print a single precision matrix to the standard output
the file pointer fp. misamatrix with"rows" rows
and "'cols" columns.

The purpose is to present the matrix in a fairly human

readable format.

BUGS:
Thisisjust for a ‘popular range’ of numbers.
(It assumes 6 decimal places an no more than 19 digits).

SEE ALSO:
mat_fpm(), mat_fwrite()

¥ X X X X X ¥ X X ¥ X ¥

*
-~

/¥
. mat_fwrite()

* void mat_fwrite(FILE *fp,float *m,int rows,int cols)
*

* Write a matrix to a file showing more precision

* but in aless human readable format. The purpose

* is for storing matrix contents (which can then be read
* back (by mat_fread()).

3

* BUGS

* Limited to about 21 digits of precision, but you can

* always change the source code if you have, say, a 64 bit
architecture (with 64 hit single precision floating point
numbers).

%
E
*
* Numbers are converted from their native binary

* format to scientific notation numbers

* Disadvantage: Therefore this may cause common digital to
* real numbers conversion ambiguities.

* Advantage: However this alows portability of your data
* between systems.

%

*

SEE ALSO:

* mat_fread(), mat_fpm()
*/

/%
. mat_fread()
* int mat_fread(FILE *fp, float *m,int rows,int cols)

* Read a matrix from file, storing it internaly in the
: (matrix) single precisionarray "m".

$Revision: 0.10 $ Jan 1998 10

MATRX(3)

$Revision: 0.10 $

MATRX(3)

* Stored matrix values are ASCI numbers.

*

* Once a matrix reading is started (from the

* file), only the matrix elements are expected (i.e. NO

* comments are alowed in the file (unless they proceed
* or come before the matrix).

* SEE ALSO:

* mat_fwrite()
*/

/*
* mat_build_psi()

* void mat_build_psi(float* psimat,float psi)

¥ psimat - the 4x4 matrix
psi - therotation angle psi (about the Z axis in radians)

* Build a Psi rotation matrix of floats. (psi, rotation about the Z
*axis in radians) and return it in psimat.

* RETURNS
¥ The transformation matrx is returned in the passed array psimat.
¥ Note that a 4x4 matrix is returned therefore
" “psimat” must be an array of at least 16 floats.
¥ Furthermore if psimat is then used in a multiplication,
“4" columns must be specified as an argument to mat_dmult().

*/

/ %
~ mat_build_theta()
%

* void mat_build_theta(float* thetamat, float theta)
*

* thetamat . the 4x4 matrix

* theta - therotation angle theta (about the Y axis in radians)

*

* Build a theta rotation matrix of floats. (theta, rotation about the Y
* axisin radians) and return it in thetamat.

*

* RETURNS

%

* The transformation matrx is returned in the passed array thetamat.
* Note that a 4x4 matrix is returned therefore

* "thetamat" must be an array of at least 16 floats.

* Furthermore if thetamat is then used in a multiplication,

* 4" columns must be specified as an argument to mat_dmult().
%

*/

Jan 1998 1

MATRX(3)

$Revision: 0.10 $

/*
’*‘ mat_build_phi()

: void mat_build_phi(float* phimat,float phi)

phimat - the 4x4 matrix
phi - the rotation angle phi (about the X axis in radians)

>*

Build a phi rotation matrix of floats. (phi, rotation about the X
: axisin radians) and return it in phimat.

* RETURNS

¥ The transformation matrx is returned in the passed array phimat.
* Note that a 4x4 marvix is returned therefore

* "phimat" must be an array of at least 16 floats.

* Furthermore if phimat is then used in a multiplication,

* “4” columns must be specified as an argument to mat_dmult().

*

*/

/*

'; mat_build_ident()
* void mat_build ident(float *ident, int N)

Make ident an NxN identity matrix
For example if N equals 3 then

OO
(o) Ne
R oo

will be returned in “ident". Naturally
ident must be an array with at least N*N floats.

RETURNS

AnNxN identity matrix in"ident"

* X X X X K X K KR KR X X %

X

/¥
. mat_distance xy()

* double mat_distance_xy(float *pntl , float *pnt2)

*

* pntl and pnt2 are single precision floating point arrays

* containing the X and Y coordinates for each of the points
* in question.

mat_distance xy() returns the distance (root sum square)
between these points. (Z if present is ignored)

* % >*

* RETURNS

Jan 1998

MATRX(3)

12

MATRX(3) MATRX(3)
*
¥ The distance between two points in the XY plane.
*/
/*
~ mat_distance()
*
* double mat_distance(float *pntl, float *pnt2)
*
* pntl and pnt2 are single precision floating point arrays
* containing the X, Y, & Z coordinates for each of the points
* in question.
* mat_distance_xy() returns the distance (root sum square)
* between these points.
*
* RETURNS
%
¥ The distance between two points in 3 space.
%
*/
/*
; mat_build_rot3()
t float *mat_build_rot3(float * mat, double psi, double theta, double phi)
* Build the 3 angle rotation matrix (rotating
i psi about the Z axis,
theta about the Y’ axis
* phi about the X axis)
* the rotation matrix is returned in the 4x4 matrix argument
: “mat” (which is afloaing point array of 16 elements).
* NOTE: The ordina axis are not themselves transformed
* between rotations. Therefore this function may
* NOT be used to create transformation matrices for
: DIS Euler angles.
" RETURNS
* mat or NULL if an error.
*
" SEEALSO:
*
* mat_build_DISWorld2Entity(), mat_build_DISEntity2World()
*
*/
R DIS Transformation functions seesse=ssees ----e== */
L —— DIS Transformation functions -ewess ~-eeeenememm- */
[*amnmananan= DIS Transformation functions --- --eem=esueeen - */

$Revision: 0.10 $

Jan 1998 13

MATRX(3) MATRX(3)
/*
: mat_dbuild_DISEntity2World()
* double *mat_dbuild_DISEntity2World(double *mat16,double psi,double theta, double phi)
*

* matl6 points to an array of 16 doubles (which represents a 4x4 homogeneous
matrix to the "mtrx" library procedures).

* pd, theta, and phi are the DIS (Distributed Interactive Simulation)
* Euler angles as described in the DIS standard.
* (they represent the successive rotation about the Z, Y’, and X”
* axisin order to transform from the DIS World Coordinate System
* to the DIS Entity Coordinate system).
*
* Entity Coordinate system:
* -Z (Entity's coordinate systemused in |EEE 1278. 1)
* | Note that "up" is -Z
* |
* |
* | “top’
*
* I
* Ll entity
* / l_| ====== “front’
* | [I >
* L - /-1 X
* /o
* /|
* /
* / I
* / \V
* / +Z
* |/
* Y Geoff Sauerborn
*
* DIS Wrld coordinate system
*
* ~ 4z (used in | EEE 1278.1)
* | The origin at the center of the earth
* I +Z goes through the north pole.
* | +X goes through prine neridian at the equator
* |
* |
* H#iH## t he earth
* EEEREERT
* ERRERAFHEE
* BEEEEEEREE-—— - m o m s >
* BE/HBEEE X
* JhEHEH
* /o
* / |
* / I
* / \V
$Revision: 0.10 $ Jan 1998 14

MATRX(3) MATRX(3)

v Geof f Sauer born

NOTE? these are the Euler angles which are used to transform from
the World to Entity coordinate system (even though this
function uses them to trandate from the
Entity to the World coordinate system.

I S A

Returns mat16 on success
NULL if an error occurred somewhere.

* *

* Written by Geoff Sauerbom. geoffs@arl.mil

* However the transformation were derived elsewhere
* by others.

: Special thanks to Rich Pearson (pearson@ar].mil).

*/

/ *
~ mat_build_DISEntity2World()
*

*float *mat_build_DISEntity2World(float *mat16,double psi,double theta, double phi)
*

* matl 6 points to an array of 16 floats (which represents a 4x4 homogeneous
* matrix to the "mtrx" library procedures).

X

* pd, theta, and phi are the DIS (Distributed Interactive Simulation)

* Euler angles as described in the DIS standard.

(they represent the successive rotation about the Z, Y’, and X"
axis in order to transform from the DIS World Coordinate System
to the DIS Entity Coordinate system).

* % % %

NOTE: these are the Euler angles which are used to transform from
the World to Entity coordinate system (even though this
function uses them to trandate from the
Entity to the World coordinate system.

* %k

Returns mat16 on success
NULL if an error occurred somewhere.

* ok % ¥

* Written by Geoff Sauerbom. geoffs@arl.mil

* However the transformation were not derived elsewhere
* by others.

: Special thanks to Rich Pearson (pearson@arl.mil).

*/

/*

) mat_build_DISWorld2Entity()

*float *mat_build_DISWorld2Entity(float *mat16,double psi,double theta, double phi)

$Revision: 0.10 $ Jan 1998 15

MATRX(3) MATRX(3)

mat16 points to an array of 16 floats (which represents a 4x4 homogeneous
matrix to the "mtrx" library procedures).

* % ¥ ¥
1

* pd, theta, and phi are the DIS (Distributed Interactive Simulation)

* Euler angles as described in the DIS standard.

(they represent the successive rotation about the Z, Y, and X”
axis in order to transform from the DIS World Coordinate System
to the DIS Entity Coordinate system).

* o

* %

* Returns mat16 on success
NULL if an error occurred somewhere,

* Written by Geoff Sauerbom. geoffs@arl.mil

* However the transformation were not derived elsewhere
* by others.

: Special thanks to Rich Pearson (pearson@arl.mil).

*/

/ *
~ mat_dbuild_DIS World2Entity()

*

*double *mat_dbuild_DISWorld2Entity(double *mat16,double psi,double theta, double phi)
*
* matl6 points to an array of 16 floats (which represents a 4x4 homogeneous
* matrix to the "mtrx" library procedures).
*
* pd, theta, and phi are the DIS (Distributed Interactive Simulation)

Euler angles as described in the DIS standard.

¥ (they represent the successive rotation about the Z, Y’, and X”

* axisin order to transform from the DIS World Coordinate System
: to the DIS Entity Coordinate system).

* Returns mat16 on success

: NULL if an error occurred somewhere.

* Written by Geoff Sauerbom. geoffs@arl.mil

* However the transformation were not derived elsewhere
* by others.

: Special thanks to Rich Pearson (pearson@arl.mil).

*/
/¥

~ mat_dbuild_DISEntity2World3x3()
*

*double *mat_dbuild_DISEntity2World3x3(double *mat9,double psi,double theta, double phi)
*

* mat9 points to an array of 9 doubles (which represents a 3x3
* matrix to the "mtrx" library procedures).

* pd, theta, and phi are the DIS (Distributed Interactive Simulation)
* Euler angles as described in the DIS standard.

$Revision: 0.10 $ Jan 1998 16

MATRX(3)

$Revision: 0.10 $

MATRX(3)

(they represent the successive rotation about the Z, Y’, and X"
axis in order to transform from the DIS World Coordinate System
to the DIS Entity Coordinate system).

* ok ¥ *

NOTE: these are the Euler angles which are used to transform from
the World to Entity coordinate system (even though this
function uses them to trandate from the
Entity to the World coordinate system.

EOE N

* Returns mat9 on success
NULL if an error occurred somewhere.

* Written by Geoff Sauerbom. geoffs@arl.mil

* However the transformation were not derived €sewhere
* by others.

: Special thanks to Rich Pearson (pearson@arl.mil).

*/

/*

~ mat_build_DISEntity2World3x3()

*

*float *mat_build_DISEntity2World3x3(float * ma& double psi,double theta, double phi)
*

* mat9 points to an array of 9 floats (which represents a 3x3
matrix to the "mtrx" library procedures).

* ps, theta, and phi are the DIS (Distributed Interactive Simulation)
Euler angles as described in the DIS standard.

(they represent the successive rotation about the Z, Y °, and X"

axis in order to transform from the DIS World Coordinate System

to the DIS Entity Coordinate system).

NOTE: these are the Euler angles which are used to transform from
the World to Entity coordinate system (even though this
function uses them to trandate from the
Entity to the World coordinate system.

* Returns mat9 on success

: NULL if an error occurred somewhere.

* Written by Geoff Sauerbom. geoffs@arl.mil

* However the transformation were not derived elsewhere
* hy others.

* Specia thanksto Rich Pearson (pearson@arl.mil).

3

*/
/ L3
~ mat_build_DISWorld2Entity3x3()

*

’*"ﬂoat *mat_build_DISWorld2Entity3x3(fioat *mat9,double psi,double theta, double phi)

Jan 1998 17

MATRX(3)

$Revision: 0.10 $

MATRX(3)

* mat9 points to an array of 9 floats (which represents a 3x3

’: matrix to the "mtrx" library procedures).

* pgi, theta, and phi are the DIS (Distributed Interactive Simulation)
Euler angles as described in the DIS standard.

* (they represent the successive rotation about the Z, Y', and X”

* axisin order to transform from the DIS World Coordinate System

: to the DIS Entity Coordinate system).

Returns mat9 on success
NULL if an error occurred somewhere.

* X

* Written by Geoff Sauerborn. geoffs@arl.mil

* However the transformation were not derived elsewhere
* by others.

* Specia thanks to Rich Pearson (pearson@arl.mil).

*

*/

1%

~ mat_dbuild_DISWorld2Entity3x3()

*

*double *mat_dbuild_DISWorld2Entity3x3(double *mat9,double psi,double theta, double phi)
*

* mat9 points to an array of 9 floats (which represents a 3x3
matrix to the "mtrx" library procedures).

* psi, theta, and phi are the DIS (Distributed Interactive Simulation)
Euler angles as described in the DIS standard.

(they represent the successive rotation about the z, Y’, and X”

axis in order to transform from the DIS World Coordinate System

to the DIS Entity Coordinate system).

* % ¥ ¥ X

* Returns mat9 on success

: NULL if an error occurred somewhere.

* Written by Geoff Sauerbom. geoffs@arl.mil

* However the transformation were not derived elsewhere
* by others.

: Special thanks to Rich Pearson (pearson@arl.mil).

*/

/¥

~ mat_ca cDISPSWrtXAXis()

double mat_calcDISPsWrtXAxis(double x, double y)

Calculate Psi with respect to the X axis.

Using the Missile Coordinate system (DIS Entity Coordinate system).
find Ps (the clock wise rotation about Z relative to the positive

X axis, given x,y coordinate of a point in this system.
X,y is taken to be the end point of a vector whose origin is 0,0.

¥ ¥ ¥ ¥ ¥ %X ¥ ¥ *x

Jan 1998 18

MATRX(3) M ATRX(3)

* pd isthe “rotation” that this vector makes relative to the X-axis.
: with its origin fixed (at 0,0).

: In the xy plane the DIS Entity Coordinate system looks like this:

* -~ X

*

* I I <----- (Quadrant 1)
*

: |

¥ eeemeeee R EEEEE R >
* -y | Y
¥ |

* 11 \ \Y;

* |

* -X

*

returns Psi in radians.
: Written by Geoff Sauerbom <geoffs@arl.mil>

*/

SEE ALSO
|[EEE Standard 1278.1.
[ROGERS] ‘Mathematical Elements for Computer Graphics’, by David F. Rogers, J. Alan Adams., 1990,
[SBN: 0070535299

Author
Geoff Sauerbom <geoffs@arl.mil>, US Army Research Lab. 1995, 1996, 1997. The DIS transformation
were derived elsewhere by others. Specia thanks to Rich Pearson <pearson@arl.mil> who provided the
DIS tranformations to and from world and entity coordinates.

$Revision: 0.10 $ Jan 1998 19

MK_SHM(3) MK_SHM(3)

NAME
shmCreateSharedMem(void), shmGetID(void), shmlIsAttached(void), —shmCreateSharedMem(void),

shmGetID(void), shmDestroy(), shmClear_QueryPlaced(), shmClear_QueryAnswered(), shmSet_Query-
Placed(), shmSet_QueryAnswered(), shmGet_QueryPlaced(), shmGet QueryAnswered(), shmClear Tar-
getES_PDU(), shmClear_ShooterES PDU(), shmClear_Fire_PDU(), shmClear_Detonation_PDU(), shm-
Set_TargetES_PDU(), shmSet_ShooterES PDU(), shmSet_Fire PDU(), shmSet_Detonation_PDU(),
shmGet_TargetES_PDU(), shmGet_ShooterES PDU(), shmGet_Fire PDU(), shmGet_Detonation_PDU(),
shmSet_TargetID(), shmSet EventID(), shmSet_QueryType(), shmSet QueryArgsType(), shmGet_Tar-
getlD(), shmGet_EventID(), shmGet_QueryType(), shmGet QueryArgsType(), shmSet_DisVersion(),
shmGet_DisVersion(), shmSet_VLResult(), shmSet_mfkPS(), shmSet prob(), shmGet_VLResult(),
shmGet_mfkPS(), shmGet_prob(), shmClear_ErrorMsy(), shmGet ErrorMsg()

SYNOPSI S
#incl ude "mk_shm.h"

int shmCreateSharedMem(void); /* allocate shared memory block */
int shmGetID(void); /* return share memory ID */
Bool shmilsAttached(void); /* return TRUE iff shared memory is attched*/

$Revision: 0.22 $

A —— Shared memory manipulators----------------- * |
int shnCreat eSharedMem(void); /* called by Server */
int shnGet|D(void); /* called by Server and passed
* to DisMnitor via tcp socket.
*/
int shmbDestroy(); /* called by Server */
int shmClear_QueryPlaced(); /* called by DisMnitor */
int shnCl ear _QueryAnswered(); /* called by Server */
int shnBet_QueryPl aced(); /* called by Server */
int shnBSet _QueryAnswered(); /* called by DisMnitor */
int shmGet _QueryPl aced(); /* called by DisMnitor */
i nt shmGet_Queryanswered(); /* called by Server */
int shnCl ear_Target ES_PDU(); /* called by DisMnitor */
int shmClear_ShooterES_PDU(); /* called by DisMnitor */
int shnCl ear_Fire PDY(); /* called by DisMnitor */
int shnCl ear_Detonati on_PDU(); /* called by DisMnitor */
int shnSet_Target ES PDY(); /* called by Server */
int shnSet ShooterES PDU(); /* called by Server */
int shnSet _Fire PDU(); /* called by Server */
int shnSet_Detonation_PDU(); /* called by Server */
void * shnGet_Target ES PDU(); /% called by DishWnitor */
void * shmGet _ShooterES PDU(); /* called by DisMnitor */
void * shnGet_Fire PDY(); /* called by DisMnitor */
void * shnCet_Detonation_PDU(); /* called by Dishnitor */
int shnBet_Targetl(); /* called by Server */
int shnBet EventlD(); /* called by Server */
int shnBet_QueryType(); /* called by Server */
int shnBet _QueryArgsType(); /* called by Server */
int shnGet _Targetl X); /* called by DisMnitor */
int shnGet EventlD(); /* called by Dishnitor */
VLS_Token shmGet_QueryType(); /* called by D sMnitor */
VLS_Token shnGet _QueryArgsType(); /* called by DisMnitor */
int shnSet Di sVersion(); /* called by Dishnitor */

const char *shmet _DisVersion();/* called by Server */

June 1998

MK_SHM(3) MK_SHM(3)

i nt shmSet_VLResult(); /* called by DisMnitor */

i nt shmSet_mfkPS(); /* called by DisMnitor */

i nt shmSet_prob(); /* called by Dishonitor */

int shmGet VLResult(); /* called by Server */

float* shnGet nfkPS(); /* called by Server t/

doubl e shmGet_prob(); /* called by Server */

voi d shnC ear ErrorMsg(); /* called by Server */

const char *shnGet ErrorMg(); /* called by Server */

int shnet _ErrorMg(); /* called by DisMon */
DESCRIPTION

Make (and manipulate) Shared Memory. Thisisaspecia purpose library. It links the DIS Server portion
of the DIS Lethality Server (the"viserver" application - see viserver(1)) with the DIS monitor portion (see
dis_mon(1)).

The functionsin thislibrary are “user friendly” in that the shared memory creation is automated (with no
need to maintain track of the shared memory "ID"s. The viserver establishes the share memory by calling

shmCreateSharedMem(). L ater, dis_mon connects (as a client) to viserver and queries viserver for the

shared memory ID. Using this ID, dis_mon establishes a connection to the same shared memory location

and closes it’s client connection with the viserver. (This takes place in the vis_link_connect() function
within thedis_meon source code). After this, all further communication between the viserver and the DIS

Monitor occurs via share memory (through the functions defined in this library).

The purpose for the link between the DIS Server and the DIS Monitor is so that the server may pass vulner-
ability analysis queries on to the DIS Monitor. The DIS monitor then returns the results via the same
shared memory link. The main loop for this process proceeds by having the DIS monitor periodically
check to seeif alethality result query has been “queued” into the shared memory. If so, the DIS monitor
reads the query from shared memory, calls the appropriate VL API function (which will perform the analy-
sis) and then places the result in the shared memory. Once the DIS monitor has completed these steps it
sets a flag (via shmSet_QueryAnswered()) to inform viserver that query has been answered and is placed in
shared memory. The viserver is now free to retrieve the answer (and pass it on to the client who requested
it). The following figure maps the sequence of events, and specifies when viserver or dis_mon access the
shared memory (viathese library calls). Access could be either putting data in or coping data out of the
shared memory. The sequence of events proceeds forward as one reads down the page. The line running
down the middle of the page represents the shared memory. The left side of this line shows when the
viserver (SERVER) accesses shared memory. The right side displays access by the DIS Monitor.

Start
SERVER creates shared nenory --->I
SERVER attaches self to it --->|
| o<===-- Di shbnitor attaches self
| to shared menory.
| <-==-- sets DI'S Version
--fromthis point on queries and answers to those queries may occur--
$#
client queries server ##
(via tep/ip connection) ##
#it

SERVER pl aces query in
shared menory ------- > |

$Revision: 0.22 $ June 1998 2

SERVER gets answer to query->

MK _SHM(3)

SERVER sets QueryPlaced ----- > |
|
|
|
|
|
|
I
I
!
l
|
|
|

SERVER Sees t hat |

QueryAnswered | S set ----- > |
I
I
I

SERVER clears QueryAnswered->|

$4
server delivers answer ##
to client (via tcp/ip connection)##
#
#

Short

vulnerabilities aredescri bed in amatmer different f

MK_SHM(3)

<---DisWbnitor Sees that
QueryPlaced is set.

<---DisMonitor Pl aces answer
to query in shared nenory

<---DishMnitor Cears
Pl aced flag (QueryPlaced).
<---DisMonitor Sets Query
Answer ed flag (QueryAnswered).

explanations for the existing mk_shm@3) functions follow. Other functions may have to be added if

rom the "MFK" methodology or if additional initializa-

tion parameters are needed to conplete the vulnerability analysis. Thus far mostoftheparameters found in
the Entity State, Detonation, and Fire PDUs are provided by mk_shm(3) functions. Functions are

described in the following order:
shmCreateSharedMem()
shmDestroy()

shmGetID()
shmClear_QueryPlaced()
shmClear_QueryAnswered()
shmSet_QueryPlaced()
shmSet_QueryAnswered()
shmGet_QueryPlaced()
shmGet_QueryAnswered()
shmSet_TargetES PDU()
shmClear_TargetES PDU()
shmGet_TargetES_PDU()
shmClear_TargetES_PDU()
shmClear_ShooterES PDU()
shmClear_Fire_ PDU()
shmClear_Detonation_ PDU()
shmSet_TargetES_PDUQ
shmSet_ShooterES_PDU()
shmSet_Fire PDU()
shmSet_Detonation PDU()
shmGet_TargetES PDU()
shmGet_ShooterES PDU()

$Revision: 0.22 $ June 1998

MK_SHM(3)

shmGet_Fire_PDU()
sbmGet_Detonation_PDU()
shmSet_TargetID()
shmSet_EventID()
shmGet_TargetID()
shmGet_EventID()
shmSet_DisVersion()
shmGet_DisVersion()
shmGet_QueryType()
shmGet_QueryArgsType()
shmSet_QueryType()
shmSet_QueryArgsType()
shmSet_VLResult()
shmGet_VLResult()
shmGet_mfkPS()
shmSet_mfkPS()
shmGet_prob()
shmSet_prob()
shm_zero_mem()
shmIsAttached()
shmClear_ErrorMsg()
shmGet_ErrorMsg()
shmSet_ErrorMsg()

MK_SHM(3)

/*

~ shmCreateSharedMem()

*

* int shmCreateSharedMem(void)
*

T

re

$Revision: 0.22 $

wnhE

for reading.

Establish shared memory for inter process communitcation
between the Lethality Server and the DI'S Mnitor

e menory nust be |arge enought to hold

argunents to the Lethality Data Query.

answers of resulting fromthe Lethality Data Query.

and a few overhead bytes to keep track of when data is read

Argunents (1.) are in the formof a set of PDUs (in
binary string form - as seen on the UDP net). Currently the
only arguments needed are a FirePDU, DetonationPDU, and two
EntityStatePDUs (one for the firer and one for the target).
If you would like to add nore arguments increase NARG_TYPES and
add to the ArgEnum || st. Al so, iftheaddtion includes

a different type of

answer from the server, then add

that to the AnsTypes union. Any VLS Token(s) which represent a new
type of answer(s) is then added as a valid VLS_Token (in vls_toke.h).

(This vls_token nust

be inserted in (enum _VLS Token) sonewhere between the

_T END OF_T _QTYPE_TOKENS and _T START _OF T_QIYPE _TOKENS and
coorspondi ng entries(s) are added in (char *VLS_TokenString[]).

turns 1 on success,

0 on failure.

June 1998

MK_SHM(3) MK_SHM(3)

int shnCreat eShar edMem()

/*
~ shmDestroy()

*

* %

int shmDestroy(int id);

shared menory is nmarked for destruction after the |ast detached
process detaches. An attenpt is nade to detatch the current

*

*

* thread fromthe shared nenory.
*

*

*

*

return 0 on faliure
1 on success. (if menmory is nmarked for destruction).

*/
int shmbestroy(int id);

/*
~ shmGetID()

*

*

i nt shmGetID(void)

*

*+ Returns the shared menory id established by shmCreateSharedMem().
* this is the sane id returned by the unix systemcall shmget().
* Returns -1 if no shared menory was established.

*

*/

i Nt shmGetID()

VAT LR b et Saiaiiedi it */
/* Shared Menory data ========c--=-c--=--rco--ssomoosmsmsese s */
/* mani pul at or APIs ------==-=---=s---s-oe--oo-oo-co-ooeo-- */
R R LD LR bbbttt e */
/*

* 2

shnCl ear _Quer yPl aced()
int shnC ear_QueryPl aced(void);

returns 1 on sucess.

*
%

: Clears (sets to FALSE) the QueryPlaced Bool in shared nenory.

%

! 0 on failure (likely because shared menory not available)

*/
int shnC ear_QueryPl aced(void) ;

/*
: shnCl ear _Quer yAnswer ed()

int shnCl ear _QueryAnswer ed(void);

Clears (sets to FALSE) the QueryAnswered Bool in shared nenory.

)

returns 1 on sucess.

$Revision: 0.22 $ June 1998

MK_SHM(3) MK_SHM(3)

* 0 on failure (likely because shared nemory not avail abl e)
*/
shnCl ear _Quer yAnswer ed()

/*
shnBet _Quer yPl aced()

* T

int shnBet_QueryPl aced(void);

*

*

* Sets (assigns TRUE to) the QueryPlaced Bool in shared menory.
*

*

*

returns 1 on sucess.
0 on failure (likely because shared nemory not avail abl e)

*/
i Nt shmSet_QueryPlaced(void);

/*
: shnBet _Quer yAnswer ed()

* int shnBet_QueryAnswered(void);

Sets (assigns TRUE to) the QueryAnswered Bool in shared nenory.

R R S

returns 1 on sucess.
0 on failure (likely because shared nemory not avail abl e)

*/

int shnBet_QueryAnswered(void);

/*
: shmGet _QueryPl aced()

* i nt shmGet_QueryPlaced(void);

returns 1 (TRUE) if Query data as been Placed in the shared menory.
0 (FALSE) if a conplete query is not there yet.
-1 on failure (likely because shared menory not avail able)

E I I

*/
int shnmGet_QueryPl aced(void);

/*
: shmGet _Quer yAnswer ed()

int shmGet_QueryAnswered(void);

This function returns the value of a boolean flag in shared nenory.
the flag is set (TRUE) by the function shnfet_QueryAnswered()
the flag is set (FALSE) by the function shmClear QueryAnswered().

*
*
*
*
*
*
* returns 1 (TRUE) if a placed Query has been answerd by the DI'S Mnitor
* (and this answer has been placed in shared menory).

* 0 (FALSE) if an answer is not yet there.

* -1 on failure (likely because shared menory not avail able)

*/

int shnGet_QueryAnswered(void);

$Revision: 0.22 $ June1998 6

MK_SHM(3) MK_SHM(3)

/*
shnet _Tar get ES_PDU()
*
* int shnBet_Target ES PDU(void* bin_arry, int len)
*
* Copies the argument (bin_arry) into shared menory.
* The argunent "bin_arry" is a PDU (in binary continious string
* form. "len" is its |ength.
* This PDUis the Entity State PDU of the TARGET (the threatend entity).
*
* RETURNS:
* 11is on sucess.
* 0 on failure (likely because shared menory not avail abl e)
*/

int shnBet _TargetES PDY(void* bin_arry, int len);

/*
~ shnC ear _Target ES_PDU()

*

int shnC ear_TargetES PDU(void);

* Marks as clear the shared nenroy array associated wth TargetES_FDU
+*
* RETURNS:
* 1 is on sucess.
* 0 on failure (likely because shared menory not avail abl e)
*/
i nt shnCl ear _Target ES PDU(void)
/*
shnet _Target ES_PDY()
*
* void * shmGet_TargetES PDU(int *len);
*
* Returns pointer to a PDU (in binary continious string
+ form). Its length is returned in "len". '
+ The PDU is the Entity State PDU of the TARGET (the threatend entity).
*
+ RETURNS:
* ptr to (binary string) PDU on sucess.
* NULL on failure. (likely because shared menory not avail able)
*
* Note
* a returned length of 0 is a good indicator that the
* pdu was not set.
*
*/

void * shmGet_TargetES PDU(int *len);:

/*
~ shmClear_TargetES_PDU()
*

* int shnC ear_Target ES PDY(void);

*

$Revision: 0.22 $ June 1998 7

MK_SHM(3) MK_SHM(3)

*Marks as clear the shared nmenroy array associated with TargetES_PDU

*

* RETURNS:
* 1 is on sucess.
* 0 on failure (likely because shared nemory not avail abl e)
*/
i nt shmClear_TargetES_PDU(void)

a shnCl ear _Shoot er ES_PDY()

i nt shnC ear _Shoot er ES_PDU(void);

Marks as clear the shared menroy array associated with ShooterES PDU
RETURNS:

1is on sucess.
0 on failure (likely because shared nemory not avail abl e)

* o+ F & * * H* F

*/
int shnCl ear_Shooter ES PDU(void);

/*
shnCl ear _Fire_PDU()

i Nt shmClear_ Fire_PDU(void);
Marks as clear the shared menroy array associated with Fire_PDU
RETURNS:

1is on sucess.
0 on failure (likely because shared nemory not avail abl e)

*+ % *+ * * ¥ * *

*/
int shnCear_Fire PDUvoid);

/*
shnCl ear _Det onati on_PDU()

int shnC ear_Detonation_PDU(void);
Marks as clear the shared menroy array associ ated with Detonation PDU
RETURNS:

1 is on sucess.
0 on failure (likely because shared nermory not avail abl e)

* ¥ F F F + ¥ *

*/
int shnC ear_Detonati on_PDU(void };

/*
shnBet _Tar get ES_PDY()

*

* int shnBet_TargetES PDU void* bin_arry, int len);

*

$Revision: 0.22 $ June 1998 8

MK_SHM(3) MK_SHM(3)

* Copies the argunent (bin_arry) into shared nenory.
The argument "bin_arry" is a PDU (in binary continious string
form. "len" is its |ength.
This PDU is the Entity State PDU of the TARGET (the threatend entity).

RETURNS:
1is on sucess.
0 on failure (likely because shared nmenory not avail abl e)

* % % * * *

*/
int shmSet_TargetES_PDU(void* bin_arry, int len);

/*
shmSet_ShooterES_PDU()
*
* int shnBet _ShooterES PDU(void* bin_arry, int len);
*
* Copies the argument (bin_arry) into shared menory.
*+ The argunment "bin_arry" is a PDU (in binary continious string
* forn. "len" is its length.
* This PDU is the Entity State PDU of the Shooting Entity (the entity
* who is shooting at the TARGET) - if the Shooting Entity is known).
*
* RETURNS:
* 1 is on sucess.
* 0 on failure (likely because shared nmenory not avail abl e)

*/
int shnBet_ShooterES PDY(void* bin_arry, int len);

/*
shnBet _Fire_ PDU()

int shmSet_Fire PDU(void* bin_arry, int len);

Copies the argunent (bin_arry) into shared nenory.
The argunment "bin_arry” is a PDU (in binary continious string
form. "len" is its length.
This "Fire PDU' which describes the weapon |aunch of the threat nunition.

*» o * F ¥

* o ¥

RETURNS:
1 is on sucess.
* 0 on failure (likely because shared nmenory not avail abl e)
*/
int shnBet_Fire PDY(void* bin_arry, int len);

*

/*
shnBSet _Det onati on_PDU()

int shnBSet Detonation PDU(void* bin_arry, int len);

Copies the argunent (bin_arry) into shared nenory.

The argument "bin_arry" is a PDU (in binary continious string
form. "*len" is its length.

This "Detonation pDU" of the munition threating the target.

* % ¥ F F % *

$Revision: 0.22 $ June 1998 9

MK_SHM(3) MK_SHM(3)

* (Wi ch describes the munitions inpact or detonation.)
*

* RETURNS:

* 1 is on sucess.

* 0 on failure (likely because shared nemory not avail abl e)
*/

int shnBet_Detonation_PDU(void* bin_arry, int len);

/*
~ shntet _Target ES_PDU()

*

* void * shnet_TargetES PDY(int *len);

Returns pointer to a PDU (in binary continious string
form. Its length is returned in "len".
The PDU is the Entity State PDU of the TARGET (the threatend entity).

® % % % %

* RETURNS:

* ptr to (binary string) PDU on sucess.

* NULL on failure. (likely because shared nenory not avail able)
*/

void * shnCet_TargetES PDUY(int *len);

/*
‘*“ shmGet _Shoot er ES_PDU()

void * shmCGet_ShooterES_PDU(int #*len);

® ok %

Returns pointer to a PDU (in binary continious String

form. Its length is returned in "len".
This PDU is the Entity State PDU of the Shooting Entity (the entity
who is shooting at the TARGET) - if the Shooting Entity is known).

RETURNS:
ptr to (binary string) PDU on sucess.
* NULL on failure. (likely because shared menory not avail able)
*/
void * shnGet_ShooterES PDU(int *len);

* % ok * *

/*
~ shntet _Fire_PDUY()

*

void * shnGet_Fire PDU(int *len);

* % % s

Returns pointer to a PDU (in binary continious string
form. Its length is returned in "len".

* This "Fire PDU" which describes the weapon |aunch of the threat nunition.
*

* RETURNS:

* ptr to (binary string) PDU on sucess.

* NULL on failure. (likely because shared nenory not avail able)

*/

void * shnmGet_Fire PDU(int *len);

$Revision: 0.22 $ Junel998 10

MK_SHM(3) MK_SHM(3)

/*
~ shnGet _Det onati on_PDU()

*

void * shnGet_Detonation_PDU(int *len);

Returns pointer to a PDU (in binary continious String
form. Its length is returned in "len".

+ This "Detonation PDU" of the nmunition threating the target.
: (Which describes the nunitions inpact or detonation.)

® % o

* RETURNS:

* ptr to (binary string) PDU on sucess.

* NULL on failure. (likely because shared nmenory not avail able)
*/

void * shmGet_Detonation_PDU(int *len);

/*
~ shnBet _Target | D()

*

int shnBet _Target|I D(int arry3[] }:

*

Set target entity IDin shared menory.

The function's argument (int arry3[]l)is an array of

3 integers, (the site, application, and 1D which
together serve to identify an entity in the DS protocol.

return 1 on success
0 on failure.

® % k% % % s

*/
int shnBet_TargetID(int arry3[]);

/*

*

shnet _Event 1 ()
int shnBet _Event I D(int arry3[]);

*
*
* Set the DIS event IDin shared nenory.

* The function's argument (int arry3[])is an array of
* 3 integers, (the site, application, and |D) which'

: together serve to identify an event the DI'S protocol.
*
*

return 1 on success
0 on failure.
*/
int shnBet _EventlD(int arry3[]);

/*
: shnet _Target | ()

int shnGet_TargetI D(int arry3[]);

* %

* Get the DIS event ID from shared nenory.
The function's argunent (int arry3[l)is an array of
* 3 integers. These 3 integers shall be set within the function

*

$Revision: 0.22 $ June 1998 11

MK_SHM(3) MK_SHM(3)

* (to the site, application, and ID) of the DI'S Target EntityID
: in shared menory.
* return 1 on success
* 0 on failure.
*/
i Nt shmGet_TargetID(i nt arry3[]);

/*
~ shnet _Event | ()

*

int shnmGet_EventID(int arry3[]);

B R

Cal | ed by DisMonitor.

* Cet the DIS event ID from shared nenory.

* The function's argunment (int arry3[])is an array of

* 3 integers. These 3 integers shall be set within the function
** (to the site, application, and ID) of the DI S EventID in shared

memnory.
*
* return 1 on success
* 0 on failure.
*/
i nt shmGet_EventID(i nt arry3[]);

/* ,
~ shmSet_DisVersion();
*

* int shnBSet _DisVersion { char #*str);

Copies string into the "DIs Version" l|ocation of shared nenory.

returns 1 if sonme or all of the string was copied.
returns 0 if none of the string could be copied.

* ok % k>

*/
int shnBet _DisVersion(char #*str);

/*
: shnet _Di sVersion();

* const char *shnGet_Di sVersion(); - called by Server

Copies string into the "DIs Version" location of shared menory.

B

returns ptr to static shared nenmory hol ding "DIS Version"
returns NULL if none is the menory could not be accessed.

*/
const char *shnGet _Di sVersion();

/*
~ shnGet _QueryType()

* VLS_Token shnGet_QueryType(void);

$Revision: 0.22 $ June1998

12

MK_SHM(3) MK_SHM(3)

Get the QueryType from shared nmenory.
Cal l ed by Di sMnitor.

The oueryType specifies the formin which the query answer
is to appear. As of this witing, some of the

valid query types are:

T_QTYPE_nf kDI S_Resul t
T_QTYPE_mfkDIS_Proball
T_QTYPE_nf kDI S_Pr obK
T_QTYPE_nf kDI S_Pr obMr
T_QTYPE_nf kDI S_Pr obF
T_QTYPE_nf kDI S_Pr obM

T _QTYPE_nf kDI S_ProbNoDamage

return a valid QueryType VLS_Token on success
T-ERROR on failure.

R S S SR S S %

*/

VLS_Token shnfzet QueryType(void);

/*
- shmGet _Quer yArgsType()

* VLS_Token shmGet_QueryArgsType(void);

Get the QueryArgsType from shared nmenory.

Cal l ed by Di sMnitor.

The QueryArgsType specifies the arguments which are used
in setting up the initial conditions for a vulnerability
assessnent. As of this witing, sone of the

val i d QueryArgsType’s are:

T VLS QUERY_TYPE MFK BI NARY_PDUS - expect binary pdu args
T_VLS QUERY_TYPE_MFK DI S_|I DS - expect 1D args

I S N

return a valid QueryArgsType VLS_Token on success
T-ERROR on failure.
*/
VLS_Token shnet Quer yArgsType(void);

/*
~ shmSet_QueryType()

int .shnBet QueryType(VLS_Token type);

Set the QueryType in shared menory.

* % % W W

*+

Cal l ed by Server.

*

* The QueryType specifies the formin which the query answer

$Revision: 0.22 $ June 1998 13

MK_SHM(3) MK_SHM(3)

is to appear. As of this witing, some of the
valid query types are:

T_QTYPE_nf kDI S_ProbAl |
T_QTYPE_nf kDI S_Pr obK
T_QTYPE_nf kDI S_Pr obMF
T_QTYPE_nf kDI S_ProbF
T_QTYPE_nf kDI S_Pr obM

T _QIYPE nf kDI S_Pr CoNODanmage

*
*
*
* T _QTYPE nfkDI S_ReSU t
*
*
*
*
*

return 1 on success.
0 on failure.

* % %

*/
i nt shmSet_QueryType(VLS_Token type)

~N
*

H

shmSet_QueryArgsType()

*

i nt shmSet_QueryArgsType(VLS_Token type);

Set the QueryArgsType in shared menory.

* % % % %

Cal l ed by Server.

The QueryArgsType specifies the arguments which are used
in setting up the initial conditions for a vulnerability
assessnent. As of this witing, sone of the

val i d QueryArgsType’s are:

T_VLS_QUERY_TYPE_MFK_

Bl NARY_PDUS - expect binary pdu args
T_VLS QUERY_TYPE_MFK DI S _

| DS - expect ID args

return 1 on sucess.
0 on failure.

. e R 3

*/

int .shnSet QueryArgsType(VLS_Token type);

/*
~ shmSet_VLResult()

*

int shmSet_VLResult(VL_Result result, int flag);

*
*
* return 1 on sucess.

* 0 on failure.

*/

nt shnSet VLResult(VL_Result result, int flag);

/*
~ shmGet_VLResult()

*

* int shmGet_VLResult(VL_Result *result, int *flag);
*

* Sets *result and *flag to the VLResult in shared nmenory and source

$Revision: 0.22 $ June 1998

14

MK_SHM(@3)

MK_SHM(3)

* flag respectively. (See the vl APl layer of the VL Data manager
*

* returns 1 on success;

! 0 on failure

*/

int shmGet VLResult(VL_Result *result, int *flag);

/*
~ shmGet_mfkPS()

*

float *shmGet nfkPS(float probs5[]);

return probs5 on sucess.
NULL on failure.

*
*
*
*

*/

float *shnGet nfkPS(float probs5[]);

/*
~ shnset _nf kPS()

int shnSet nfkPS(float probs5[]);

return 1 on sucess.
0 on failure.

R

*/

int shnBet nfkPS(float probs5[]);
~ shnGet _prob()

*+ doubl e shnGet _prob(void);

* returns WHATEVER is in that share nmenory | ocation.

*

*/
doubl e sbnGet prob(void);
/*

~ shmSet_prob()

*

* int shnSet _prob(double prob);
* return 1 on sucess.

* 0 on failure

*/

i nt shmSet_prob({ double prob);

/*
~ shm_zero_memn()
*

void shmzero_men(int unused)

*

* This function is called when a HUP signal is recieved

$Revision: 0.22 $ June 1998

15

MK_SHM(3) MK_SHM(3)

*pby the vlserver. It sets all of the shared nenory
* area to zero (0).

*

*/
voi d shm zero_nen(int unused);

/*
~ shm sAttached()
*

Bool shml sAttached(void)

Return 1 (TRUE) if shared nenory is currently attached.
Return 0 (FALSE) if not.

® %k

*/
Bool shmi sAttached(void);

/*
: shnCl ear _Error Msg()

voi d shmClear ErrorMsg(void);

Called by Server to effectively clear the error nessage buffer.
(so that the next call to shnGet ErrorMsg() returns NULL;

* % X %

*/

voi d shnCl ear _ErrorMsg(void);

/*
: shmGet _ErrorMsg()

* const char *shnGet ErrorMsg(void);
* Called by Server to fetch the null termnated string

message placed in the error nmessage buffer.
(presumably to pass on to the client).

* %

See Also: DIS Server utility APIs cprint(3),rpt_error(3)

*

* returns pointer to the error nessage string.

* NULL if the error message string is not set.
* (i.e. there is no error message).

*

*/

const char *shmGet_ErrorMsg(void);

/*
shntet _ErrorMsg()

int shnSet _ErrorMsg(char *str_error_mnsg);

~
*

*
*

* %

Called byDIS Minitor to set the null termnated string
message placed in the error nmessage buffer.
: (presumably to pass on to the client by the server).

$Revision: 0.22 $ June 1998 16

MK_SHM(3) MK _SHM(3)

* See Also: DIS Server utility APIs cprint(3),rpt_error(3)
*

* returns 1 (TRUE) if string was copied.

* 0 (FALSE) not (shared nmemmory was not accessabl e)
*

* NOTES:

* A maxi num of the system defined BUFSI Z bytes

* can be placed into the error buffer.

* The server may pass even fewer bytes onto the client.
* Generally, the server will strive to send |ess than
* 1024 bytes to a client at in any one nessage.

*/

int shnSet ErrorMsg(char *str_error_nsg)

SEE ALSO
Qther DISLethalityserverconponents:

vI(3), viserver (1), dis_mon(1), viexample client.c - anundocunmented exanpl e client program provi ded
with the DIS Lethality server(look in $VLS_HOME/stc/Server).

Author
Geoff Sauer bom <geoffs@arl.mil> , US Army Research Lab. 1997, 1998.

$Revision: 0.22 $ June 1998 17

SCAN(3) SCAN(S)

NAME
scan_int, scan-double, scan-long, scan_next white, scan skip_cmnt, scan_is_eof, scan_linenum,
fscan_int, fscan_double, fscan_long, fscan_next_white, fscan_skip_cmnt, fscan_is_eof, fscan_linenum -
genera scanning routines (for scanning ascii input).

SYNOPSIS
#include "scannerh"

/* Initialization / Closing routines: */

int fscan_reg(FILE *fp, char *filename);

PILE *fscan_fopen(char *filename,char *typeopen);

FILE *fscan_fopen_wMsgOnErr(char *filename,char *typeopen,char *callingfunc);
int fscan_unreg(FILE *fp):

int fscan_fclose(FILE *fp);

/* File status functions: */

const char *fscan_filename(P|LE *fp);
int fscan_linenum(FILE *fp);

int scan linenum(void);

int scan-is eof(;

int fscan _is_eof(FILE *fp);

/* Read head movementfunctions: */

int scan_next_white(void);

int fscan_next_white(FILE *fp);

int fscan_skip_cmmt(FILE *fp);

int scan_skip_cmnt(void);

**Experts only* - fscan_getc(), fscan_ungetc(), scan_getc(), scan_ungetc(), *BY-PASSES* COMMENT &
white space filtering. */

int fscan_getc(FILE *fp);

int scan_gete(void);

int fscan_ungetc(int c, FILE *fp);
int scan_ungetc(int c);

/* Read head movement (and data interpretation) functions: ¥/

int fscan int(FILE *fp);

int scan_int(void);

double fscan_double(FILE *fp);
double scan_double(void);

long fscan_long(FILE *fp);
long scan_long(void);

I* Read head movement (and strings/line scanning) functions: ¥/

int fscan_quoted_string(FILE *fp char *buff, int buffer-size);
int scan_quoted_string(char *puff, int buffer-size);

int fgetline(FILE *fp,char string[] ,int limit);

char *scan_string(char *buff, int buffsize);

char *fscan_string(FILE *fp, char *buff, int buffsize);

$Revision: 0.11 $ 17 Jun 1998 1

SCAN(3) SCAN()

int fscan_gets(FILE *fp, char *s,int n);
int scan_gets(char *s, int n);

/* Sring operating functions: */

char *sscan_skip_white(char* str);

char *sscan_next_white(char* str);

int sscan_int(char *str);

double sscan_double(char *str);

void sscan_strip_quotes(char *str);

void sscan_add quoted _quotes(char *str);

DESCRIPTION
This library provides generd scanning functions with interna input line number tracking.

Line number tracking: It isimportant to use fscan_unreg(Q (or fscan_fclose()) when finished with afile.
This is because if afile is closed outside of the scanner library without notifying the library (via
fscan_unreg() then on many operating systems it it likely the next file opened will have the same FILE
pointer; hence, the scanner library will think it is continuing to operate the on the original filéand the line
numbers reported will be incorrect).

fscan_fopen(), or fscan_reg() must be used to open and register afile in order to track line numbers and

file names. All other library function may still be used to scan through a file, however if fscan_reg() and
fscan_fopen() are not used, then fscan_filename() will not be able to return the correct filename. All rou-
tines keep track of each new file pointer fp sent to the library. In this way information can be retrieved
about the current line number andEOF status of any file (via thefscan_linenum() and fscan_is_eof(func-
tions.

WARNING fscan_getc(FILE *fp), and scan_getc() bypass comment and white-space filtering. These
should only by used by expert experts.

BUGS
Redlly "just special features’. fscan_linenum{fp) returns the current line number for the opened file pointed

to by file pointer fp. In this way the user can report line numbers associated with read errors.
fscan_linenum() returns an int, so files with more than INT_MAX lines, will have a unpredictable value
returned.

A maximum of SCANNERLIB_OPEN_FILES_TRACKED files are monitored. (If a user wants to track
more than SCANNERLIB_OPEN_FILES_TRACKED files, the library will need recompiling).

Unless fscan_unreg() is called, scanner library functions cannot tell when afile is closed. If the scanner
library does not know when tbe file is closed memory used by the library is not recycled. If afileis closed
without informing the library (via fscan_unreg(or fscan_fclose()) and then anew file is opened and that
new file has the same file pointer (FILE*) value as the (now) closed firgt file, then the newly opened file
will incorrectly be tracked as if it were the old file (and its first reported linenumber will equal the last
linenumber read from the original file).

Further details on library functions:

Initialization and closing routines:
/*
~ fscan_reg()

$Revision: 0.11 $ 17 Jun 1998 2

SCAN(3) SCAN(3)

®
: int fscan_reg(FILE *fp, char *filename);

* Register a file pointer (fp) (and optiond file name (filename)
* with the scanner library.
i Once registerd, fscan_linenum() and fscan_filename() can be
: used to report the current line number and the file name
being read.

* If filenameis passed as NULL, then the "UNKNOWN_FILE_NAME"
. is used to report the filename (via: fscan_filename()).
* returns an integer >= 0 on SUCCESS.

a negative integer on failure.

*/

»
~ fscan_fopen()
*

: FILE *fscan_fopen(char *filename, char *typeopen)

* attempt to open file “filename’, for the purpose of "typeopen"

* (* these two args are passed directly to fopen() *)

i if successful, the file is then registered into the scanner library.
: (* viafscan_reg() *)

i returns FILE pointer to the opened file on success.

* NULL on failure.

*/

1*

; fscan_fopen_wMsgOnErr()

:‘ FILE *fscan_foper_wMsgOnEmr(char *filename, char *typeopen, char *callingfunc)

* the function behaves likefscan_fopen() with the addition of
* printing error message to stderr if file could not be opened.
* the messaged are either:

* “fscan_fopen_wMsgOnEm(): called with NULL arg(s)"
: or "CallingFunctionName(): could not open “file” for "'

* (Where"CallingFunctionName()" represents the string pointed to by
* char *callingfunc, the argument passed to this function).
*

* returns a FILE pointer to the opened file on success.

) NULL on failure.

*/

Vi

* fscan_unreg()
*

* int fscan_unreg(FILE *fp)

$Revision: 0.11 $ 17 Jun 1998 3

SCAN(3) SCAN(3)

* unregister a file from the scanner library.

* (but do not attempt a close of the file stream).
*

* return O if theif successful close.

: EOF is there is an error.

* (passing a NULL file pointer "fp" or a
* file pointer that was never registered

* [via fscan_fopen wMsgOnErr() or fscan_reg()]
: are errors))

*/
/*

~ fscan_fclose()
*

: int fscan_fclose(FILE *fp)

*

close a file and unregister it with the scanner library.

* return O if the if successful close.

: EOF is there is an error.

* (passing a NULL file pointer "fp" or a

* file pointer that was never registered

* [via fscan_fopen_wMsgOnErr() or fscan_reg()]
=: are errors.)

*/

Functions te maintain and track file status information:

/ %
’; fscan_linenum()

¥ int fscan_linenum(FILE *fp)

* Returns the current line number for the

* opened file pointed to by file pointer "fp".

¥ In this way the user can report line numbers associated with
j read errors.

¥ fscan_linenum() returns an int, so files with more
*** than INT_MAX lines, will have a unpredictable value returned.

*/
scan_linenum() is equivalent to fscan_linenum(stdin)
[*
~ fscan_is_eof()
*

iy int fscan_is_eof(FILE *fp)

* Determine if the file associated with the file pointer (fp)

$Revision: 0.11 § 17 Jun 1998 4

SCAN(3)

* %

is a the end-of-file. (Has it's read head a the end-of-file).

Return 1 if at EOF.
* otherwise return 0.
*/
scan_is _eof() is equivaent to fscan_is_eof(stdin)

/ E3
; fscan_filename()

: const char *fscan_filename(FILE *fp)

¥ returns pointer to the string file name registered via fscan_reg().

* or NULL upon an error.

* (such as the name or file pointer (fp) was never registered).
*/

Read-head movement functions.

/ *
X fscan_next_white()

: int fscan_next_white(FILE *fp)

* For the file associated with (fp). move it's read head

* to the next “whitespace” character.
%

* See Also:

¥ isspace(d)

*/

scan_next_white() is equivalent to fscan_next_white(stdin)

J*
~ fscan_skip_cmnt()
*

: fscan_skip_cmnt(FILE *fp)

* Move the read head past comments (lines beginning with a pound #)
* and any white space. That is, bring the read head to the first

: non-comment, non-whitespace line. (This might be an EOF).

* Returns the next character to be read or
* EOF if a end of file.

:‘ NOTES.
¥ All comments are denoted by a '#' as the first character of aline.

* Thereis currently library function to change the comment character.
*/

$Revision: 0.11 $ 17 Jun 1998

SCANQ3)

SCAN(3)

scan_skip_cmnt() is equivalent to fscan_next_white(stdin)

/¥
: fscan_getc()

: int fscan_getc(FILE *fp);
: Read the next character in the file (move the read-head forward).

return the next character.
return EOF if at file end.

*
*
*
* *WARNING* this routine by-passes comment and white-space
* filtering and should only by used if you know

* what you are doing . . . (you probably do).

*

*/

scan_getc() is equivaant to fscan_getc(stdin)

/ %
: fscan_ungetc();

: int fscan_ungetc(int ¢, FILE *fp);

* Place the characterc", back into the input stream

* of me file associated with the file pointer (fp).
®

*

*/ i
scan_ungetc(c) is equivalent to fscan_ungete(c,stdin)
Other'read-head movement functions (with data interpretation).

/%
. fscan_int()

* int fscan_int(FILE *fp)

Scan the input stream (fp) and attempt to interpret the next character
string as an integer. Any white space and comment lines

Returns
the integer if successful.

if unsuccessful, the returned value is undefined and
an error message is printed.

¥ K X X X X ¥ % ¥ ¥ »

*/

scan_int() is equivalent to fscan_int(stdin)

fscan_double() is similar except the next floating point number is returned.
scan_double() is equivalent to fscan_double(stdin).

fscan_long() is similar except the next long is returned.

$Revision: 0.11 $ 17 Jun 1998

(see fscan_skip_cmnt() are skipped prior to the attempted interpretation.

SCAN(3)

scan_long() is equivalent to fscan_long(stdin).

/*
; fscan_quoted_string(FILE *fp, char *buffer, int buffer-size)

* Read a quoted string from the input stream

“thisis an example’ and placeit in buffer.
fscan_quoted string() will treat dl lines ending in the
single backslash character ()

as a continuation line.

* ¥ ¥ ¥ *

* ok

buffer is filled with the string (to include quotes) up to
buffer-size characters.

White space an commented lines are skipped prior
to reading the quoted string.

* ¥ ¥ * *

returns 1 on success,
0 on failure. (such as no quoted string found).
*/
scan_quoted string() isis equivalant to scan_quoted_string(stdin)

/*
‘; fgetline()

* int fgetline(FILE *fp, char *string, int limit)
Read from the file stream pointed to by "fp".

place the contents up to (and including) the first
newline character In'.

E R I)

Characters read (and placed

into the buffer “string”) and null terminates the
buffer (with \0 after the last character read).

No more than"limit"-1 characters will be placed
into the buffer “string”.

* ok ok ok k%

RETURNS the number of characters placed into “string”
when “limit” is not reached. When limit
is reached, then “limit” is aways returned
even though "limit"-1 characters will have
been placed in the buffer.

* % % % k% % %

EOF is returned if EOF is the first character read.

*

adopted from the K&R getline() by Geoff Sauerbom.
: See aso fgets(3)

*/

$Revision: 0.11 $ 17 Jun 1998 7

SCAN(3) SCAN(3)

/ *
; fscan_string()

. char *fscan_string(FILE *fp, char *buff, int buffsize)

* Reads a white space delimited string, returns it in
" the buffer “buff . no more than"buffsize'-1
* characters will be placed in “buff”.
* RETURNS pointer to string that was read.
i if no string found before EOF, (or just EOF seen) then
* NULL is returned.
*/

scan_string(b, bsz) is equivalent to fscan_string(stdin,b,bsz)

/*
~ fscan_gets()
E

* int fscan_gets(FILE *fp, char *buff, int n)

*

* fscan gets() is used to read the rest of aline
* [from the fp to the next occurrence of

* END-OF-LINE (0

* or comment character
* or END-OF-FILE]

*

* al read characters are placed into buff.

* no more than n chars are read. The buffer is null terminated.
*

* RETURNS

* the number of characters read or EOF if END-OF-FILE is read.
%

* |f the limit *n" is reached, then n is dways returned

* even though n- 1 characters will have been placed

* in the buffer.

*

*/

scan_gets(str, n) is equivalent to fscan_gets(stdin,str,n)

Some gtring equivalent functions (smilar to other library functions,
however they operate on strings not file streams):

/ %
~ sscan_skip_white()
*

* char *sscan_skip_white(char* str)
*

* Scan the passed null terminated character string array (str).

$Revision: 0.11 $ 17 Jun 1998 8

SCAN(S) SCAN(3)

%

* Return the address of the first non-white character.

* if there is only white space in the string,

then the address of the terminating NULL is returned.
* NULL is returned if the str is NULL.

*/

*

/%
. sscan_next_white()

: char *sscan_next_white(char* str)

* return the address of the next white space character in the string str.
* NULL is returned on failure or end-of-string is reached
: without finding a white space character.

* see also: isspace(3)
*/

/*
~ sscan_int()
L3

*int sscan_int(char *str);

: read and return int from the string str.
* RETURNS

" the scanned integer value.

: If an integer is not scanned,

an error message is printed and the

: iss returned.

*/
/*

'; sscan_double()
. double sscan_double(char *str);

: read and return double from the string str.

* RETURNS

* the scanned floating point number value.
*If number cannot be scanned,

* an error message is printed and the

" Ois retumed.

*/
/*

; sscan_strip_quotes()

$Revision: 0.11 § 17 Jun 1998 9

SCAN(3)
* void sscan_strip_quotes(char *str)
*
* remove quotes from a string. (but handle quoted quotes i.e.
*/
/*
~ void sscan_add quoted quotes(char *str)
*
* add’ before any quotes. " ->becomes->
* returns a pointer to a static character buffer
* (which will be over-written on next call).
* Theinternal buffer isBUFFSIZE in length.
* The enquoted string is in this buffer.
*/
SEE ALSO
gets(3), gete(3), ungete(3), sscanf(3), scanf(3), strtok(3)
AUTHOR

Geoff Sauerbom <geoffs@arl.mil>, US Army Research Lab. 1995, 1996, 1997, 1998.

$Revision: 0.11 $ 17 Jun 1998

SCAN(S)

10

VL(3)

NAME

VL(3)

vl_mfk_ArIDIS_Result_NoNet, vl_mfk_ArIDIS_ProbAll NoNet, _vI_mfk_ArIDIS ProbM_NoNe,
_vl_mfk_ArIDIS_ProbMF_NoNet, _vl_mfk_ArIDIS ProbF NoNet, _vl_mfk_ArIDIS_ProbK_NoNet,
_vl_mfk_ArlDIS_ProbNoDamage NoNet

vl_mfk_binaryDIS_Result_NoNet, vl_mfk_binaryDIS_ProbAll_NoNet, _vl_mfk_binary-
DIS ProbK_NoNe, _vl_mfk_binaryDIS_ProbMF_NoNet, _vl_mfk_binaryDIS_ProbF_NoNet,
_vl_mfk_binaryDIS_ProbM_NoNet, _vl_mfk_binaryDIS_ProbNoDamage_NoNet

vl_mfkDIS_Result, vI_mfkDIS_ProbAll, vI_mfkDIS ProbK, _vl_mfkDIS_ProbMF, vI_mfkDIS ProbF,
_vl_mfkDIS ProbM, _vl_mfkDIS_ProbNoDamage

_vl_drandom, vl_GetResultErrorValue, vl_mfk_directFireIsAHit, VL_Result VL_mfkDIS_ResultGeneri-
cRandomDraw

SYNOPSIS

#include <vlh>

S vl mfk_ArIDIS...() functions *|

VL_Result vl_mfk_ArIDIS_Result_NoNet(int*flg, VLSetParam_t itype, ..).
float* vl_mfk_AsIDIS_ProbAll_NoNet(VLSetParam_t itype, ...);

double _vl_mfk_ArIDIS_ProbM_NoNet(VLSetParam_t itype, ..).

double _vl_mfk_ArIDIS ProbMF NoNet(VLSetParam t itype, ..).

double _vl_mfk_ArIDIS_ProbF_NoNet(VLSetParam_t itype, ..).

double _vI_mfk ArlDIS ProbK_NoNet(VLSetParam t itype, ...).

double _vl_mfk_ArIDIS_ProbNoDamage_NoNet(VLSetParam_t jtype, . .).

£ SRR vl_mfk_binaryDIS...() functions ----- ---- --=-mv */

VL_Result vl_mfk_binaryDIS_Result_NoNet(int *flg, VLSetParam_t itype, ..).
float* vl_mfk_binaryDIS_ProbAll_NoNet(VLSetParam_t itype, . ..).

double _vl_mfk_binaryDIS_ProbK_NoNet(VLSetParam_t itype, . .).

double _vl_mfk_binaryDIS_ProbMF_NoNet(VLSetParam _t itype, . .).

double _vl_mfk_binaryDIS_ProbF_NoNet(VLSetParam_t itype, ..).

double _vl_mfk_binaryDIS_ProbM_NoNet(VLSetParam_t itype, ..).

double _vl_mfk_binaryDIS_ProbNoDamage_NoNet(VLSetParam_t itype, ...).

/* DidD * an array of 3 16-bit unsigned integers (Uint16[3]) */
VL_Result vI_mfkDIS_Result(int*flag, DisID *entitylD, DisID *eventlD);
float* vl_mfkDIS_ProbAll(DisID *entityID, DisID *eventID);

double _vl_mfkDIS_ProbK(DislD *entityID, DisID *eventID);

double _vi_mfkDIS_ProbMF(DislD *entityID, DisID *eventID);
double _vl_mfkDIS_ProbF(DidD *entitylD, DisID *eventID);

double _vl_mfkDIS ProbM(DidD *entitylD, DisID *eventID),

double _vl_mfkDIS_ProbNoDamage(Dis|D *entityID, DisID *eventID);

[¥ ameen vreras amaees vl_..() Utility functions ---esv-re=neer-—- *

void _vl_drandom_seed(int seed);

double _vl_drandom(void);

int v1_GetResultErrorValue(void);

int vl_mfk_directFireIsAHit(DetonationResult DIS det result);
VL_Result VL_mfkDIS_ResultGenericRandomDraw(void);

$Revision: 04 $ June 1998 1

VL(3) VL@3)

DESCRIPTION
Thevl API layer is used for a particular class of vulnerability / lethality methodology (or taxonomy). A
vulnerability / lethality methodology is a means by which one divides the set of al possible outcomes for a
vulnerability result. The current APl only includes the Mobility, Firepower, Catastrophic (MFK) Kill result
set. In this set the only possible outcomes of aletha result are:

Outcome Meaning
MKILL Mohility Kill only.
FKILL Fire Power Kill only.
MFKILL Both Mohility and Fire Power Kills.
KKILL Catastrophic Power Kill
NODAMAGE | Probahility that no additional damage occurs.

Application programs call an API. They pass enough information to describe theinitial conditions of the
vulnerability calculation. Internally the VL API will set the appropriate parameters in the VLparam |ayer
(see vliparam(3)). Then the VL API will call the appropriate vulnerability “lookup” function (see
db_tbl_reader_func() from the DIS lethality server's db(3) layer) and return the results.

There are three sets of MFK APIs. Each set may be used to retrieve the equivalent V/L results. Which API
is selected for use depends on which inputs are expected by a particular API. The inputs required by the
three S&ts are:

API layer name Type of input expected
vl_mfk_binaryDIS ... | DISPDUs areinput. The PDU format is
a continuous binary array containing the
DIS PDU data as specified in the standard

IEEE 1278.1
vl_mfk_ArIDIS_... DISPDUs are input. The PDU format is
* a data structure particular to the ARL DIS
Manager.
vl_mfkDIS_... Input comprises of the DIS Entity ID of the

entity whose vulnerability is being assessed,
and the DIS ID of the munition detonation event
which is of interest.

API layer names in the table above indicate the first sequence of characters in the rane of the indicated
functions. Most of the functions are actually proceeded by an underscore (). If the gpplication program is
monitoring the DIS environment then one of the "vl_mfkDIS..." APIs might be the best choice of APIs. If
the calling application is aclient to the ARL DZS Manager (see dis_mgr(1)), then it might be most con-
venient to use the'vl_mfk_ArIDIS_..." set of functions.

Synopsis of the API functions are now given in the following order:

VL_Result vI_ mfkDIS Result(int*flag, DidD *entitylD, DisID *eventID);
float* vl_mfkDIS_ProbAll(DisID *entitylD, DisD *eventID);

double _vI_mfkDIS_ProbK(DidD *entityID, DisID *eventID);

double _vi_mfkDIS_ProbMF(DisID *entityID, DisID *eventID);

double _vl_mfkDIS_ProbF(DisID *entitylD, DisID *eventID);

double _vl_mfkDIS_ProbM(DisID *entitylD, DisID *eventID);

double _vl_mfkDIS_ProbNoDamage(DisID *entitylD, DisID *eventID);
/% weememy]_mfk_ArIDIS...() functions S

VL_Result vl_mfk_ArIDIS_Result_NoNet(int*flg, VL.SetParam_t itype, ..).
float* vl_mfk_ArIDIS_ProbAll_NoNet(VLSetParam_t itype, ...);

double _v1_mfk_ArIDIS_ProbM_NoNet(VLSetParam_t itype, ..).

$Revision: 0.4 $ June 1998 2

VL(3)

VL(Q3)

double _vl_mfk_ArIDIS_ProbMF_NoNet(VLSetParam_t itype, . ..).

double _vl_mfk_ArIDIS ProbF NoNet(VLSetParam t itype,...).

double _vl_mfk_ArIDIS_ProbK_NoNet(VLSetParam_t itype, . ..).

double _vl_mfk_ArIDIS_ProbNoDamage | NoNet(VLSetParam t itype,..).

L I vl_..() Utility functions_ —

VL_Result vl_mfk_binaryDIS_Result_NoNet(int *fig, VLSetPa.tam_t itype, ..);
float* vl_mfk_binaryDIS_ProbAll_NoNet(VLSetParam_t itype, . ..).

double _vl_mfk_binaryDIS_ProbK_NoNet(VLSetParam_t itype, ..>.

double _v1_mfk_binaryDIS_ProbMF_NoNet(VLSetParam_t jtype, . ..).

double _vi_mfk_binaryDIS_ProbF_NoNet(VLSetParam _t itype, ..).

double _vl_mfk_binaryDIS_ProbM_NoNet(VLSetParam_t itype, ..).

double _vl_mfk_binaryDIS_ProbNoDamage_NoNet(VLSetParam_t jtype, .).

void _vi_drandom_seed(int seed);

double _v1_drandom(void);

int vl_GetResultErrorVaue(void);

int vi_mfk_directFireIsAHit(DetonationResult DIS_det_result);

VARE R b it vl_mfkDIS...() functiong-----------------===" */
/*
v1_mfkDIS_Result()

int vl _mfkDIS_Result(int *source, DisID *entitylD, DislD *eventID)

This function returns the result of the detonation wth
identification "eventID" verses the target whose DI S entity ID
is "entityID".

The type DisIDis a pointer to an array of 3 16-bit integers.
"eventID" refers to the identification used to denote a
fire/detonation event sequence in DIS (i.e. the "Event ID" field
of a DI'S Detonation PDU), while "entityID refers to the
identification used to denote an entity for a particular D' S
exercise (i.e. the "entity identification" field of the Entity
State PDU.

RETURNS:

The FLAG (*flg) paraneter is always set. (See below).
The function will always return one of the follow ng results:

PS_MFK_M
PS_MFK_F
PS_MFK_MF
PS_MFK_K
PS_MFK_NODAMAGE

PS_ERROR

The naming convention for these results is as follows:

#1_#2_%3

* o ok & o F ok X ok o ok o * & F F H* & o & * & * * * F * ¥ * * * * *

$Revision: 0.4 $ June 1998 3

VL(3)

*

*

* % oF oF S oF F oF ok F F o o % o * * * A& ¥ ¥ & o & ¥ ¥ % ¥ ¥ ¥ % ¥ F A * F

VL(@3)

#1 is "ps_" (nmeant to inply "Probability Space")

#2 is used to indicate the analysis nmethod being applied.
(in this case the analysis nethod is to divide the probability
space between the M,F,K kills (and conbinations) as well as the
implied No Damage possibility).

#3 is used to indicate a particular event in that space.

Hypot hetically, there may be other results returned depending on what is
defined as the result set for the targetted entity. For exanple for a
hel i copter, a PS_M SSION_ABORT might be a logical addition to a class of
the result sets).

The integer referenced by the parameter "source" is a flag which is set
to informthe caller whether the source of the function's result was from
a valid PKH table or froma |ess authoritative source.

The "FLAG' (*flg) paraneter

The " FLAG" (*flg) paranmeter is always set with
one of the follow ng val ues:

Val ue
of FLAG MEANI NG

-1 Unknown error.
A generic pkh result is returned but is not authoritative.
In this case calling the function rpt_perror() mght shed
sone light on the source of the error. (This is an
internal vlserver library procedure whose purpose is
simlar to perror()).

0 Success.
The pkh source for the referenced entity and threat
munition (as defined in the DAMAGE SOURCE_META DATA FILE)
was successfully found, interpreted, and used in
the cal cul ation of the returned (VL_Result) val ue.

1 No Tabl e.
A generic pkh result is returned but is not authoritative.
A reference to a vulnerability source could not be found

in the DAMAGE_SOURCE META DATA FILE for this
conbi nation of entity and threat.

2 Corrupt Table.

A generic pkh result is returned but is not authoritative.

$Revision: 0.4 $ June1998 4

VL(3) VL(3)

¥ The the referenced vulnerability source data was found,

¥ however there was an error when attenpting to interpret

* the data.

* 3 No Environment Data.

¥ A generic pkh result is returned but is not authoritative.

¥ Data describing the fire and detonation events were

¥ never observed while nmonitoring the run tine

¥ envi ronment .

* 4 Unknown Tar get .

* A generic pkh result is returned but is not authoritative.

¥ A reference to the threatened (targeted) entity could

¥ not be found in the DIS ENTITIES FILE nor in the

¥ DI S _AUXI LI ARY_ENTI TI ES_FI LE.

* 5 Unknown Threat .

¥ A generic pkh result is returned but is not authoritative.

¥ A reference to the threat munition could

¥ not be found in the DIS ENTITIES FILE nor in the

* DI'S_AUXI LI ARY_ENTI TI ES_FI LE.

* Note: This function depends on the DI'S Network having been nonitored by
* the Lethality server long enough to have detected the fire,

* detonation, and at |east one Entity State PDU from both the target and

* firer. (Qtherwise FLAGw Il not be set to "Success.").

*

* See al so:

*

* VL_Result vl_mfk_ArlDIS_Result NoNet(int*Flag, VLSetParam_ t itype, . ..
* VL_Result vl _nfk_binaryD S Result_NoNet (int*Flag, VLSet Paramt itype, .
*

*/

VL_Result vl _nfkDIS Result(int*flg, DisID *entitylD, DislD *eventlD)

/*

~
*
*
*

v1_mfkDIS_ProbAll()

float* v1_mfkDIS_ProbAll(DislD *entitylD, DislD *eventID)

*

This function returns the a static array containing probabilities of
certain kill levels. The indices of the array are as follows:

*

* Array El enent (i ndex) _
El enent Val ue value Meani ng

* 0 PS_MFK_M Mobility Kill only.

* %

$Revision: 0.4 $ June1998 5

VL(3) VL(3)

* 1 PS_MFK_F Fire Power Kill only.

* 2 PS_MFK_MF Both Mobility and Fire Power Kills.
* 3 PS_MFK_K Cat astrophic Power Kill

* 4 PS_MFK_NODAMAGE Probability that no additional

: damage occurs.

The type DisID is a pointer to an array of 3 16-bit integers.
"eventID" refers to the identification used to denote a
fire/detonation event sequence in DIS (i.e. the "Event 1ID" field
of a DI'S Detonation PDU), while "entityID refers to the
identification used to denote an entity for a particular DI S
exercise (i.e. the "entity identification" field of the Entity

State PDU.

B S S T X

DI AGNGCSTI CS:
returns a static array containing additive probabilities of
K, M/, F, M and No Danmge. The values in the array mnust
be used be for subsequent calls to this function.

returns. NULL on an error.

B T R S Sy

*

These values are "additive" (sonetines referred to as
a thermonmeter redistribution). They are added together in the
fol | owi ng manner.

*

Probability of Mbility Kill Only.
Probability of Mbility Kill Only
+ Probability of Fire Power Kill only.

p[PS_MFK_MF] = Probability of Mbility Kill Only

+ Probability of Fire Power Kill only

+ Both Mobility and Fire Power Kills.
p[PS_MFK_K] = Probability of Mbility Kill Only

+ Probability of Fire Power Kill only

+ Probability of Both Mbility and Fire Power Kills

+ Probability of Catastrophic Power Kill.
p[PS_MFK_NCDAMAGE] = 1.0

p[PS_MFK_M]
p[PS_MFK_F]

sk %k k% k% % ok % %

*
* That is these values are arranged so that they appear on [0,1] in order
: that one random number may sel ect the event which occurs.
* e.g. if p(m only) = .10
p(f only) = .10
p(ms& f) = .25
p(k) = .25

(and therefore) p(no damg)= 1.0 - (.1+.1+.25.+.25) = .30

then a probability event space would be:

I S S 8

| M| F | M&.F | K | no dmg |
| | | ! | I

*

$Revision: 0.4 $ June1998 6

VL(3) VL(3)

e et e e e e R LRED s
0. .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

resulting in the vector:

I N N

p [PS_MFK_M] = pl[0] = .10
p[PS_MFK_F] =p[l] = .20
p[PS_MFK_MF] = p[2] = .45
p [PS_MFK_K 1 =p[3] = .70
p[PS_MFK_NODAMAGE] = pf4] =1.00

*

being returned by vl _nfk ArlDI'S ProbAll NoNet()

*/
float* vl _nfkDIS ProbAll(DisID *entitylD, DislD *eventID)

The fol lowing functions expect the same input as vl mfkDIS ProbAH0 however, unlike
vl_mfkDIS_ProbAll() they each return only one probability and not all the probabilities of every event
oceurring.

N
*

double vl nfkDIS ProbK(DisID *entitylD, DislD *eventID);

Returns the probability of a K-KILL (catostrephic kill)
and only a K-KILL.

I T S

The paraneters passed to this function are the same as passed to
vl _nfkDI'S_ProbAll().

x*

* RETURNS:

* a nunber LESS THAN O on an error,

* otherwi se the probability of an K-KILL and only a K-KILL.
*

*/

/*

*

double vl nfkDIS_ProbM~(DislID *entitylD, DislD *eventID);

*

* Returns the probability of an M--KILL (both nobility and firepower kill)
and only an M--KILL.

The paraneters passed to this function are the same as passed to
vl _nfkDI'S_ProbAll().

* ok %

RETURNS:
a nunber LESS THAN O on an error,
otherwi se the probability of an M—KILL and only an M--KILL.

L

*/

/*
* double vl nfkDIS ProbF(DislD *entitylD, DislD *eventID);

*

$Revision: 0.4 $ June 1998 7

VL(3) VL(3)
Returns the probability of an F-KILL (fire power Kkill)
and only an F-KILL.

The paraneters passed to this function are the same as passed to
vi_mfkDIS_ProbAll().

* ok o ko

*
* RETURNS:
* a nunber LESS THAN 0 on an error,
! otherwi se the probability of an F-KILL and only an F-KILL.
*
*/
*
* double vl _nfkDIS ProbM DislD *entityl D, DislD *eventID);
*
* The paraneters passed to this function are the same as passed to
* v1_mfkDIS_Proball().
*
* RETURNS:
* a nunber LESS THAN o0 on an error,
! otherwi se the probability of an MKILL and only an MKILL.
*/
/*
* double vl _nfkDI'S ProbNoDamage(DisID *entitylD, DislD *eventID);
*
* Returns the probability of an MKILL (nobility kill)
: and only an MKILL.
* The paraneters passed to this.function are the same as passed to
" vl_nfkDI'S_ProbAll ().
*
" RETURNS:
a number LESS THAN O on an error,
! ot herwi se the probability of NoDamage.
*/
VAREEEEE LRt vl_mfk_ArlDIS...() functions---------=-====--- */
/*
vl _nfk_Arl DI S_Resul t _NoNet ()
*
*
* VL_Result vl_mfk_ArlDIS_Result_ NoNet(int*flg, VLSetParam_t itype, . ..)
*
* This function returns an MK kill type (i.e. one of Mbility, Fire
+ Power, Mdbility & Fire, Catastrophic Kills, or No Damage) as the result
+ of the interaction of the target and threat.
*
* The answer may possibly be "made up" in the event
* that there is not enough information to find the correct
+ answer. If this is the case, the parameter (flg) is set to
* @ non-zero nunber. (See "The FLAG (*flg) paraneter"” bel ow).
*

$Revision: 0.4 $ June 1998 8

VL(3)

B e

B T T S 3

o

VL(3)

The target, threat, and their environment are deternmined by the passed
argunents. The VLSetParam_t data object (itype) identifies the
required inputs needed to prepare a vulnerability assessment. (Namely
it identifies the variables that are being passed, which are required
to set the initial conditions of the vulnerability assessment.)

In the event that itype == VL_PARAM_SET METH_DIS_HitToKill
It indicates that passing the DI'S PDUS
Entity State (target)
Entity State (firer)
FirePDU
DetonationPDU
shall be sufficient to set the VL parameters to return the
correct result fromthe |lookup table (or other data source).

(pointers to these data structures will be passed to this routine (after
itype):

This function returns the result of the target/threat/detonation
interaction

RETURNS

The FLAG (*flg) paraneter is always Set. (See-below).
The function will always return one of the follow ng results:

PS_MFK_M
PS_MFK_F
PS_MFK_MF
PS_MFK_K
PS_MFK_NODAMAGE

PS_ERROR

The naning convention for these results is as follows:
#1_#2_#3

#1 is "ps_" (neant to inply "Probability Space")

#2 is used to indicate the analysis nmethod being applied.
(in this case the analysis method is to divide the probability
space between the MF K kills (and conbinations) as well as the
implied No Danmage possibility).

#3 is used to indicate a particular event in that space.

Hypot hetically, there may be other results returned depending on what is
defined as the result set for the targetted entity. (For exanple for a
helicopter, a PS M SSION ABORT might be a logical addition to a class of
theresult sets).

The integer referenced by the parameter "source" is a flag which is set
to informthe caller whether the source of the function's result was from

$Revision: 0.4 $ June 1998 9

VL(3)

*

0% X 3k ok % Xk % X %k F

*/

VL(@3)

avalid PKH table or froma |ess authoritative source.

The "FLAG' (*flg) paraneter

The "FLAG' (*flg) parameter is always set with
one same values as it is set in the function vl_nfkD S Result().

Note: This function depends on the DI'S Network having been nonitored by
the Lethality server long enough to have detected the fire,

detonation, and at |east one Entity State PDU from both the target and
firer. (Qtherwise FLAGw Il not be set to "Success.").

See al so:

VL_Result vl_mfkDIS_Result(int EntityID, int DetID)
VL_Result vl _nfk_binaryDl S Result_NoNet (int*Fl ag, VLSet Paramt itype, .

VL_Result vl _nfk_ArlDI S _Result_NoNet(int*flg, VLSetParam_t itype, ...)

/*

* ook & A ok F A o ok A o ok ok o ok * * o H o o ok ok ok ¥ ¥ ¥ ¥ * # oF

v1l_mfk_ArlDIS_Proball_NoNet()

float * vl_mfk_Arl1DIS_ProbAll_NoNet(VLSetParam_t itype, . . .)

This function returns the a static array containing probabilities of
certain kill levels. The function's behaviour and return val ues
are the sane as the function vl_mfkDIS_ProbAll().

The only difference is the parameter set passed to the function.
This function expects the follow ng paraneters:

The first parameter argument is of type VLSetParam_t.

This type is used to indicate which data sources (inputs)
are sufficient to set the VL parameters in order to be able

to return the correct result fromthe |ookup table
(or other data source). These indicated data sources

shall then be the 2nd, 3rd, 4th, . . . etc. paraneter arguments
to the function.

To date there are only tw VLSetParam t types defined:

VL_PARAM SET_METH DI S_Hi t ToKi | |
VL_PARAM SET_METH_DI'S_Pr oxKi | |

They both require the same argunents. Nanely, pointers to
the DS PDUS:

Entity State (for the target),
Entity State (for the firer),
Fire PDU,

and Detonation PDU.

These ppUs Wi ll be the 2nd, 3rd, 4th, and 5th argunments to the

$Revision: 0.4 $ June 1998 10

VL(3) , VL(3)

* function. These pbus nust be in the

ARL DI S Manager PDU data structure fornat.

(See vl_mfk_binaryDIS_ProbAll NoNet() for passing other
PDU data structures).

*

E S

RETURNS:
Same as vl_mfkDIS_Proball().

SEE ALSQO
float * vl_mfk_ArlDIS_ProbAll_NoNet(VLSetParam_t itype, . ..)
float* vl1_mfkDIS_ProbAll(EntityID, DetID)

kkkkkhhhkhkhkhhhkhdhdkhhkhhhhkhhkhkhhkhhhhhrhhkddhhbhhhk
*

: NOTE:

* PDU argunments are in the formof a ARL DI S
* Manager PDU data structure format.
*

B e I

% %k %

* khhkhkkkhkhhhhkkkhkhhdhhkdbhhhhhdhhhdhrhhhhddhdhdhhrhdhk

*

*/

float * vl_mfk_ArlDIS_ProbAll_NoNet(VLSetParam_t itype, . . .)

The following functions expect the same input as vi_mfk_ArIDIS_ProbAll) however, unlike
vl_mfk_ArIDIS_ProbAll(they each return only one probablllty and not al the probabilities of every
event occurring.

/*

~ vl _nfk_Arl DS _ProbK NoNet(VLSetParamt itype, . ..)

*

* double _vlI _nfk ArlIDI'S ProbK NoNet(VLSetParamt itype, . ..)

*

* Returns the probability of a K-KILL (catostrophic kill)

* and only a K-KILL.

*

* The paraneters passed to this function are the same as passed to
* vl _nfk Arl DS Result_ NoNet ()

* and vl_nfk_ArlDI'S ProbA |l _NoNet ()

*

* Nanely an indentifier (itype) telling the server which

* parameters are needed to set the initail state of the vulnerabilty
* analysis (and hence which variables will follow as argunments).

*

*

RETURNS:
a nunmber LESS THAN 0 on an error,
otherwi se the probability of an K-KILL and only a K-KILL.

* %

~N
* * o+
~

* R

vl _nfk Arl DI'S ProbM-_NoNet (VLSet Paramt itype,

$Revision: 0.4 $ June 1998 11

VL(3) VL(3)

*

double vl _nfk Arl DS ProbM- NoNet (VLSet Paramt itype, . ..)

*

Returns the probability of an MKILL (both nmobility and firepower Kkill)
and only an M-KI LL.

*

The paraneters passed to this function are the same as passed to
vl _nfk ArlDI'S Result _NoNet ()
and vi_mfk_ArlDIS_ProbAll_NoNet()

%k % % o

Narmely an indentifier (itype) telling the server which
parameters are needed to set the initail state of the vulnerabilty
anal ysis (and hence which variables will follow as argunments).

* % %

RETURNS:
a nunber LESSTHANOON an error,
otherwi se the probability of an MKILL and only an M--KILL.

-

*/

?

vl _nfk_Arl DS ProbF_NoNet (VLSet Paramt itype, . ..)
double vl _nfk_Arl DS ProbF NoNet (VLSet Paramt itype, . ..)

Returns the probability of an F-KILL (fire power Kkill)
and only an F-KILL.

The paraneters passed to this function are the same as passed to
vl _nfk ArlDI'S Result _NoNet ()
and vl_mfk_ArlDIS_ProbAll_NoNet ()

Nanely an indentifier (itype) telling the server which

* paraneters are needed to set the initail state of the vulnerabilty
* analysis (and hence which variables will follow as arguments).
*

*

RETURNS:
* a nunmber LESS THAN 0 on an error,
* otherwi se the probability of an F-KILL and only an F-KILL.
*
*/
/*
~ vl _nfk ArlDIS ProbM NoNet (VLSet Paramt itype, . ..)

double vl _nfk ArlDI'S ProbM NoNet (VLSet Paramt itype, . ..)

Returns the probability of an MKILL (nobility kill)
and only an MKILL.

The paraneters passed to this function are the same as passed to
vl_mfk_ArlDIS_Result_NoNet ()
and vl_mfk_ArlDIS_ProbAll_NoNet()

Nanely an indentifier (itype) telling the server which

$Revision: 0.4 $ June 1998 12

VL(3) VL@3)

* paraneters are needed to set the initail state of the vulnerabilty
* analysis (and hence which variables will follow as argunments).

*

¥ RETURNS:

* a nunmber LESS THAN 0 on an error,

' ot herwi se the probability of an MKILL and only an MKILL.

*/
/*

~ _vl_nfk_Arl D S_ProbNoDanage_NoNet (VLSet Paramt itype, . ..)

*

* double _vl _nfk ArlD S ProbNoDamage NoNet (VLSet Paramt itype, . ..)
*

' Returns the probability of No further Damage

' occuring and and only No further Damage occuring.

*

' The paraneters passed to this function are the same as passed to
' vl _nfk Arl DS Result_ NoNet ()

* and vl_mfk_ArlDIS_ProbAll_NoNet()

*

* Namely an indentifier (itype) telling the server which

* paraneters are needed to set the initail state of the vulnerabilty
* analysis (and hence which variables will follow as argunents).

*

* RETURNS:

* a nunber LESS THAN O on an error,

* otherwise the probability of NobDamage.

*/

frmmmmm e - vl_mfk_binaryDIS...() functions-------------.- i
/*

~ vl _nfk_binaryDl S Result_NoNet ()

* %

VL_Result vl _nfk_binaryDlS Result NoNet(VLSetParam t itype, . ..)

*

* This function returns an MFK kill type (i.e. one of Mbility, Fire

* Power, Mobility & Fire, Catastrophic Kills, or No Danage) as the result
: of the interaction of the target and threat.

* The target, threat, and their environnment are determned by the passed
* argunents. The VLSetParam_t data object (itype) identifies the

* required inputs needed to prepare a vulnerability assessnent. (Nanely
* it identifies the variables that are being passed, which are required
: to set the initial conditions of the vulnerability assessnent.)

* In the event that itype == VL_PARAM SET_METH DI S Hit ToKill

* |t indicates that passing the DI S PDUS

' Entity State (target)

' Entity State (firer)

* FirePDU

: DetonationPDU

$Revision: 0.4 $ June 1998 13

VL(3)

k% % Sk ok %k kK k% %k

EE

*

L T . T . S ST A SRS

VL(3)

shall be sufficient to set the VL paraneters to return the
correct result fromthe |ookup table (or other data source).

The passed arguments to the function are pointers to DIS PDU
structures whose bits are packed into a continuous binary string
of bytes. (That is, the argunents are pointers

to the binary PDU string argunent as it would "appear" as a DS
broadcast PDU on the DI'S network).

This function returns. the result of the target/threat/detonation
interaction

one of the followi ng results are returned

PS_MFK_M
PS_MFK_F
PS_MFK_MF
PS_MFK_K
PS_MFK_NODAMAGE

PS_ERROR

The vi_library random nunber generator (vl _drandon()) is used to
randomy select a point in the probability space (and hence return the
"result".

See al so:

VL_Result vl_mfkDIS_Result(int*flg, i nt EntityID, i nt DetID
VL_Result vl _nfk ArlDI'S Result_ NoNet ()

********************************Rk****************

*
*

* NOTE:

* *
* PDU argunents are in the formof a continuous *
* Bl NARY STRI NG

*
*

dkhkkkhkkkhkhhkkhkhhkkkkkhkkkhhkkhhhkhhhhhhhkkhkhkkhhhrhhdhtk

*/
VI_Result v| nfk _binaryDlS Result NoNet(int*flg, VLSetParam_t itype,

/*

* % o * * * % * F

vl _nfk _binaryDl S _ProbAl | _NoNet ()
float * vl _nfk_binaryDl S ProbAl |l NoNet(VLSetParam t itype, ...)

This function returns the a static array containing probabilities of
certain kill levels. The function's behaviour and return val ues
are the sanme as the function vl_mfkDIS_Proball().

The only difference is the parameter set passed to the function.
This function expects the follow ng paraneters:

$Revision: 0.4 $ June 1998 14

VL(3)

b S S . T SR S I I SR S SR S N S I S S s A A

* >* >* * * * * * * * * * * * * * * * * * >* >* * >* >* >* L

The first paranmeter argument is of type VLSetParam_ t.

This type is used to indicate which data sources (inputs)

are sufficient to set the VL parameters in order to be able
to return the correct result fromthe | ookup table

(or other data source). These indicated data sources

shall then be the 2nd, 3rd, 4th, . . . etc. paranmeter argunents
to the function.

To date there are only two VLSetParam_t types defined:

VI_PARAM_SET_METH_DIS_HitToKill
VL_PARAM SET_METH_DI'S_Pr oxKi | |

They both require the sane arguments. Namely, pointers to
the DI'S PDUS:

Entity State (for the target),
Entity State (for the firer),
Fire PDU,

and Detonation PDU.

These PDUs will be the 2nd, 3rd, 4th, and 5th argunents to the
function. These PDUs rmust be in "binary format" that is in
the sane bit format that DIS PDUs are trasported in when
comuni cated on the DIS network. This nmeans that each

PDU argunent points an address contains a continuous

array of bits representing the content of the PDU.

(See vl_mfk_ArlDIS_ProbAll NoNet() for passing ot her
PDU data structures).

Exanpl e:

assunes tgt_entity_state_pdu, shooter_entity_state_pdu,
fire_pdu, detonation_pdu
are pointers (void *)

[float *probability-space;

probability-space =
v1l_mfk_binaryDIS_Proball_NoNet (
VI_PARAM_SET_METH_DIS_HitToKill
, tgt_entity_state_pdu
shooter_entity_state_pdu -
fire_pdu
, detonation_pdu
)i
}

RETURNS:

Same as vl1_mfkDIS_Proball().

$Revision: 0.4$ June 1998

VL(3)

15

VL(3)

* ok % sk g

* F & * * X A

*/

VL(3)

SEE ALSO:
fl oat * vl_mfk_ArlDIS_ProbAll_NoNet(VLSetParam t itype, . ..)

float* vl1_mfkDIS_ProbAll(EntityID, DetID)

dhkkhkkhhkdkdkdhhkhhhhrhhhrrrkhrddddhdddhhhdkdhddddhddhdidtd
* *

* NOTE: *

*

*

* PDUargunents are in the form of a continuous *
* BI NARY STRING .
*

khkdkhkdkhkdhdkhkhhhhkdhkhhrdhhdrbhrhrhdhdhkhhdhhrhkhhbdhdhdrtrd

float * vl_mfk_binaryDIS_ProbAll_NoNet(viSetParam_t itype, - - -)

The following functions expect the same input as vi_mfk_binaryDIS_ProbAll) however, unlike
vl_mfk_binaryDIS_ProbAllQ they each return only one probability and not all the probabilities of every
event occurring.

/*

~

* o F o o o+ o F A F F A A X o ¥ F H H * * ¥ A H* * * * * *

vl _nfk_Arl DI'S_ProbK NoNet (VLSet Paramt itype, . ..)

double _vl _nfk_Arl DI S_ProbK NoNet (VLSet Paramt itype, . ..)

Returns the probability of a K-KILL (catostrophic Kkill)
and Onlya K-KILL.

The paraneters passed to this function are the same as passed to
vl _nfk_Arl DI'S _Result_NoNet ()
and vl_mfk_ArlDIS_ProbAll_NoNet()

Narmel y an indentifier (itype) telling the server which
paraneters are needed to set the initail state of the vulnerabilty
analysis (and hence which variables will follow as argunents).

RETURNS:
anunber LESS THAN Oon an error,
otherwi se the probability of an K-KILL and only a K-KILL.

khkkkhkdkhkhkdkdkhkdkdhhhhhhhhdhhhtdkhdddhhhkhdhdhddddddddhdsd

* *
* NOTE: *
* *

* PDU argurments are in the form of a continuous*
BI NARY STRING. the argurnent |ist consists of*
a pointer (to the PDU in binary form followed*
by the Iength of the PDU string (in bytes) :

*

see: vl _nfk_binaryDIS ...() functions

*

* o+ ¥ * ¥ *

kkkhkhkdhdhddddhhhhdddhhkihdhhdtkhhhhhdhdddhdhhhdkdhhbhkhhrd

$Revision: 04 $ June 1998

16

VL(3) VL@3)

~ vl _nfk_Arl DS ProbM-_NoNet (VLSet Paramt itype, . ..)
*

* doubl e _vl_mfk_ArlDIS_ProbMF_NoNet(VLSetParam_ t itype, . ..)

Returns the probability of an MFKILL (both nmobility and firepower kill)
and only an Mr-KILL.

The paraneters passed to this function are the same as passed to
vl _nfk _ArlDI'S Result _NoNet ()
and vl_mfk_ArlDIS_ProbAll_NoNet()

Nanely an indentifier (itype) telling the server which
parameters are needed to set the initail state of the vulnerabilty
anal ysis (and hence which variables will follow as arguments).

RETURNS:

* a nunmber LESS THAN O on an error,

: otherwi se the probability of an M~KILL and only an M--KILL.
*/
/*

: vl _nfk_Arl DI'S _ProbF_NoNet (VLSet Paramt itype, . ..)

* double _vl _nfk ArlDIS ProbF_NoNet(VLSet Paramt itype, . ..)

*

* Returns the probability of an F-KILL (fire power kill)

* and only an F-klLL.

*

* The paranmeters passed to this function are the same as passed to
* vl _nfk _ArlDI'S Result _NoNet ()

* and vl_mfk_ArlDIS_Proball_NoNet()

*

* Nanely an indentifier (itype) telling the server which

* paranmeters are needed to set the initail state of the vulnerabilty
* analysis (and hence which variables will follow as arguments).

*

* RETURNS:

* a nunmber LESS THAN O on an error,

* otherwi se the probability of an F-KILL and only an F-KILL.
*

*/

/*

~ vl _nfk_Arl DS ProbM NoNet (VLSet Paramt itype, . ..)

double _vl _nfk ArlDI S _ProbM NoNet (VLSet Paramt itype, ...)

*
*
* Returns the probability of an MKILL (mobility kill)
: and only an MKILL.
*
*

The paraneters passed to this function are the same as passed to
vl _nfk _ArlDI'S Result_NoNet ()

$Revision: 0.4 $ June 1998 17

VL(3)

VL(3)

and vl_mfk_ArlDIS_ProbAll_NoNet()

* ok

Nanely an indentifier (itype) telling the server which

* paraneters are needed to set the initail state of the vulnerabilty
* analysis (and hence which variables will follow as argunents).
*

*

RETURNS:
* a number LESS THAN Oon an error,
* otherwi se the probability of an MK LL and only an MKILL.
*/
/*
~ _vl_mfk_ArlDIS_ProbNoDamage NoNet(VLSetParam_t jtype, . .)
*
* double _vl _nfk _ArlDI S ProbNoDanage NoNet (VLSet Paramt itype, . ..)
*
* Returns the probability of No further Damage
*+ occuring and and only No further Damage occuring.
*
* The paraneters passed to this function are the same as passed to
* vl _nfk _ArlDI'S Result_NoNet ()
* and vl_mfk_ArlDIS_ProbAll NoNet()
*
* Nanely an indentifier (itype) telling the server which
* paranmeters are needed to set the initail state of the vulnerabilty
* analysis (and hence which variables will follow as argunents).
*
* See Also:
* double vl _nfk_binaryDl S ProbNoDamage NoNet (VLSet Paramt itype, .
* double vl _nfk_binaryDl S ProbNoDanmage NoNet (VLSet Paramt itype, .
* doubl e _vlI _nfkDl S_ProbNoDanage(EntityID, DetID)
*
* RETURNS:
* anunmber LESS THAN O on an error,
* ot herwi se the probability of NoDamage.

*
~

The remaining APl cdls are utility functions.

_Vl drandom() and vl drandom_seed() areused to generate pseudo random nunbers. The random
number gener at er is used to sdect returned results for the "Result" functions (vi_mfkDIS_Result(,
vl mfk ArIDIS_Result_NoNet(), and vl_mfk_binaryDIS_Result NoNet0). Thef uncti on vI_GetRe-
sultErrorValue() may beused todebug at an application |evel when unexected results are returned.

vl mfk_directFireIsAHit) applies specifically to "direct fire" munitionstoseeif they hit thetargetin
question. The serverusesthis functiontopossibly overidethel ook-up table results Forexampleifabullet
lands within a lethal radious of a target, however, the target is oriented in such a manner that the bullet actu-
aly missed. (And hence, vI_mfk_directFireIsAHitQ returns a FALSE result. Then the server will overide
the look-up table's damage result and return a “No Damage” result instead. Assuming, of course, that a hit
is required to cause damage. vl_mfk_directFireIsAHit() does no geometric calculations but rather it is
reliant on the “detonation result” field of the deonation PDU to determine if a bullet misses of hits a target.

VL mikDIS ResultGenericRandomDraw() is used to return (an iuvalid) result in the event that look-up
tables or validdata cannot be accessed for some reason.

$Revision: 0.4 $ June 1998 18

VL(3) VL(3)

frrommmmmmmmmmmmmmon vl_...() Utility functiong------------------ */
: _vl _drandom()

* double _vl _drandon(voi d)

* returns a random number on [0,1]

* See also: _vl_drandom seed()
* (to re-seed pseudo random sequence).

*/
doubl e _vl _drandom(voi d)

/*
~ _vl _drandom seed()

* void _vl_drandom seed(int seed)

*

+ re-seeds the pseudo random number sequence using the integer "seed"
* (Don't use a seed of 0).

* See al so:

* _vl _drandom()

*/

void _vl_drandom seed(int seed)

~N
*

vl _CGet Resul t ErrorVal ue();

i Nt vl_GetResultErrorvValue(void);

EE S 1

Called only (and inmmediately) after an unsuccessful attenpt
has been made to one of the
“float *vl_nfk _SOVETH NG ProbAl I (...)" functions

A

(e g. calling any one of:
float * vl_mfkDIS_ProbAll(DisID *entitylD, DisID *eventID);

* float * vl_mfk_ArlDIS_ProbAll_NoNet(VLSetParam t itype, . ..)
* float * vl_nfk_binaryDl S_ProbAl | _NoNet(VLSetParam_t itype, . ..)
* have returned a NULL

*

* RETURNS an error value (as follows:

* VL_RSLT_ERR_GENERAL /* Unknown error. */

* VL_RSLT_SUCCESS /* success - NO error. */

' VL_RSLT_ERR_NO TABLE /* No Table. */

¢ VL_RSLT_ERR_CURRUPT_TABLE /* Corrupt Table. */

' VL_RSLT_ERR_NO_ENVI RON_DATA /* No Environnent Data. */

' VL_RSLT_ERR_UNKNOMN_TARGET /* Unknown Target. */

* VL_RSLT _ERR_UNKNOAN THREAT /* Unknown Threat. */

*

*/

i Nt vl_GetResultErrorValue(void)

$Revision: 0.4 $ June 1998 19

N
*

* 2

*

L T T . T 3

*/
i nt

*
*
*
*
*
*
*
*
*
*
*
*

*/

vl _nfk directFirel sAHit ()
int vl_nfk_directFirel sAH t(DetonationResult DIS_det result)

This function returns TRUE if the result field indicates a
"hit" with a direct fire (or prox-fuze) weapon.

The argunment DIS_det_result is the |EEE 1278.1 (DI'S) Detonation
Result field (An 8bit unsigned integer)
[the type DetonationResult is defined in the ARL DI S Manager
"pdu_basic.h"].

Note: for a kinetic energy nunitions
(That is type VL_Meth = "DIS HitToKill"
in the DAMAGE_SOURCE_META DATA FILE).
only:

1 Entity |npact

2 Entity Proximate Detonation

5 Det onati on

will currently have an effect on
the targetted entity.

vl nfk directFirel sAHit(DetonationResult DIS_det_ result

VL_nf kDI S_Resul t Gener i cRandonDr aw()
VL_Result VL _nf kDI S_Resul t Generi cRandonDr aw(voi d)

A generic probabilility of a kill given a hit
result is returned (but is not authoratative).
Results are drawn froma fixed distribution.

This is used as the default answer when a target or threat
is unknown, or else if the V/IL data set cannot be found or

can be found but cannot be interpreted correctly.
RETURNS

An *MFK" probability result (as described
invl_nfkDlS Result()). |.E one of the
follow ng values are returned

PS_MFK_M
PS_MFK_F
PS_MFK_MF
PS_MFK_K
PS_MFK_NODAMAGE

VL_Result VL_nfkDl S _Resul t Generi cRandonDr aw(voi d)

$Revision: 0.4 $ June 1998

VL(3)

20

VL(3)
SEE ALSO
Other DIS Lethality server components:

viparam(3) db(3)

AUTHOR
Geoff Sauerbom <geoffs@ari.mil>, US Army Research Lab. 1997, 1998.

$Revision: 0.4 $ June 1998

VL(3)

21

VLParam(3) VLParam(3)

NAME
vlp_setp_all_Munition_Frm_DIS, vlp_zero_all_params, vlp_print_all_params
VLP_ang_aspect, VLP_ang_attack ,VLP_tvel[3], VLP_impact[3], VLP_range, VLP_result, VLP_tar-
get.3 VLP_target_type, VLP_firer_id, VLP_firer_type, VLP_threat_id, VLP_threat_type
SYNOPSIS
#/include<vlparam.h>
extern Float32 VLP_ang_aspect, VLP_ang_attack ,VLP_tvel[3], VLP_impact[3];
extern Float64 VLP_range;
extern int VLP_result;
extern EntityID VLP_target_id;
extem EntityType VLP_target_type;
extem EntityID VLP_firer_id;
extem EntityType VLP_firer_type;
extem EntityID VLP_threat_id;
extem EntityType VLP_threat_type;
int vip_setp_all_Munition_Frm_DIS(PDU*, PDU*, PDU*, PDU*);/* Arl DIS Manager */
void vip_zero_all_params(void); /* initialize parameters */
void vlp_print_all_params(void); /* Display settings of al VL parameters */
DESCRIPTION
The Vulnerabilty Parameter sub-layer of the DISIethdity server. Thislayer isthe means by which vul-
nerability data look-up functions determine the initiad conditions for the vulnerability calculation.
The VLParam |layer servesto insolate the V/L result data from the virtual environment (initial conditions
to the vulnerahility anadysis). (This separation alows different DIS networking packages to be swapped in
an out of the server; and even alowing for a non-DIS networking paradigm, such as HLA, to be used).
When anew look-up function is written for data of a certain format, the author of the look-up function will
have to reference this layer. The variables defined here are the only means by which theinitial conditions
relevant to the V/L calculation may be determined.
If there are crucial parameters missing from this layer, then those parameters will have to be added. Fol-
lowing this, API functions which set these parameters (prior to calling the look-up function) need to be
modified or added to the VLParam(3) API layer of the lethdity server. As an example the source code for
the API function vip_setp_all_Munition_Frm_DIS(may be examined. The function vip_setp_all_Muni-
tion_Frm_DIS(sets the VLparam layer parameters based on inputs provided by Entity State, Fire, and
Detonation PDUs. Findly, the reader (result look-up function) will have to be modified (or written) that
can access the newly added parameters in order to look-up the proper results from the lethdity data set.
Data Dictionary:
Note: “target” refers to the queried entity who's resulting vulnerability is being asked for of the server.
EntityID - is the DIS Entity ID record (site, application, entity).
| EEE 1278.1
float32 - 32bit floating point nunber.
float64 - 64bit floating point nunber.
enum - a unitless enunerated value.
$Revision: 1.3 $ June 1998 1

VLParam(3) VLParam(3)

Entity Coordi nate system

-z (Entity's coordinate systemused in | EEE 1278.1
Note that "up"is -Z

Itopl
|
/o entity
/|| =s==== "front'
| f | =mmmmmmsmmmmmes >
| —/—1/ X
/|
/|
/ I
/ I
/ v
/ +2
/
/
I/
Y
PARAVETER TYPE UNI'TS MEANI NG

VLP_ang_aspect float32 radians 'horizontal' orientation of nmunition's
directional attack (aspect angle)
(relative to the target entity).
(Rotation is about the target entity's
positive "z" axis in a clockw se
direction). The positive direction of
rotation about an axis is defined as
cl ockwi se when viewed towards the
positive direction along the axis of
rotation.

Cl ockwi se direction: For exanple, a 90
degree (PI/2 radian) clockw se rotation
about the z axis will make the positive
X-axis co-linear to where the positive
y-axis was before the rotation.

Targetted entity's coordinate systemis
that of IEEE 1278.1 with the positive
X-Axis axis extending fromthe "front"
of the entity. Positive Z-Axis
extending "down". Positive Y-Axis
extending out of the entity's "right".

See Al so: VLP_ang_attck.

$Revision: 1.3 $ June 1998 2

vLParam(3) vLParam(3)

VLP_ang_attck float32 radians "Angle of attack". ‘vertical' orientation
of munition's directional attack (aspect
angle) (relative to the target).

(Rotation is about the target entity's
new "X" axis after having been rotated
by the angle VLP_ang_aspect.

See Al so: VLP_ang_aspect.

vLP_impact[3] float32 neters Location of munition inpact point
relative to the target. Location is in
target entity's coordinate system. (IEEE
1278. 1)

VLP_tvel[3] float32 m s Termnal velocity of the nunition
i medi ately before inpact. This is in
the DIS world coordinate system |inear
velocity vector record 1278.1 Units
are in neters per second
(Same as the "velocity" field of the
DI S Detonation PDU).

VLP_range float64 neters (l'ine of sight) range fromthe target to
the origin of the nunition. (i.e.
di stance from where the nunition was
fired to where it detonated).

The DI'S Standard states that the "range"
field in the Fire PDUis set to O if the
range i s unknown. If this is the case
then the VL server shall attenpt to
guess at the approxi mate range by
setting the VILP_range to the distance
between the target and firing entity (if
known). If this approximation fails for
sone reason, then VLP_Range shall remain
set to 0.

VLP_result i nt enum result of the detonation (if known)
the enunmeration are according to the
DI S standard (I EEE 1278.1)

Note: for a kinetic energy munitions
(That is type VIL_Meth = "DIS HitToKill"
in the DAMAGE_SCOURCE_META DATA FILE).
only:

1 Entity I npact

2 Entity Proximate Detonation

5 Det onati on

will currently have an effect on
the targetted entity.

$Revision: 1.3 $ June 1998 3

vLParam(3)

VLP_target_id EntityID enum

VLP_target_type EntityType enum

VLP_threat_id EntityID enum

VLP_threat_type EntityType enum

$Revision: 1.3 $

June 1998

VLParam(3)

Val ue Description
0 O her
1 Entity | npact
2 Entity Proxi nate Detonation
3 G ound | npact
4 G ound Proximate Detonation
5 Det onati on
6 None
7 HE hit, snmall
8 HE hit, nedium
9 HE hit, large
10 Arnor-piercing hit
11 Dirt blast, small
12 Dirt blast, nedium
13 Dirt blast, large
14 Water blast, snall
15 Water blast, nedium
16 Water blast, large
17 Air hit
18 Building hit, small
19 Building hit, medium
20 Building hit, large
21 Mne-clearing line charge
22 Environment object inpact
23 Envi ronnment object proxi mate detonation
24 Water |npact
25 Air Burst

Targeted Entity's ID. (site, host,
If there was an entity inpact

i ndi cated by the= VLP_result field,
then this is the entity which was

i npact ed.

i d)

Type of entity Targeted. (Entity Enumeration)
If there was an entity inpact

i ndi cated by the= VLP_result field,

then this is the type of entity which

was inpacted (e.g. "T72M1", "M48").

Threat Entity's ID. (site, host, id)

If the treating object (inpacting or
detonating object) is an entity,

then this is its Entity's ID. (site, host,
(Nornally the threat is not an entity,

but an inanimate nunition, in which case
t he vLP_threat_id

i d)

Type of threating object. (Entity Enuneration)
(Normally the threat is a nunition

in which case this field will be derived
fromthe DI'S Burst descriptor field of

the detonation and fire PDUs).

vLParam(3)

VLParam(3)
VLP_firer_id EntityID enum If the originating entity (the shooter)
can be determined, then this is its
entity ID.

vLp_firer_type EntityType enum If the originating entity (the shooter)
can be determned, then this field

identifies the DIS entity type.

The vulnerability table reader function must derive all of it’s required environmental information from these
data structures. |[fitrequires additiondenvironmentadata, thenthe |ethality server codewill have to be
nodi fi edt oprovi det hat dat a.

Synopsi s of the APl functions arenow gi veni nt hefol | owing order:

vlp_setp_all_Munition_Frm_DIS()
vlp_zero_all_params()
vlp_print_all_params()

/*
~ vlp_setp_all _Mnition FrmD S()
*

int vip setp all Minition FrmD S(PDU *es_ tgt,
PDU *es-firer, PDU *pfire, PDU *pdet)

Map all DIS data (fromthe pdu's) to their appropriate paraneter.
NOTE Assumes pPDUs are pointers to ARL DI'S Manager PDU structures.

% % k% g

* This function uses the data found in the Target and Firer's
* Entity State, the Fire, and the Detonation Protocol Data Units (PDUs)

: to set the appropriate viparam |ayer paraneters.

*

Returns 0 on an error.

*

*/

/*
~ vlp_zero_all_params()

voi d vlp_zero_all_params(void)

initialize all parameters.
sets to zero all paraneters in the VLP |ayer

* % % sk k%

*/

/*
~ vlp_print_ali_params()
*

* void vlp_print_all_parans(void)
*
Di splay settings of all VL paraneters values.
* These values are used by table |ookup functions to parse

* their individual vulnerability tables. See definitions for all
* the named variable in the DIS Lethality server's data dictionary.

$Revision: 1.3 $ June 1998 5

vLParam(3) vLParam(3)

*

* See Also:

* vlip_zero_all_params();

* _vlp_setp_....functions();
*

*/

BUGS
The global variables should be hidden. APIs should be written instead to set and get parameter values. (e.g.

_vip_setp target id(), _vip_getp target id()). Most of these have already been written, but since they the
set was incomplete, the naked global variables are left exposed for now. (Another reason for leaving them
exposed for now is that access time is dightly faster when not having to go through the overhead of calling

an extra function layer).

SEE ALSO
Other DIS Lethality server components:

vi(3) db(3)

AUTHOR
Geoff Sauerbom <geaffs@arl.mil>, US Army Research Lab. 1997, 1998.

$Revision: 1.3 $ June 1998

VLS_DB_INIT(5) VLS_DB_INIT(5)

NAME

dis_mon

DESCRIPTION

vls_db_init.ini (This is the same initialization file needed by thedata manager (db) API layer of the DIS
Lethality server. Thisisan 1S0646, 7 bit (ASCII) file. Lines whose first non-white spaces character is the
"#" symbol are ignored. The file consists of name-value pairs which define the file names to be read in
order to initiaize certain data structures used by the DIS Lethality server's data manager (db) API layer.
File names specified in vis_db_initini are assumed to be found relative to the $VLS_HOME/Data/Init/
directory. VLS_HOME is an environmental variable which must be set to the root (home) directory of the
DIS Lethdity server. If not set, then the value of $VLS_HOME is taken as the current working directory

(u./u).
An example vls_db_init.ni initialization file follows:

#$Id:vls_db_init.5,v 0.5 1999/01/21 21 27:50 geoffs Exp geoffs $
#

This file is input to db_init() routine.

¢ eg. if this file was called "./vls_db init.ini",

then calling the APl @b_init():

#

db_init("./vlis_db_init.ini");

#

would initialize the database.

#

syntax:

:

+ DIS ENTITIES FILE - the file containing all DS Entity ID s

file's format in is coma separated fields.

(there are 15 fields. The last field is the
record nunber. the first 14 fields conprise
the 7 DIS "Entity Type" enumerations. These are
ordered in pairs of enuneration integer,

followed by ascii text enumeration description.
#

DI'S_AUXILI ARY_ENTITIES FILE - user added (or non-standard dis entity ID’s.
#

DAMAGE_SOURCE_META_DATA_FILE - contains pointers to where | ookup

tabl es canbe found.

#

DI S _ENTI TI ES_FI LE ./dis2_0_4_ids.csf

DI S_AUXI LI ARY_ENTI TI ES_FI LE .Idis_entities_aux.csf
DAMAGE_SOURCE_META_DATA FI LE ./tst_tbls_HEAT.csf

Identifiers for the name-value pairs are as follows:

DIS ENTITIES FILE The file name which follows this keyword identifies the file containing al DIS
Entity Enumerations. Currently the entity enumeration file format in is comma separated fields. One
record appears per line. There are 15 fields per record. The last field is the record number. the first 14
fields comprise the 7 DIS “Entity Type” enumeration fields. These are ordered in pairs of enumeration inte-
ger, followed by ASCII text enumeration description. The enumeration integers correspond to the value for
the 7 DIS “Entity Type" enumeration fields (Kind, Domain, etc.) as see in the table below.

$Revision: 0.5 $ March 1998 1

VLS_DB_INIT(5) VLS_DB_INIT(5)

DIS ‘Entity Type" Enumeration
Field Name Bit Length
Rind
Domain
country 1
Category
Subcategory
Specific
Extra

O CO O OO oy OO ©o

The field that follows each enumeration containts a brief quoted text string to name to that enumeration
value, Enumeration values and their names placed in the DIS_ENTITIES FILE file should only be enu-
merations found in the DIS enumeration standard (see http:/siso.sc.ist.ucf.edw/dis/dis-dd/). The
DIS_AUXILIARY_ENTITIES FILE file can be used to add non-standard and experimental enumera-
tions.

A (very) short excerpt of an example DIS_ENTITIES_FILE file follows:
¢

¢ DIS 2.0.4 Enunerations (1995)
contained in the |EEE 1278.1-1395 Standard for DS
#
Derived fromthe DIS Data Dictionary.
1,"platform”,1.00,"Land", 225, "United States”,1.00,"Tank",1.00," M Abrams",1.00,"M1 Abrams",1.00,"VERSION 5",1
1,"platform",1.00,"Land",225, "United States",1.00,"Tank",2.00," M0 man Battl e Tank (MBT)",1.00," M60A3",1.00,"",2
1,"Platform™,1.00,"Land",225,"United States",1.00,"Tank",4.00," M48 nedi um tank",1.00," M48C",1.00,,3
1,"platform”,1.00,"Land",225,"United States",1.00,"Tank",4.00," M48 nedi um tank",2.00," M4BAL",1.00,°",4

DIS_AUXILIARY_ENTITIES FILE Identifies the file to be used for adding any additional (auxiliary)
DIS enumerations. Sometimes it is handy for adding exercise specific entities or entities not in the latest
release of the DIS enumeration standard. The DIS_AUXILIARY ENTITIES FILE file follows the same
format as the DIS_ENTITIES_FILE file,

DAMAGE_SOURCE_META_DATA_FILE This denotes the file which contains references to lethality
data sources. This telis the the data manager where to find look-up tables associated with different tar-
get/threat combinations. The data format found in this file is currently a comma-separated field list. There
are five fields which identify the following items.

The threatened entity (in DIS standard enumeration>.

The threat (in DIS standard enumeration).

The type of V/L analysis method to be used (i.e. MFK direct or indirect fire).
The table format identifier.

The table's location (in URL format).

The V/L analysis method must be a “quoted” string as identified in the array VL_Meth_List[] (source code
$VLS_HOME/src/Db/vl_meth.h). A short excerpt from a DAMAGE_SOURCE_META_DATA _FILE
follows:

Note that the file URL location is taken relative

to the $VLS_HOME directory.
#--next line's tgt andthreat are. Soviet 125nm KE Threat vs.a T-80 target.
11222111 22222 2 11,"DIS HitToKill","IUA_KE", "file:/Data/Tables/IUA/smplKE.iua"

#
DI'S enumerations are | EEE 1278. 1- 1995 St andard.
#
#

$Revision: 0.5 § March 1998 2

VLS_DB_INIT(5) VLS_DB_INIT(5)

#--next line's tgt and threat are: Soviet 120mm HEAT-FS VS. a T-80 tgt.

11222111, 2 2 222 2 18,"DIS HitToKill","IUA_HEAT","file:/Data/Tables/IUA/smpl
#--next line's tgt and threat are: AT-5 Spandrel nmissile VS. a T-80 tgt.
11222111, 2 2 222 1 7,"DIS HitToKill","IUA_HEAT","file:/Data/Tables/IUA/smpl

Note that High Explosive Anti-Tank (HEAT) munitions are designated as using the ‘DIS HitToKill" vulner-
ability methodology. This means they have to actually hit the target in order for the server to look-up
lethality effectsin the look-up tables. Thisis due to the type of vulnerability data that is being used (in the
look-up table). The vulnerability data that is being used are treated as “probability of a kill” (at some level)
given a hit on the target. If therefore the munition actually missed the target, it would not make sense to
used the data in this look-up table to describe the results of the event. (Even if it was only a near miss that
detonated right next to the target). The designation ‘DIS ProxKill" could be used if the data set was one

which did not require a “Hit” directly on the target.

FILES
$VLS_HOME/Data/Init/vls_db_init.ini

SEE ALSO
Other DIS Lethality server components.

dis_ mon(l), db(3), vi(3) and $VLS_HOME/src/Db/vl_meth.c within thevl(3) API in particular.

Author
Geoff Sauerbom <geoffs@arl.mil>, US Army Research Lab. 1997, 1998.

$Revision: 0.5 $ March 1998 3

VLSCLIENT(3) VLSCLIENT(3)

NAME
vls_open, vls_close, vis_send, vls_read

SYNOPSIS
#Hinclude "viserver.h"

int vls_open(char *host);
int vls_close(void);

int vis_send(char *data);
int vis_read(char **ptr);

DESCRIPTION
vlserver client library functions. V/L server client applications must call these functions to communicate
with a running DIS V/L Communications Server.

/*

vls_open()
*
*+ int vis_open(char *host)
*
* This APl is used by client prograns to open a connection
* tothe DS V/L server. The argument "host" is an
* ASCI| null terminated string that is the name (or |P address)
+ of the conputer which is running the V/IL server.
*
* REQUI RES: .
* The DIS vlserver programto already be running on the "host"
* conputer.
*
* RETURNS
*
* TRUE (1) if connection is successful.
*+ FALSE (0) if connection was unsuccessful.
*
* SEE ALSO /etc/hosts
*/
int vls_open(char *host);
/-k

vls_close()
*
* int vls_close(void)
*
* This APl used by client prograns to
*+ termnate connection with V/L server.
*
* RETURNS
*
* TRUE (1) - (* on a success close. *)
+ VL_BAD_NETCORN - (if there never was a connection to begin with *)
*
*/

int vis_close(void);

/*

$Revision: 0.3 $ June 1998 |

VLSCLIENT(3) VLSCLIENT(3)

vls_send()
int vls_send(char *dat a)

This routine takes a data nsg received froma client
and sends it the the VL server. It is up to the client
to nake sure that the message is a |egal message to the
server. The nessage a null ternminated ASCI| string

For the proper syntax of see the manual page: vlserver(l)
RETURNS 1 - on success

VI_BAD_NETCONN - if there is not a connection established
| ess than zero - on failure.

S % % sk o % o F * * * ¥ * *

*/

int vls_send(char *data)

~N
*

vls_read()
int vls read(char **ptr)

This function checks to see if the VL Server has sent data
back to the client. (Usually because the client has posed
a query to the server). |If a nessage has been sent, then
the nmessage type that was sent fromthe VL Server will be
the returned value of the function (this identifies the
message type).

In addition to the nessage type, the nessage itself is passed
to the client by setting the the argunent "ptr" to point to
sone data message. (However, not all nessage types wll pass
message and set the "ptr" argunent.) |f a nmessage is

passed, then it is an ASCIl (NULL terminated) string. This
string is allocated nmenory and it is the responsibility

of the calling application to free it (via free()) when

no longer need. The interpretation of the string nessage
depends on the nessage type val ue returned

Client vulnerability queries are usually answered by a
VL_MSG TO CLI ENT nessage type. (Unless an exception
occurred). An inproperly formatted query returns
VIL_BAD_QUERY. |f the VL server stopped running for sone
reason VL_SERVER SHUTDOM is returned. |f the client sends
too many quarries before looking for an answer, (or if too
many clients are queuing faster than the server can respond,
it is possible for the server to end up dropping queries and
returning a VL_MSG OVERFLOW nmessage type. [f the client
failed to call vls_open() prior to formng a query to the
server, then a VL_BAD_NETCONN nessage type is returned. If
the client application mis-formatted a query, then the a
VL_BAD_QUERY nessage type is returned. How a proper query
is formated is explain in the vlserver(l) manual page.

ook b ok 4 ok ok ok ok ok ok % ok ok ok kA ok ok ok R E %k S * ¥ H ok ok o A o A A

$Revision: 0.3 $ June 1998 2

VLSCLIENT(3) VLSCLIENT(3)

*

* RETURNS
*

* The function returns a nessage type and may set the
* argument "ptr" to point to a text message. Values

* (message types) returned are one of the follow ng val ues:
*

* Message Type Meaning
¥ | ememmesememmmm= 00000000 e eameeeesmceemmceamsececmmm e —-————-
* VL_NO_DATA (* nonessage (yet?) . ..keep trying... *)
* VL_MSG TO CLI ENT (* incomng MSG from server *)
* VL_SERVER_SHUTDON (* server shutting down *)
* VL_MSG_OVERFLOW (* too many queries in server's que*)
* VL_BAD_QUERY (* couldn’t format or understand query *)
* VL_BAD_NETCONN (* Never connected - call vls_open() 1st. *)
*
* NOTE: The returned nessage point to by "ptr"
* is allocated nenory and it is the responsibility
* of the calling application to free it (via free()) when
* no longer need.
*
* SEE ALSQO
*
* vlserver(l)
*
*/
int vls read(char **ptr);
EXAMPLECCODEEXCERFT

The code except would be linked with the libvlsclient.a library (via a compile option such as "-lvisclient".
(i.e. cc example.c -lvisclient™).

##include "vlserverh"

int status, query-id,
char *srv_msg; I* will point to message return by server */

[* code excerpt... ¥/

vls_send("1 echo hello world");

while (VL_NO _DATA == (status=vls_read(&srv_msg)))
; /* null loop waiting for server to respond*/

/* got a message back! */

puts(srv_msg);

free(srv_msg);

/* sendanot her nessage: ¥
vls_send("2 QUERY TYPE_mfkDIS_Result ARGS_mfkDIS_IDS 1185 33086 1110 1185 33086 12");
while (VL_NO_DATA == (status=vls_read(&srv_msg)))
;/* null loop waiting for server to respond */
* got a message back */
if (status== VL_MSG_TO_CLIENT) {
query-id = atoi(srv_msg);
if (query-id==2) {/* 2isthe D we sent with our 2nd call to vls_send() */
puts("Got back an answer to our query!”);
printf("Answer is. %s0,5v_msy);

$Revision: 0.3 $ June 1998

VLSCLIENT(3) VLSCLIENT(3)

}
b

free(srv_msg);

SEE ALSO
Other DIS Lethality server components:

viserver(1), vlexample client.c - an undocumented example client program provided with the DIS Lethal-
ity server (look in $VLS_HOME/src/Server).

Author
Geoff Sauerbom <geoffs@arl.mil>, US Army Research Lab. 1997, 1998.

$Revision: 0.3 $ June 1998

VLSERVER(1) VLSERVER(1)

NAME
vlserver

SYNOPSIS
viserver [-P port#][-V]

DESCRIPTION
viserver (The DIS Vulnerability/Lethality Server front end) is a part of the a collective set of programs and
APIs known as the DIS Lethality server. This application is a TCP/IP server for clients to the DIS Lethality
server. It works in conjunction with dis_mon (the DIS Damage Monitor). In fact viserver does very little
processing itself, it merely passes client queries on to the-DIS Damage Monitor and returns the results.
viserver must be started before dis_mon since viserver both creates the shared memory link between the
two processes and communicates the location of that link to dis_mon.

OPTIONS
-P port# Where port# |s the port socket number where V/L server clients shall connect to the server.
(Default is port 4976).

-V Turn on verbose mode. Gives extra information printed to the local console.

PROTOCOL
client/server protocol is a very simple set of ASCII commands, queries, and responses.

All commands sent to the server by a client are preceded by an integer serial number (e.g. “3 ECHO hello
world”). The serial number has no significance to the server (other than it is required for proper syntax).
This same serial number is returned to client along with the server’s reply for that particular command. The
following are recognized commands a client may send to the server:

ECHO <string> Where <string> is any text. The server returns <string> to client.
SHMID The server returns the shared memory ID to client (see shmget(3), shmctl(3)).

VERSION The server returns server/client protocol version ID. This an identification associated
with a set of recognized commands a client may send to the server. (The client-server synatx lan-
guage version). VER |s a synonym for VERSION.

QUERY <QTYPE> <ARG_TYPES> [arguments.. .]

This is the main query mechanism. The server returns an answer to a vulnerability query. The
format of the answer is specified by QTYPE where QTYPE is one the valid type specifiers (see
QTYFE). ARG_TYPES tells the server what kind of arguments will follow.
<QTYPE> specifies the form in which the query answer isto appear. Valid query types
ae
TYPE_mfkDIS_Result
TYPE_mfkDIS_ProbAll
TYPE_mfkDIS_ProbK
TYPE_mfkDIS_ProbMF
TYPE_mfkDIS_ProbF
TYPE_mfkDIS_ProbM
TYPE_mfkDIS_ProbNoDamage

<ARG_TYPES> tells the server what kind of arguments will follow. Currently the only
valid argument type is.

ARGS_mfkDIS_IDS

$Revision: 0.3 $ Feb 1998 1

VLSERVER(1) VLSERVER(1)

ARGS _mfkDIS_IDS tells the server to expect ID arguments. (These IDs will specify the
DIS Entity ID and DIS Detonation Event ID relevant to the query. That is the arguments
shal be the DIS Identity of the threatened Entity followed by the DIS Identity of the Det-
onation event which poses a threat to the Entity.

Since DIS expresses these identities in the form of a set of triple integers (for: site, appli-
cation, id), then the arguments shal appear as six integers. (Two sets of triplets, one set
for the threatened (target ID) followed by another set for the Detonation event ID:

tgt_site tgt_app tgt_id event-site event_app event-id

An example query syntax:

123 QUERY TYPE_mfkDIS_Result ARGS_mfkDIS_IDS 1185 33086 1110 1185 33086 12

This query asks the server to supply an "MEK" type result for the entity 1185 33086 12 as a consequence of
detonation event 1185 33086 1110. The server might respond with something like:

123: 40

123" matches the query ID that was passed to the server. "4 and 0" are the RESULT and FLAG codes
respectively. The following tables describe RESULT and FLAG codes for TYPE_mfkDIS_Result type

results:
RESULT
Numeric Enumerated Meaning
code equivalent
0 PS_MFK_M Mohility Kill
1 PS_MFK_F Fire Power Kill
2 PS_MFK_MF Mohility and Fire Power Kill
3 PS MFK_K Catastrophic Kill
4 PS_MFK_NODAMAGE No Additional Damage
5 PS_ERROR unknown error

The FLAG returned may have the following values and meanings associated with them:

$Revision: 0.3 $ \ Feb 1998 2

VLSERVER(1) VLSERVER(1)

FLAG return codes
Vaue Meaning

-1 Unknown error.
A generic pkh result is returned but is not authoritative.

In this case cdling the function rpt_perror() might shed
some light on the source of the error. (Thisis an
interna viserver library procedure whose purpose is
similar to perror()).

0 Success.

The pkh source for the referenced entity and threat

munition (as defined in the DAMAGE_ SOURCE_META_DATA_FILE)
was successfully found, interpreted, and used in

the calculation of the returned(VL_Result) value.

1 No Table.

A generic pkh result is returned but is not authoritative.

A reference to a vulnerability source could not be found
in the DAMAGE_SOURCE_META_DATA_FILE for this
combination of entity and threat.

2 Corrupt Table.

A generic pkh result is returned but is not authoritative.

The the referenced vulnerability source data was found,
however there was an error when attempting to interpret
the data.

3 No Environment Data.

A generic pkh result is returned but is not authoritative.

Data describing the fire and detonation events were
never observed while monitoring the run time
environment.

$Revision: 0.3 $ Feb 1998 3

VLSERVER(1) VLSERVER(1)

FLAG return codes
Value Meaning
4 Unknown Target.

A generic pkh result is returned but is not authoritative.

A reference to the threatened (targeted) entity could
not be found in the DIS_ENTITIES_FILE nor in the

DIS_AUXILIARY_ENTITIES_FILE.
5 Unknown Threat.

A generic pkh result is returned but is not authoritative.

A reference to the threat munition could
not be found in the DIS_ENTITIES_FILE nor in the
DIS_AUXILIARY_ENTITIES_FILE. (See vls_db_init(5)).

More example client commands and server responses:

client's command server's response]
1 ECHO HelloWorld 1. Hello World

2VER 2. 19970930

3 FOO BAR 3. VLS_QUERY_SYNTAX_ ERROR

BUGS
“Surely you aren't serious.” ‘Yes | am....and don't cal me Shirley.”

SEE ALSO
Other DIS Lethaity server components:

dis_mgr(1), visclient(3), vls_db_init(5) vlexamp|e client.exe viexample_client.exe is an undocumented
example client program provided with the DI S Lethality server (look in $VLS_HOME/bin).

Author
Geoff Sauerbom <geoffs@arl.mil>, US Army Research Lab. 1997, 1998.

$Revision: 0.3 $ Feb 1998 4

NO OF
COPIES

ORGANIZATION

ADMINISTRATOR

DEFENSE TECHNICAL INFO CENTER
ATTN DTIC OCP

8725 JOHN J KINGMAN RD STE 0944
FT BELVOIR VA 22060-62 18

DIRECTOR

US ARMY RESEARCH LABORATORY
ATTN AMSRL CS AL TAREC MGMT
2800 POWDER MILL RD

ADELPHI MD 20783-1 197

DIRECTOR

US ARMY RESEARCH LABORATORY
ATTN AMSRL CI LL TECH LIB
2800 POWDER MILL RD

ADELPHI MD 207830- 1197

DIRECTOR

US ARMY RESEARCH LABORATORY
ATTN AMSRL D R WHALIN

2800 POWDER MILL RD

ADELPHI MD 20783-1 197

DIRECTOR

US ARMY RESEARCH LABORATORY
ATTN AMSRL DD J J ROCCHIO
2800 POWDER MILL RD

ADELPHI MD 20783-1 197

DOD JOINT CHIEFS OF STAFF
ATTN J39 CAPABILITIES DIV
CAPT J M BROWNELL
THE PENTAGON RM 2C865
WASHINGTON DC 20301

OFC OF THE DIR RSRCH AND ENGRG
ATTN R MENZ

PENTAGON RM 3E1089
WASHINGTON DC 20301-3080

OFC OF THE SECY OF DEFNS

ATTN ODDRE (R&AT) G SINGLEY
ODDRE (R&AT) S GONTAREK

THE PENTAGON

WASHINGTON DC 20301-3080

OSD

ATTN OUSD(A&T)/ODDDR&E(R)
ATTN RJ TREW
WASHINGTON DC 20301-7100

169

NO OF
COPIES

ORGANIZATION

AMCOM MRDEC
ATTN AMSMI RD W C MCCORKLE
REDSTONE ARSENAL AL 35898-5240

CECOM
ATTN PM GPS COL S YOUNG
FT MONMOUTH NJ 07703

CECOM

SP & TERRESTRIAL COMMCTN DIV
ATTN AMSEL RD ST MC M H SOICHER
FT MONMOUTH NJ 07703-5203

US ARMY INFO SYS ENGRG CMND
ATTN ASQB OTD F JENIA
FT HUACHUCA AZ 85613-5300

US ARMY NATICK RDEC
ACTING TECHNICAL DIR
ATTN SSCNC T P BRANDLER
NATICK MA 0 1760-5002

US ARMY RESEARCH OFC
4300 S MIAMI BLVD
RESEARCH TRIANGLE PARK NC 27709

US ARMY SIMULATION TRAIN &
INSTRMNTN CMD

ATTN J STAHL

12350 RESEARCH PARKWAY

ORLANDO FL 32826-3726

US ARMY TANK-AUTOMOTIVE &
ARMAMENTS CMD

ATTN AMSTA AR TD M FISETTE

BLDG 1

PICATINNY ARSENAL NJ 07806-5000

US ARMY TANK-AUTOMOTIVE CMD
RD&E CTR

ATTN AMSTA TA J CHAPIN
WARREN MI 48397-5000

US ARMY TRAINING & DOCTRINE CMD
BATTLE LAB INTEGRATION & TECH DIR
ATTN ATCD B J A KLEVECZ

FT MONROE VA 2365 1-5850

NAV SURFACE WARFARE CTR

ATTN CODE B07 J PENNELLA

17320 DAHLGREN RD BLDG 1470 RM 1101
DAHLGREN VA 22448-5 100

NO. OF

ORIEANIZATION

1

DARPA

ATTN B KASPAR

3701 N FAIRFAX DR
ARLINGTON VA 22203- 17 14

UNIV OF TEXAS

ARL ELECTROMAG GROUP
CAMPUS MAIL CODE F0250
ATTN A TUCKER

AUSTIN TX 78713-8029

HICKS & ASSOCIATES, INC.
ATTN G SINGLEY 111

1710 GOODRICH DR STE 1300
MCLEAN VA 22 102

ARL ELECTROMAG GROUP

CAMPUS MAIL CODE F0250 A TUCKER
UNIVERSITY OF TEXAS

AUSTIN TX 78712

SPECIAL ASST TO THE WING CDR
50SW/CCX CAPT P H BERNSTEIN
300 OMALLEY AVE STE 20
FALCON AFB CO 80912-3020

HQ AFWA/DNX
106 PEACEKEEPER DR STE 2N3
OFFUTT AFB NE 68113-4039

APPLIED RESEARCH ASSOCIATES INC
ATTN MR. ROBERT SHANKLE

219 W BEL AIR AVENUE SUITE 5
ABERDEEN MD 21001

CDR US ARMY AVIATION RDEC
CHIEF CREW ST R7D (DR N BUCHER)
MS 243-4

AMES RESEARCH CENTER
MOFFETT FIELD CA 94035

ITT INDUSTRIES

ATIN CHARLES WOODHOUSE
2560 HUNTINGTON AVE
ALEXANDRIA VA 22303

ITT INDUSTRIES

ATTN MICHAEL O'CONNOR
600 BLVD SOUTH SUITE 208
HUNTSVILLE AL 35802

RAYTHEON SYSTEMS COMPANY
ATTN JOHN D POWERS

6620 CHASE OAKS BLVD MS 85 18
PLANO TX 75023

170

NO. OF

COPIES ORGANIZATION

1

OPTOMETRICS INCORPORATED
ATTN FREDERICK G SMITH
3 115 PROFESSIONAL DRIVE
ANN ARBOR MI 48 104-5 13 1

DIR US ARL

ATTN AMSRL SL EP (G MAREZ)

WHITE SANDS MISSILE RANGE NM
88002

DIR US ARMY TRAC

ATTN ATRC WE (LOUNELL SOUTHARD)

WHITE SANDS MISSILE RANGE NM
88002

DIR US ARMY TRAC
ATTN ATRC WEC JOE AGUILAR
CARROL DENNY DAVID DURDA
PETER SHUGART
WHITE SANDS MISSILE RANGE NM
88002

CDR TARDEC
ATTN AMSTA TR D MIS 207

FSCS

ROGER HALLE GEORGE SIMON
WARREN MI 48397-5000

CDR ARDEC

ATTN AMSTA AR FSS JULIE CHU
DON MILLER BILL DAVIS

PICATINNY ARSENAL NJ 07806-5000

DEFENSE THREAT REDUCTION AGENCY
ATTN SWE (WALTER ZIMMERS)

6801 TELEGRAPH ROAD

ALEXANDRIA VA 223 10

ABERDEEN PROVING GROUND

DIRECTOR

US ARMY RESEARCH LABORATORY
ATTN AMSRL CI LP (TECH LIB)
BLDG 305 APG AA

US ARMY EDGEWOOD RDEC
ATTN SCBRD TD J VERVIER
APG MD 21010-5423

o«

NO OF

COPIES ORGANIZATION

8

26

DIR AMSAA

ATTN P DEITZ M BORROUGHS
B BRADLEY J BREWER
D HODGE D JOHNSON
R NORMAN A WONG

US ARMY RESEARCH LABORATORY
ATTN AMSRL WM BF J LACETERA

NO. OF
COPIES

1

1

AMSRL WM BF G SAUERBORN (25 CYS)

BLDG 120

US ARMY RESEARCH LABORATORY

AT-I-N AMSRL SL BV R MEYER

AMSRL SL BV J ANDERSON

AMSRL SL BV C KENNEDY
AMSRL SL BV M MUUSS
BLDG 238

US ARMY RESEARCH LABORATORY

ATTN AMSRL M SMITH
AMSRL G MOSS
BLDG 321

DIR USARL

AMSRL WM W DR INGO MAY
LARRY JOHNSON

BLDG 4600

DIR USARL
AMSRL WM B A. HORST
BLDG 4600

DIR USARL
AMSRL-SL-B J SMITH
BLDG 328

ABSTRACT ONLY

DIRECTOR

US ARMY RESEARCH LABORATORY

ATTN AMSRL CS AL TP TECH PUB BR

2800 POWDER MILL RD
ADELPHI MD 20783-1 197

COMMANDER

US ARMY MATERIEL COMMAND
ATTN AMCRDA TF

500 1 EISENHOWER AVENUE
ALEXANDRIA VA 22333-0001

PRIN DPTY FOR TECH GY HDQ
US ARMY MATL CMND

ATTN AMCDCG T

5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

171

ORGANIZATION

PRIN DPTY FOR ACQTN HDQ
US ARMY MATL CMND
ATTN AMCDCG A D ADAMS
500 1 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

DPTY CG FOR RDE HDQ

US ARMY MATL CMND
ATTN AMCRD BG BEAUCHAMP
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

COMMANDER

US ARMY MATERIEL COMMAND
ATTN AMCDE AQ

5001 EISENHOWER AVENUE
ALEXANDRIA VA 22333-0001

INTENTIONALLY LEFT BLANK

172

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments r S
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorates fr Information Operations and

arding this burden estimate or

v other aspect of this
eports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwark Reduction Project (0704-0188), Washington, DC 20503.

[. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

February 1999

Final

3. REPORT TYPE AND DATES COVERED

t. TITLE AND SUBTITLE

The Distributed Interactive Simulation (DIS) Lethality Communication Server

Volume Il: User and Programmer’'s Manual

.. AUTHOR(S)

Sauerborn, G.C. (ARL)

5. FUNDING NUMBERS

PR: 1L162618AH80

". PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
Weapons & Materials Research Directorate
Aberdeen Proving Ground, MD 2 10 1 O-5066

8. PERFORMING ORGANIZATION
REPORT NUMBER

. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Research Laboratory
Weapons & Materias Research Directorate
Aberdeen Proving Ground, MD 2 10 1 0-5066

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ARL-TR- 1775

1. SUPPLEMENTARY NOTES

2a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

3. ABSTRACT (Maximum 200 words)

Volume 1 presented the distributed interactive simulation lethality communication server, a client-server approach to handling
battle simulation lethality. Although Volume 1 explained the approach and its benefits and limitations, it presented no
information about how to set up, run, or modify the server. In this volume, these vital (yet sometimes tedious) details are

provided.

{. SUBJECT TERMS

15. NUMBER OF PAGES
183

16. PRICE CODE

client server DIS lethality
degraded states distributed simulation vulnerability
7. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE
Unclassified Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

173

Standard Form 298 (Rev._2-89)
Prescribed by ANSI Std. Z39-18
298-1 02

