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Abstract 

Log-amplitude and phase variances of a weakly scattered acoustic signal 
are calculated for line-of-sight propagation through a random medium. 
The spectrum of the index-of-refraction fluctuations in the random 
medium is assumed to scale in proportion to the wavenumber raised to an 
arbitrary power in the limit of large wavenumbers (small spatial scales). 
Both scalar and vector contributions to the index of refraction are 
considered. Most of the calculated results reduce to those given by 
Tatarskii (1971) and Ostashev (1994) when the power law exponent is. 
-5/3, which is the value characteristic of turbulence. However, the results 
do not exactly reduce to an equation given by Flatte et al (1979) for the 
log-amplitude variance in terms of strength and diffraction parameters. 
The equation from Flatte et al is shown to be an approximation, valid only 
when the spectral energy in the random medium is concentrated at a 
well-defined outer scale. 
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1. Introduction 

Sound waves that have propagated through the atmosphere exhibit 
random behavior. The cause for this behavior in most cases is atmospheric 
turbulence, although other random atmospheric phenomena such as 
internal waves can also play a role. The random behavior of the sound 
wave can significantly impact acoustical systems used for target detection, 
identification, and location. Hence a capability to estimate the statistics of 
sound waves is needed to quantify and predict the performance of Army 
acoustical systems operating in atmospheric environments. 

This report concerns the calculation of the variances in the phase and the 
logarithm of the amplitude (log amplitude) of a received signal. These 
variances have been the subject of much research during the past several 
decades. Two contrasting formulations of the variance statistics can be 
found in the literature: one originating with the pioneering work on 
random scattering by Tatarskii (1971), and the other with the elegant 
treatment of propagation through the random ocean by Flatte et al (1979). 
Tatarslcii’s results are specifically for the scattering of waves by turbuIent 
phenomena; Flatte et al adopt a more general approach, although its 
application to turbulence is not obvious from their book. More recently, 
Ostashev (1994) pointed out that the results from researchers such as 
Tatarslcii and Flatte et al apply strictly to scattering driven by fluctuations 
in an isotropic scalar field, as opposed to fluctuations in an isotropic 
vector field. In the atmosphere, for example, this would mean that the 
previous results apply only to scattering by random temperature 
fluctuations, and not to scattering by wind velocity &.rctuafions. This is a 
significant concern, since sound scattering by atmospheric turbulence 
comes primarily from the velocity fluctuations. Fortunately, Ostashev 
(1994) was able to extend Tatarskii’s results to isotropic vector fields. 

This report bridges the approaches of Tatarskii and Flatte et al, and 
extends their results to velocity fluctuations. To this end, I devise a very 
general formulation of wave scattering by a random medium that has an 
arbitary power-law spectrum. The formulation is compared to the results 
of Tatarskii and FIatte et al. Specificially, I consider the scattering of plane 
waves by scalar and vector fields, and the scattering of spherical waves by 
scalar and vector fields. 

The report presumes that the reader has some familiarity with the 
literature on propagation through random media, such as the books by 

1 



Flat&? et al and Tatarskii, or Rytov et al (1989). The reader may also find 
my earlier work (Wilson, 1998b) a useful reference on modeling of 
turbulence spectra and correiations. 
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2. Review of Previous Formulations for Weak Scattering 

Flatte et al (1979) analyzed the scattering of waves by random media using 
two parameters: a strength parameter @ and a diffraction parameter A. 
These parameters are given by the equations 

Q2 = 2a2LCIciX, and (1) 

X 
A=-. 

6L2ko (2) 

In the preceding equations, a2 is the variance of the (normalized) 
sound-speed fluctuations,* .C is the integral length scale, L is the 
correlation length scale of the sound-speed fluctuations, ko is the acoustic 
wavenumber (= 2~f /Q, where f is the frequency and ~0 the mean sound 
speed), and X is the propagation distance. This formulation involves two 
distinct length scales: the integral and correlation length scales. The 
integral length scale is calculated by integrating the correlation function 
with respect to separation, and then dividing by the variance. As a result, 
L is representative of the size of the largest, most energetic motions in the 
flow. On the other hand, the correlation length scale is defined by an 
expansion of the correlation function for small arguments and is 
representative of the outer scale, where the power-law scaling becomes 
invalid. The correlation length scale will be defined more precisely in the 
next section. 

Those situations where the strength parameter is much less than 1 are 
termed weak scattering. A large strength parameter indicates strong 
scattering. Similarly, weak and strung dij%rcfion correspond to small and 
large values of the diffraction parameter, respectively. Only weak 
scattering is considered in this report, since the statistical properties of 
strong scattering are already well established (Flatte et al, 1979). (In strong 
scattering, the complex acoustic signal has independent real and 
imaginary parts possessing zero-mean Gaussian statistics.) Weak 

*For an acoustic wave propagating through the atmosphere, the normalized sound- 
speed fluctuation is 

IV+g+$ 
0 co 

in which T’ is the fluctuation in temperature about the mean temperature TO, and v’ is the 
fluctuation in the wind speed (along the direction of propagation) about the mean. 

3 



scattering is in many ways the more difficult problem. More importantly, 
it is also pertinent to most Army scenarios, where the frequencies are low 
and the propagation distances are moderate. 

For weak scattering and strong diffraction (@ < 1, A > l), Flatte et al gave 
the results 

(p) = $ (x2) = ;, 

where ($2) and (x2) are the phase and log-amplitude variances, 
respectively. For weak scattering and weak diffraction (a < 1, A < l), the 
phase variance is 

The calculation of the log-amplitude fluctuations for weak scattering and 
weak diffraction-the geometrical acoustics regime-is the most challenging 
problem. Flatte et al gave but did not present a derivation for the equation 
(their equation (8.3.2)) 

Following this equation, they state: 

The log-amplitude fluctuations in the geometrical-optics region are 
thus of second order, and a carg%l treatment yields C&3.2), where the 
exact cot$cient of Aa depends on the details of the 
ocean-jluctuation spectrum . . . but is of order unity. 

A primary purpose of this report is to explore the general validity of 
equation (5). 

One issue concerning the general validity of equation (5) is evident in 
Flatte et al’s remark that the coefficient (l/4 in the equation) depends on 
the “details of the ocean-fluctuation spectrum.” And so, we ask the 
following: How much does the coefficient actually vary? On what 
properties of the propagation medium does it depend? Can the coefficient 
be defined more precisely? 

A broader issue concerns whether the general relationship that (x2) is 
proportional to AQ2 holds for propagation through random media besides 
the ocean. The main interest of Flatte et al was propagation through ocean 
internal (buoyancy) waves. Does their result apply to propagation through 
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turbulence? An important clue to answering this question is in the 
authors’ discussion in section 6.2 of their book regarding the transition 
from the geometric acoustics to the partially saturated scattering regime. 
There they state that the boundary between these two regimes is given by 
f&2@’ = 1, where p is the exponent in the power-law spectrum for the 
random fluctuations (F (Ic) 0: Ic-P). Based on well-known arguments first 
made by Kolmogorov, p = 5/3 for turbulence. However, for the internal 
waves considered by Flatte et al, p = 2. Therefore, we might anticipate that 

( > x2 cx APi21D2. (6) 

As discussed earlier, equations for the log-amplitude variance have been 
derived for propagation through turbulence by Tatarskii (1971). For plane 
waves, 

( > x2 = 0.308C$k,7’6X11’6, 

and for spherical waves, 

(>, x2 
2 716 = 0.124CNk, X 

in which C$ is called the strucfure-function par1 

l/f3 , 

ameter for the 
index-of-refraction fluctuations. The results for plane and spherical waves 
differ only with regard to their numerical coefficients. If one substitutes 
the values for @ and A in equations (1) and (2) into equation (6), the 
dependence on frequency and propagation distance agrees with 
Tatarskii’s results. Nonetheless, there is an indication that something is 
amiss: equation (6) involves two parameters associated with the 
large-scale (energy-subrange) structure of the turbulence, a2 and ,C. In 
equation (7), Cg is strictly a property of the small-scale (inertial-subrange) 
structure of the turbulence. Unless the product a2L in equation (1) has a 

2 universal relationship to C,, there is a fundamental disagreement 
between the results. The solution to this quandry, as well as to the other 
questions posed earlier, will become apparent in the following sections. 
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3. Turbulence Modeling-Assumptions and Parameters 

In this section, I discuss the statistical assumptions regarding the 
fluctuations in the propagation medium that will be used to derive the 
propagation statistics. Only two basic assumptions are made; additional 
assumptions are avoided so as not to restrict applicability of the results. 
The first assumption is simply that the medium has a finite variance and 
integral length scale. This leads to the requirement for the 
one-dimensional (1D) spectrum F (k) of the fluctuations in the 
propagation medium that (Wilson, 1998b) 

F(k=O)=$ 
The second assumption is that for large wavenumber k >> L, the spectrum 
obeys a power-law scaling: 

F (k) = yk-P, (10) 

where y is some constant (which may depend on the properties of the 
flow), and p is the power-law exponent. Equivalently, we can set 

F(k) = eS (kL) , 

where S (k,C) is a function equal to 1 for k = 0, and proportional to 
fl (kC)-* at large wavenumber, where 

An alternative formulation to equation (10) involves the structure 
function. The structure function for separations parallel to the direction of 
propagation is by definition 

q (r) = ([N(?-) - N (0)]2) = c;?J+ 

(When the preceding equation is applied to the velocity field, the 
separation T between the measurement points is implicitly in the same 
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direction as the velocity component being measured.) A relationship 
between y and Cg can be derived using the relationship 

1 - cos Icr) F (Ic) dk. 

The function (1 - cos kr) filters out the dependence of F (k) on small 
wavenumbers. Hence we can substitute equation (10) into (14). Integration 
then leads to 

c2 2 = -4lY (1 - p) sin ‘5. 
7 

A second alternative formulation to equation (10) was used by Flat@ et al. 
For the correlation function at small separations, they wrote 

where the subscripted I means that the separation between the 
measurement points is perpendicular to the direction of propagation. (In 
an isotropic scalar field, it does not matter in which direction the 
displacement is taken. For an isotropic vector field, however, the 
displacement direction is relevant.) For scalars, it follows directly from the 
definition of the structure function that 

C&=$-g. 
For a divergenceless vector field (such as velocity fluctuations in 
turbulence), 

Using this relationship, we derive for vector fields 

2 
c; = (p +“;; LP-1. 

(17) 
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4. Derivation of the Log-Amplitude and Phase Variances 

Under the conditions of weak scattering, Rytov’s method can show that 
the variance of log amplitude and phase for a propagating plane wave are 
(Rytov et al, 1989) 

(x2,$2) =27r2t$jX Om 
11 

1F &sin?] Q(O,kJLldkl, (20) 

where the minus sign applies to the log-amplitude variance, and the plus 
sign to the phase variance. The 3D spectrum of the turbulence is indicated 
by 0 (0, JCL), where the first argument is the wavenumber component 
parallel to the direction of propagation, and the second argument is the 
wavenumber component perpendicular to it. For velocity fluctuations, the 
pertinent velocity component is the one parallel to the direction of 
propagation. 

4.1 Scalars, Plane Waves 

To determine the log-amplitude and phase variances, we need to 
determine the 3D spectrum 0 (0, Ic) from the 1D spectrum F (Ic). A helpful 
intermediate step is to calculate the energy spectrum E (Ic), which 
specifies the energy in the random fluctuations per unit wavenumber, 
from F (Ic). For scalar fluctuations, the needed relationship is 

E(k) = 4%. 

Hence we have 

(21) 

For the 3D spectrum, we multiply by 2 to go from energy to variance, and 
then divide by the area of a spherical shell in the wavenumber space, 
4rk2. Hence 

0 (0, Icl) = -&-$. 
I (23) 

8 



Therefore, for large wavenurnbers, 

(24) 

It follows from equations (20) and (23) that 

By changing the integration variable to the normalized wavenumber 
x = klL, one can rewrite this equation as 

(26) 

in which 

D = X/koC2. (27) 

By comparing the definition of D to Flat@ et al’s diffraction parameter in 
equation (2), we see that the two are proportional: D = 6 (L/Q2 A. For 
strong diffraction (D, A >> l), contributions from the second term in the 
square brackets in equation (26) become negligible, and we can verify 
equation (3). For weak diffraction (D, A < l), the second term is 
significant. In fact, assuming that most of the spectral energy is 
concentrated at low wavenumber (which is the case for most media of 
interest), the second term is approximately 1, and for the phase 
fluctuations we arrive at equation (4). The only nontrival case is the 
log-amplitude variance for weak diffraction. Here the two terms in the 
square brackets nearly cancel out at low wavenumber, so that the 
significant contribution to the integral occurs at high wavenumber. Hence 
it is reasonable to use the high-wavenumber limit of the spectrum, 
equation (10). With this substitution we find 

( > x2 _ Pm2 O” 1_ -- 
2 J [ 1 - sin Ox2 %-‘-l dx. 

0 DE2 1 
Changing the integration variable to u = Dz2, we find 

(28) 

(29) 
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I could not find the integral in any standard table. It can be solved, 
however, by first replacing the difference in square brackets with an 
equivalent integral representation: 

1 
sin u 

-- = l-j&) 
U 

- cos (21 cos 6)] sin 8 d0 

(30) 

= lsin2 (F) sint?cM 

= 2~T’2sin2 (9) sinf3dO. 

In the first line, je is the spherical Bessel function. The second line follows 
from Poisson’s integral, equation (10.1.13) in Abramowitz and Stegun 
(1965). The third line follows from the trigonometric identity 
2 sin2 A = 1 - cos 2A. The fourth line is a consequence of the symmetry 
properties of the integrand. Substituting this result into equation (29), and 
reversing the order of integration between x and 19, we have 

( ) x2 = $Dp/202jf’2 [Jdmsin? (y) qJ,-P~2-1du] s~(jde. (31) 

The integral within the square brackets is given by Gradshteyn and 
Ryzhik’s (1994) equation (3.823), with the restriction 0 < p < 4. We now 
have 

COSP/~ 8 sin e de, (32) 

in which r (x) is the gamma function. Finally, the remaining integral is 
known from Gradshteyn and Ryzhik’s (1994) equation (3.621.5), leading to 
the result 

( > X2 = L-r (1 -p/2) cos $Dp’2@2. 

First we wilI verify that equation (33) reduces to Tatarskii’s result, 
equation (7). We start by replacing a, p, and D with their definitions 
(equations (1), (12), and (27), respectively), and this leads to 

( > X 
2 _ ;ypr (1 -p/2) cos ~~~-p~2x’+pi2- w 
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Next, using equation (15) to eliminate y in favor of C;, and performing 
some manipulations on the gamma functions, we have 

( > x2 = hs (P> ‘%k, 
2 2-P/2xl+p/2 7 

where 

2p-2fir p -I- 1 camp/2 
h(P)=- 2+p ( > 2 sin rp/4 * 

(35) 

(36) 

This very general equation holds for any power-law exponent 0 < p < 4. 
For turbulence (p = 5/3), it does reduce exactly to equation (7). 

Similar manipulations on equation (33) produce 

= h, (p) #-‘i2 $ Ap/2@2. 
0 

This equation does have the basic form of equation (6). However, the 
factor (L/L) is not strictly a constant. The correlation length L is a 
property of the inertial subrange, whereas the integral length scale L 
depends on the large-scale turbulence structure. In fact, it can be shown 
for the atmosphere that the ratio depends strongly on the relative 
importance of shear and buoyancy forcings of the turbulence; for 
turbulence generated almost entirely by wind shear, the ratio is close to 1, 
whereas for turbulence generated by buoyancy, the ratio may be l/10 or 
less (Wilson, 1998a). If one sets p = 2, and assumes that C M 0.2L, as was 
done by Flat@ et al, one finds 

( > X2 M 12AQ2. (38) 

This result has the same form as equation (5), although the constant 12 
appears in place of l/4. The cause of this discrepency is unclear, since 
Flatte et al do not provide a derivation of their equation. The discrepency 
could be due, in part, to confusion in the definition of the diffraction 
parameter; in much of the literature it is defined with a factor of 4 in the 
numerator, rather than 6 in the denominator, as in equation (2). 

4.2 Vectors, Plane Waves 

The spectrum of fluctuations of an isotropic vector field differs somewhat 
from that of an isotropic scalar field. The energy spectrum follows from 
the equation (Batchelor, 1953) 
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Therefore, at large wavenumber, we have 

E W = P (P + 2) q (kL)-p. 

The spectral density of the ith velocity component can be determined 
using (Batchelor, 1953) 

where k/l is the wavenumber in the ith direction. Hence, in place of 
equation (24), we have 

0 (0, kl) = P (P + 2) Po2L 
4n2k2 

(kIL)-p. 
I 

w 

This is the same as equation (24), except that it incorporates an extra factor 
(p + 2) /2. Hence the scalar results apply to vectors after multiplication by 
this extra factor. Equivalently one can replace h, (p) in equations (35) and 
(37) by 

h, (p) = -2P-3J;;r ‘+ F; ;;;. 
( > 

4.3 Scalars and Vectors, Spherical Waves 

For weakly scattered spherical waves, we start with (Rytov et al 1989) 

(43) 

(W 

instead of equation (20). In the preceding, the integration over t represents 
averaging over the propagation path. From this equation it can be shown 
that equations (3) and (4) are still valid for spherical waves. As with plane 
waves, the difficulty is in the log-amplitude variance for conditions of 
weak scattering and weak diffraction. Substituting equation (24) into (44), 
making the substituting u = Dk2L2, and using the trigonometric identity 
2 sin2 A = 1 - cos 2A, we find that 

( > x2 PP = -FDP 12~2 JJ [ 1 O3 sin2 ut (l - t> U-P/2-ldudt. 
2 1 (45) 

0 0 
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Performing the integrations as with the plane waves results in 

(X2) = $1 -p/2)B(l t-p/2,1 +P/2)cos~DP’2@2, 
2 (46) 

where B (2, y) is the beta function. Comparing this equation with equation 
(33), one finds that 

(x2> sphere 

(x2> 
= (1 + P/2) I? (1+ P/&l + P/Q * 

plane 

This result is valid for vectors as well as scalars. 

(47) 
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5. Summary 

The log-amplitude variances for weak scattering and weak diffraction (the 
geometric acoustics regime) are summarized in tables 1 and 2. The 
equations in the two tables are equivalent, but the first table specifies the 
variances in terms of structure-function parameters, whereas the second 
specifies them in terms of the strength and diffraction parameters. These 
tables tie together and generalize the previous results of Tatarskii (1971), 
Flat@ et al (1979), and Ostashev (1994). 

An interesting conclusion of this study is that one cannot generally 
calculate the log-amplitude variance from the strength and diffraction 
parameters alone, as suggested by equation (5). Knowledge of the 
length-scale ratio L/L is also required. Alternatively, one could define a 
modified strength parameter based on L (i.e., Qt = 2a2Lk$X) and use Qi 
to calculate the log-amplitude variance in the geometric acoustics regime. 
The distinction between the length scales would have little practical 
importance if the scales were nearly equal. However, in many propagation 
media, including the atmosphere, it appears that L can be an order of 
magnitude or more longer than L (Wilson, 1998a). 
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. 
Table 1. Log-amplitude variances for weak scattering and weak diffraction (the geometric acoustics regime) written in 
terms of structure-function parameter C$, acoustic wavenumber Ica, and propagation distance X. The function h, (p> 
is defined in equation (36). 

Wave type Pluctuations General (0 < p < 4) Tiarbulence (p = 5/3) Internal waves (p = 2) 

Plane scalar h, (p) C$k,2-d2X’+P/2 0.307C$k;‘6X”/6 o.393c$kox2 
Plane Vector (1 + 5) h, (p) C; k;-p’2X1+P/2 0.563C; k;‘6X1”6 0.785c;kox~ 

Spherical Scalar (1-t 5) B (1 + 5 , 1 + g) h, (p) C$ k,2-p’2X’+p’2 2 7/6 O.l24C, k, X 11/6 0.131cj$kox2 
Spherical Vector (I+ $)” B (I+ f, 1 + 5) h, (p) C;k,2-p’2X1+p’2 0.228C$k,7’6X11’6 0.262C;koX’ 

Table 2. Log-amplitude variances for weak scattering and weak diffraction (the geometric acoustics regime) written in 
terms of diffraction parameter A, strength parameter @, and ratio of correlation length to integral length scale, L/L. 
The function hs (p) is defined in equation (36). 

Wave type Pluctuations General (0 < p < 4) Turbulence (p = 5/3) Internal waves (p = 2) 
Plane h, (p) $ (6A)p’2 a2 1.37$A5/6@2 2.36+’ 

Plane Vector (1 + g) h, (p) $ (6~9~‘~ ~3’ 2.51+~I~“%~ 4.71$A@’ 

Spherical Scalar (1 + $) B (1-t f, 1+ $) h, (p) $ (6A)p’2 Qi2 0.553+A5’692 0.785+A@‘. 

Spherical Vector (1s g)” B (1 + f, 1+ $) h, (p) + (6A)p’2 (P2 1.01+A5’6@2 1.57+Aa2 
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