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Abstract

This report discusses the findings from one phase of our ongoing work to evaluate materials
for Army bearing systems. The objective of this phase is to determine the response and longevity
of various silicon nitride (S&N,)  materials to rolling contact fatigue (RCF) using hybrid and
all-ceramic systems. Tests were conducted under regular lubrication and lubrication-starved
conditions for extended periods. A correlation between RCF life and the hardness, strength, and
microstructure of each silicon nitride is made. The various silicon nitride materials evaluated
in these RCF tests were selected on the basis of providing a varied response to the RCF
parameters and conditions used.
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1. Introduction

.

The pursuit to improve tribological performance of bearings has taken us to examine the use

of hybrid and all-ceramic systems. The effort to improve lifetimes of bearing components is

propelled by (1) the requirement for drive-train components to survive higher loads,

temperatures, and speeds, necessitated in advanced emerging Army systems, and (2) the need to

reduce surface degradation of current system components from environmental effects.

Current ceramic bearing materials being considered today fail in the same noncatastrophic

mode as steel elements, which is an important consideration for their acceptability (Katz 1995).

Other reasons why silicon nitride (S&NJ  is being considered for replacing steel elements are

high hardness, low density, corrosion resistance, high operating temperatures, and high bend

strength. Hardness is important for wear and abrasion resistance. Lower density allows for

higher rotational speeds, and the other desired properties need no further elaboration (Katz 1993).

Silicon nitride has been intensely studied for more than 20 yr as an alternative for many

metallic structural applications at room and elevated temperatures. Many of these applications

have centered on high-temperature materials for engines. Other applications have included

cutting tools, electronic packaging, bearings, low-density structural materials, and wear

components.

Silicon nitride components are difficult to fabricate. Typically, parts are densified from

silicon nitride starting powders; although, for a few applications (such as electronic), silicon

nitride is applied by chemical vapor deposition. Because silicon nitride is a covalently bonded

material and has a low self-diffusion coefficient,  it takes a large amount of energy to promote

densification through diffusion. This can only be accomplished at extremely high temperatures

and pressures. Because of this diffculty,  densification aids are added to promote sintering at low

temperatures. These densification aids react with the silica inherently present on the surface of

each silicon nitride particle to form a liquid phase. This liquid phase allows some densification

through particle rearrangement. More significantly, it allows for the silicon nitride to be sintered
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through a solution reprecipitation mechanism. Because of the presence of these densification

aids, it is best to think of silicon nitride as an alloy, since the choice of densification aids greatly

affects the final properties of the material. In most cases, the densification aids react with the

silica to form a second phase that can be either crystalline or amorphous and is

the grain boundaries. SiAlONs  are a special case where alumina is added

densification aids. The alumina goes into solid solution with the silicon

aluminum and oxygen substituting for the silicon and nitrogen, respectively.

usually located at

along with other

nitride, with the

Because of the many different denisifcation aids that can be used, different silicon nitride

alloys can be developed to maximize materials property for specific applications. Densif-ication

aids can be chosen to allow sintering of silicon nitride at temperatures below its decomposition

temperature without the aid of pressure, The selections of densification aids determines the

processing technique (i.e., gas-pressure sintered [S], hot isostatically pressed [HIPed],  or hot

pressed), which, in turn, determines the microstructural features. HIEkd silicon nitrides tend to

have finer  grain sizes and higher strengths, whereas, in sintered materials, a duplex

microstructure can be developed, which can lead to a higher toughness.

2. Materials and Experimental Procedure

2.1 Materials. Various silicon nitride materials (Table  1) were selected for evaluation in

rolling contact fatigue (RCF)  tests using hybrid and all-ceramic systems. The materials were

selected on the basis of providing a varied response to the RCF parameters and conditions used,

not solely for a comparison of bearing quality. Most, if not all, of the materials have since been

replaced by their manufacturers with upgraded or modified versions. One material, Allied-Signal

GNlO  was not developed for bearing material applications but rather as a high-temperature

structural ceramic.

2.2 RCF. All RCF testing for the present effort was performed on a ball/rod rig as seen in

Figure 1 (developed by Federal-Mogul and now produced by NTN)  under the conditions listed in

Table 2.

2



Table 1. Materials Information

Supplier
Densification Knoop Hardness Phase

Method Additive Density at 1,000 g Content

Norton Advanced
Ceramics (Cerbec)

MgG

(g/cm3) (GPa)  -
3.23 15.65 25% a

75% p
ESK-EK9980 HIP
ESK-EK9980 S
Allied-Signal GNlO

MgQ 3.17 14.51 p phase
S &G3/4G3 3 . 2 6 13.77 p phase

Y,O,/SrG 3.31 - >95% I3

Figure 1. RCF Test Rig.

The RCF operates under the basic principle (as illustrated in Figure 2) and consists of a

rotating cylindrical test specimen alternately stressed by rolling contact with three radially loaded

balls. The three balls, separated by a retainer, are radially loaded against the test specimen by

two tapered bearing cups thrust-loaded by three compression springs (Glover 1982).

.

3

Replacing the balls, as necessary, during RCF testing with hybrid systems provides further

information on whether or not spalling or wear might be life limiting for a silicon nitride bearing

material.



Table 2. Conditions for RCF Testing

Hertzian  Stress 6.07 GPa (865 ksi) for condition la

Rotational Speed
Lubrication Supply
Lubrication Type
Specimen Length
Specimen Diameter
Surface Finish
TemDerature 20-25” C

6.40 GPa (911 ksi) for condition 2b
3,600 rpm
8-10 drops/min
h41L-PBF-23699C
76.2 mm +0.025/-0.000  in
9.52 mm +0.0000/-0.00005  in
0.05 to 0.10 pm AA

’ Ceramic rod with steel balls.
b Ceramic rod with ceramic balls.
’ U.S. Department of Defense (1997).

Figure 2. Schematic of Tester.

All four stations of the RCF tester were operated simultaneously to speed up acquisition of

the RCF data. At least three wear tracks and associated fatigue spalls were obtained for each

specimen condition, and the specimens were alternated among the test stations to minimize any
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systematic experimental error. During the ceramic-on-steel tests, the balls were 52,100 steel

balls and the rods were the silicon nitride materials. In the ceramic-on-ceramic tests, the ceramic

balls were NBD 100 grade 5 silicon nitride, while the rods were the silicon nitride materials

indicated in the specific tests. On the ah-ceramic system test, lubrication (ML-PRP-23699 [U.S.

Department of Defense 19971) was provided for the fiist 24 hr and then discontinued for the

remainder of the test.

2.3 Characterization. The room-temperature tensile strength of each material was

determined by diametrally compressing a right circular cylinder between two flat platens. Tests

were conducted in air using a crosshead speed of 0.5 mm/mm.  A single piece of a manila file

folder was placed between the platen and the specimen at each loading point to provide

appropriate stress distribution. The specimens had a diameter-to-thickness ratio of 4 to 1, with a

nominal diameter of 9.5 mm and a thickness of 2.4 mm. The diameter was the same as that of

the RCF specimens. All specimens were machined from a single RCF rod of each silicon nitride.

No additional machining was done to the circumference of any cylinders, but both flat surfaces

were machined to a 20.3~pm  RMS finish  or better. The tensile strength was calculated using

equation (I):

where

OT = tensile strength (MPa),

P = applied load (N)s

d = specimen diameter (mn~)~  and

t = specimen thickness (mm).
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Hardness was determined using a Knoop diamond indenter with a 1,000-g load.

Samples were prepared for microstructural characterization by sectioning RCF rods with a

diamond saw and mounting the sections in acrylic The samples were then rough-ground with

silicon carbide abrasives and ground for 12 hr with 9+m diamond media on lead platens using

kerosene as a lubricant. The samples were given a final  polish using 0.05-l,nn  silica with a nylon

cloth on a vibratory polisher.

Optical microscopy was conducted to examine the distribution of the phases and the

homogeneity of the material. Samples were etched with a boiling 40% I-IF solution for 10 min

and then coated with 4 nm of a gold/palladium alloy. Scanning electron microscopy (SEM) was

also used to examine the microstructure and fracture surfaces as seen in Figures 3 and 4. X-ray

diffraction (XRD) was performed for phase analysis.

3. Results

3.1 Ceramic vs. Steel. In the hybrid tests (i.e., silicon nitride rods and steel balls), the steel

balls failed before the ceramics. When the steel balls failed, they were replaced and the test was

continued until the ceramic rods failed.

As can be seen in Table 3, of the four ceramics that were run to failure, the ESK sintered

material had a substantially longer fatigue life than the other materials tested. ESK HIPed had

the second longest lifetime. Both of these materials greatly exceeded the lifetimes of the Cerbec

and GNlO materials.

3.2 Ceramic vs. Ceramic. Tests were done on Cerbec and GNlO specimens, where, after

24 hr, the lubrication feed was stopped with the idea of accelerating the test in a more severe

condition. It was observed that the lubrication-starved condition had a higher temperature than

the lubricated condition. Retained lubrication was observed when testing was concluded, which

prevented the steel raceway from seizing during the tests.
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(a) ESK Sintered at 5,000x. (b) ESK HIPed at 5,000x.

(c) Cerbec at 9,000x. (d) GNlO at 5,000x.

Figure 3. Micrographs of Si,N, Specimens Using SEM.

The Cerbec material had a runout at 586.6 and 1,179.l  hr, while the GNlO specimens produced

failures at 3 1.1 and 87.9 hr and a runout  at 473.4 hr. Typical spallation occurred in all the materials

except for GNlO. Spallation is when material chips/spa& off the specimen in a fashion similar to

metallic bearing materials. While failure was not the result of chipping or spallation for GNlO,  a

smooth elliptical depression, which acted like a spall, was formed in the wear track, thereby

7



(a) ESK Sintered at 2,000x. (b) ESK HIPed at 2,000x.

(c) Cerbec at 2,000x. (d) GNlO at 2,000x.

Figure 4. Fractography Micrographs of Diametral Compression Specimens Using SEM.

terminating the test. It was confiied  by the preliminary profilometry data that the surface was

smooth at the point of failure, whereas traditional failures have a very rough surface profile. This

indicates that GNlO is not a bearing-grade material.

3.3 Diametral  Compression. The results of the diametral compression testing can be seen,

in Table 4.
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Table 3. Lifetime Data - Tests Conducted With Ceramic Rod on Steel Balk

Table 4. DiametraI Compression Test Data

Material I Mean or 1 No. of Specimens Tested 1 Standard Deviation

Allied-Steel GNlO
ESK-EK9980 S
ESK-EK9980 HIP
Cerbec

WV
772
709
708
589

11 55
12 91
12 92
12 134

4. Discussion

.

4.1 RCF Test, The results of the RCF test are shown in Tables 3 and 5. It can be seen by

comparing Tables 1 and 3 that there is a trend between having low hardness and longer RCF

lifetime for the three materials designed specifically as bearing materials. Lower hardness

materials distribute the load over a greater area and reduce the stress on the material.

Comparison of hybrid tests and all-ceramic tests showed a significant improvement over steel

systems (Middleton et al. 1991). In the all-ceramic systems tested here under lubrication-starved

conditions, the ceramic-on-ceramic systems showed that they could continue to perform when

lubrication was discontinued. The runouts  of these tests were discontinued because the length of

time of the test did not justify the continuation of the test until the ceramic rod failed. Runout

refers to the ability of the material to not fail in a reasonable time.

9



Table 5. Lifetime Data - Tests Conducted With Ceramic Rod on Ceramic Balls

Ceramics (SijNd): With Ceramic (Si3N4) Balls

GNlO (With 14 pts.) With NBD 100 Balls

Cerbec With NBD 100 Balls

B10(x106)

0.95
no data, all

nmmtsa

B50(x106) Slope

82.03 0.42

- -

a Runout  tests that are discontinued before  failure of the ceramic rod occurred.

4.2 Diametral Compression Test, The diametral compression test was used to determine

the tensile strength of these materials because of the similarity in the specimen geometry between

this technique and the RCF test. This technique has been previously used to determine the

tensile strength of ceramics, having been fust used to test concrete in the early 1950s (Cameiro

and Barcellos 1953) and since then for advanced monolithic ceramics (e.g., S&N4 and &03)

(Rudnick, Hunter, and Holden  1963; Marion and Johnstone 1977; Ovri and Davies 1987; 1988).

Failure of ceramic bearings typically occurs due to spallation that results from the development,

growth, and coalescence of microcracks at or very near the surface. Table 4 summarizes  the

tensile strength of each material. There does not appear to be a correlation between strength and

RCF lifetime. GNlO  had the highest strength and the lowest standard deviation, yet had the

shortest RCF lifetime. This is not surprising since GNlO was developed for structural and not

bearing applications. There was essentially no difference in strengths between the two ESK

materials and yet the sintered material had a substantially greater lifetime in RCF.

4.3 Microscopy.

4.3.1 Optical Microscopy. Optical microscopy showed that the two ESK silicon nitrides had

a more uniform distribution of a second phase and a more homogeneous microstructure than

either the Cerbec or GNlO materials. In the Cerbec and GNlO  materials, there were large

pockets of second phase, while, in both ESK materials, the second phase was uniformly

distributed. There also appeared to be preferential polishing of the second phase in the ESK

materials, indicating that this second phase was not as hard as the silicon nitride.
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43.2 EZectron  Mkroscopy.  The scanning electron micrographs taken of the polished and

etched samples (Figure 3) show the microstructure and distribution of grain boundary phase. The

ESK materials are marked by having larger acicular grains (with a high length-to-diameter [EID]

ratio) surrounded by smaller equiaxed grains. The grain boundary phase is distributed evenly

along the grains. There are no large pockets of it. This is in contrast to the GNlO material,

where there are large pockets of the grain boundary phase. This microstructure is marked by

having a more uniform grain size, and the large grains that are forming do not have as large an

UD ratio as the ESK materials. The Cerbec material has a fine equiaxed grain size. This is to be

expected, given that it was processed at temperatures low enough to keep some of the

alpha-phase silicon nitride from reacting to form the beta-phase silicon nitride. The fine grain

size and alpha phase are what give the Cerbec silicon nitride its high hardness.

boundary phase can be seen to be nonuniformly distributed within this material.

Pockets of gram

The two ESK materials had similar microstructures that appear to be advantageous in RCF.

Although fracture toughness was not measured here, it is believed that the microstructures of the

ESK materials would give higher fracture toughness than the GNlO or Cerbec material. This

could result in longer RCF lifetimes. Clearly, the grain boundary phase in the ESK materials was

more evenly distributed. Under high Hertzian  loads, these large pockets of grain boundary phase

could act as flaws. When the grain boundary phase is more evenly distributed, the loads are

carried by the stronger silicon nitride phase. Although this explains why the two ESK materials

performed better than the Cerbec and GNlO  materials, it does not explain the significant

differences between the ESK sintered and ESK HIPed.  The ESK HlPed had a density of

3.17 g/cm39 which is lower than the theoretical density of silicon nitride, which is 3.22 g/ cm3.

Residual porosity was not removed during the HIPing process, which could explain the

difference between the ESK materials. The scanning electron micrographs of the fracture surface

clearly show that the ESK HIPed material has more porosity than the sintered material. More

work is needed to positively determine the amount of porosity in the ESK HIPed material. The

longer lifetimes of the ESK materials appear to be due, in part, to the presence of a softer, more

uniformly distributed second phase, which allows for greater stress distribution of the Hertzian

stresses. The lower porosity of the ESK sintered compared to the ESK HIPed  may account for

11



the different lifetimes of these similar silicon nitrides. In fact, all the HIPed  materials seem to

have a higher degree of porosity than the sintered material.

The all-ceramic systems exhibited greater RCF endurance than the hybrid systems, and

extraordinary RCF life was observed for lubrication-starved all-ceramic systems. The Cerbec

material performed better than the GNlO material in the all-ceramic system. Not surprisingly,

the Cerbec material also performed better than the GNlO in the hybrid bearing systems.

For the hybrid bearing systems the ESK sintered material was substantially better than any of

the other materials tested.

More work is needed to determine whether a large-grained duplex microstructure,

fine-grained  duplex microstructure, or intermediate-grained microstructure is best. Work is

under way at this time to determine which is the best microstructure and to determine the

influence of fracture toughness.

As expected, the nature and distribution of the grain boundary phase have an important effect

on the RCF lifetimes. More work to understand the nature of the grain boundary phase is also

under way. Transmission electron microscopy (TEM) is being carried out to determine the

chemistry and crystallinity of the grain boundary phase. Use of a nanoindentor to determine the

hardness of the grain boundary phase is being explored. It was noted that the grain boundary

phase of the ESK sintered was much more resistant to the hydrofluoride (HF) etch than the ESK

HIPed,  which, given the same etch conditions, was overetched as compared to the sintered

material. This made it hard to evaluate the porosity of the ESK HIPed material and compare it to

the other materials. Additional work is needed to determine the porosity of the different

materials tested.

Materials to be used for bearing should have the minimum amount of porosity possible.

Even a small amount of fine porosity greatly affects the RCF lifetimes.
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Sintering may be a better way to densify bearing materials than HIPing. During the HIP

cycle, residual porosity is squeezed until the pressure in the pore equals the HIP pressure; then,

there is no more pore removal. Sir&ring is usually a slower process and uses a greater amount of

liquid phase. This can result in more complete pore removal. This work is part of an ongoing

effort to evaluate bearing materials and to understand the attributes that make them good so that

better bearing materials can be designed. Future work will include evaluation of different silicon

nitrides, as well as other materials.

5. Conclusion

A duplex microstructure consisting of large acicular grains with a high LID ratio surrounded

by smaller grams gives the best RCF lifetime.

A homogeneous fine distribution of the grain boundary phase with no large pockets of grain

boundary phase gives the best RCF performance.

Low hardness materials seem to perform better than high hardness materials.

Small amounts of porosity degrade RCF performance without affecting strength and

hardness.
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