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Abstract

In this report, we investigate the influence of quasi-independent parameters and their
potential influence on erosion in guns. Specifically, we examine the effects of flame temperature
and the effect of assuming that the Lewis Number (ratio of mass to heat transport to the surface),
Le, is one. The adiabatic flame temperature was reduced for a propellant through the addition
of a diluent from a high of 3,843 K similar to that of M9 down to 3,004 K, which is near the
value for M30A1 propellant. Mass fractions of critical species at the surface with and without
the assumption of Le = 1 are presented, demonstrating that certain species preferentially reach
the surface providing varied conditions for the surface reactions. The results for gun tube bore
surface regression qualitatively agree with previous studies and with current experimental data.
The propellant composition influence upon erosion must still be inferred at this time from the
presence of specific product species at the surface because the finite-rate gas surface reactions
are not well known under ballistic conditions.
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1. Introduction

The inner surfaces of most gun tubes regress as a result of various mechanisms, such as
mechanical abrasion, pyrolysis, melting, spalling, and possibly others, when the gun is fired.
Historically, the propellant adiabatic flame temperature (obtained from Gibbs free energy
minimization with constant volume and no heat loss) has been considered to be the most important
factor in determining erosivity [1-3]. Previous modeling and experimental efforts have not identified
the fundamental cause of the erosion, and some discrepancies were found between flame-temperature
correlations [3-5]; the discrepancies were not resolved. Attempts to model erosion using first
principles have been and are currently being made [6-9], although it is believed that significant

additional work is still required to understand the fundamental physics involved.

In this study, the influence of propellant flame temperature on erosion is analyzed as an initial step
toward understanding the principle components of the erosion problem in a parametric fashion. The
contributions due to mechanical wear and abrasion are not included in the study, nor are the effects
of altered material composition on the surface. Instead, this study focuses on the surface
thermochemical portion of erosion using full equilibrium thermochemistry, independent heat

transport, and multicomponent species mass transport to the surface.

2. Erosion Model Description

Although described elsewhere [8, 9], for completeness, the basic outline and new additions to the
U. S. Army Research Laboratory (ARL) erosion physics test model are elaborated upon here. The
model consists of three fully coupled portions consisting of thermal ablation/heat transfer/conduction,
mass transport, and thermochemistry. The code uses the gas-phase properties in the core flow of the
gun tube from XKTC [10], and certain data from IBBLAKE {11-13]. The thermochemistry is
assumed to be full-equilibrium chemistry and incorporates the NASA LEWIS [14] database. New

additions to the model include:



(1) variable surface physical properties, conductivity k(T), and specific heat C(T);

(2) surface material phase change from body-centered cubic (BCC) to face-centered cubic
(FCC) (the material replenishment section recognizes the surface temperature and the

correct phase);
(3) auser-defined “freeze-out” temperature that deactivates the surface chemistry;

(4) an iterative procedure that provides convergence for surface-control volume temperature
(the gas and solid specific heats are temperature-dependant and require iteration for

convergence); and

(5) all user-defined primary inputs (i.e., no hardwired inputs and case to case consistency).

The model considers both melting and pyrolysis from surface chemistry. Conceptually, as shown
in Figure 1, the surface heats from convection until the chemical activation temperature is overcome.
At this point, surface reactions are permitted to occur, releasing additional energy into the system
as a source term at the surface and producing appropriate gaseous, solid, or liquid products. The
reaction products can be either remain as some solid materials or be removed from the area as liquids
or gases. The later case results in pyrolysis or ablation. As the surface regresses, the solids are
refreshed accordingly.

The following assumptions have been made in the erosion model:

(1) one-dimensional (1-D) heat conduction,

(2) no subsurface chemical diffusion or reactions,

(3) instantaneous removal of all surface liquids and gas products,
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Figure 1. Conceptual Erosion Model Ilustration.

(4) no feedback to the interior ballistics calculation in the core flow,
(5) release and treatment of chemical energy as a surface source term, and
(6) freezing of species (i.e., no chemical reactions) from the core flow to the wall.

The surface energy balance (when there is no melting) consists of the convective heat input to the
surface, along with the possible contribution due to the surface reaction, shown in equation (1), where
T is the wall temperature, k is the thermal conductivity, and h is the convection coefficient [15]. This
source term is balanced with the energy conducted through the material:

= —k-a—T: - Source. (D

h(T -T >
T

gas wall )

However, when the system is melting, the energy balance also includes the fixed-surface temperature

condition (because the temperature cannot rise beyond this value as the material is removed as fast




as it melts and additional energy is preferentially used for more phase transition), as well as the latent

heat of formation of the molten material, as shown in equations (2) and (3):

Twall = Tmelt ? (2)
and
0 oT
pLFi = h( Ty Tou ) + kg + Source. 3

In equation (3), L is the latent heat of formation, p is the density of the surface material, and s
represents the instantaneous surface location that must be iterated upon for convergence until the

energy balance is satisfied.
3. Calculation Methodology for Flame-Temperature Study

The calculations presented in this study were initiated with a BLAKE calculation of a notional
propellant having an adiabatic flame temperature of 3,843 k. This particular baseline propellant (an
altered JA2) was chosen because it had an exceptionally high adiabatic flame temperature, as well
as it previously experimentally demonstrated erosivity [9]. The basic charge configuration had a
notional slab geometry. The propellant flame temperature was reduced from the nominal value by
adding a diluent (N,) to the nominal gas mixture in increasing mass percentages of 15%, 30%, and
60%, without reducing the other components’ mass fractions. As a result, the final percentage of

diluent added was somewhat less than stated previously, as shown in Table 1.

Using these formulations for the propellants with reduced flame temperature, ranging from
3,843 K down to 3,004 K, iterations were then performed for the XKTC calculations, which involved
altering the propellant mass and web, such that the projectile muzzle velocity, muzzle energy, and
the peak pressure in the gun were held constant for all four scenarios. The results were used in the

IBBLAKE calculations. These calculations involved many iterations in order to determine the



Table 1. Calculation Matrix to Investigate the Effect of Flame Temperature

M256* With Adiabatic
a3.629-kg | Muzzle Peak | Propellant Flame
Projectile | Velocity | Pressure Mass Mole Mole Mole Mole Temperature

(% N,) (m/s) (MPa) kg) (% Carbon) | (% Hydrogen) (% Oxygen) (% Nitrogen) (K)
RPD 351 1537.0 453.0 6.074 19.694 27.406 40.794 11.932 3,843
v || Nominal
+15 1544.1 451.9 6.346 17.634 24.539 36.526 21.145 3,603
+30 1542.2 453.4 6.623 15.964 22.215 33.067 28.613 3,384
+60 1538.9 456.7 8.165 13.422 18.677 27.801 39.981 3,004

# Assumed nonchromium electroplated M256 tank cannon.




combination of projectile mass, propellant mass, and web size which produced the desired results,
while maintaining a burn-out condition at projectile exit. Although the total charge mass is changed
for each permutation (see Table 1) an attempt is made to account for this effect later when presenting

the results.

The resulting information involving the gun tube core flow gas composition, temperature,
pressure, and velocity for the four different scenarios was then used as input for the calculations; the

results of which are discussed in section 4.

4. Results

Shown in Figures 2-5 are gun tube, inner-surface temperatures for three of the four notional
propellant formulations (Table 1) at three axial locations along the gun tube wall, measured from the
rear face of the tube: 635 mm; 686 mm; and 1,040 mm. The initial location of the base of the
projectile is 559 mm. The flat areas at the top of the curves in Figures 2—4 are due to the surface
temperature reaching a user-defined, surface melt temperature. What is seen in this data is the
general reduction from the high, overall temperatures in Figure 2 to the lower temperatures in
Figure 5. Note that Figures 2—-4 reflect the time at which the surface remains at the melt temperature.
Therefore, the larger these regions are, the more time the surface remained at the melt temperature
and, thus, the more material was removed. However, for the propellant with the lowest adiabatic
flame temperature of 3,004 K, the gun tube, inner-surface temperatures do not reach the melting
temperature at any axial location in Figure 5, while, for the charge containing the propellant with the
adiabatic flame temperature of 3,384 K (shown in Figure 4), only one axial location reaches the
melting temperature. The two higher adiabatic flame temperature of 3,843 K and 3,603 K exhibit

melting at two of the three chosen axial locations in Figures 2 and 3.

Figure 6 integrates the total mass loss over time for the three propellants with the higher flame
temperatures. The slight increase in the recession in Figure 6 before 3.5 ms and after 4.5 ms in the
curves is due to the pyrolysis, which is also included in the total mass loss and intended for a

follow-on study.
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Figure 2. Gun Tube Surface Temperatures for Three Axial Locations and a Single Firing of
a Charge Having a Propellant Adiabatic Flame Temperature of 3,843 K.
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Figure 3. Gun Tube Surface Temperatures for Three Axial Locations and a Single Firing of
a Charge Having a Propellant Adiabatic Flame Temperature of 3,603 K.
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Figure4. Gun Tube Surface Temperatures for Three Axial Locations and a Single Firing of
a Charge Having a Propellant Adiabatic Flame Temperature of 3,384 K.
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Figure 5. Gun Tube Surface Temperatures for Three Axial Locations and a Single Firing of
a Charge Having a Propellant Adiabatic Flame Temperature of 3,004 K.
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Figure6. Computed Single-Shot Erosion Depths vs. Time for Propellant Flame Temperatures
of 3,843 K; 3,603 K; and 3,384 K at Three Axial Locations Each.

In Figure 7, both experimental and numerical data are presented as normalized erosion (surface
regression) vs. adiabatic flame temperature. The experimental data include some data from a study
presented by Ahmad [16] concerning 5-in/54 gun tube erosion data, as well as Kruczynski’s [17]
M199 M203A1 origin of rifling wear data per round and the original version of the M919
25-mm-round average wear per round at the origin of rifling [18]. Ahmad’s data include two
different experimental data sets for a 5-in/54 system. The values with higher erosion are for a series
of firings without coolant additives in the charge, while a series presented with lower erosive values
included a talc wax liner in the charges to reduce the overall heat transported to the gun tube wall.
Kruczynski’s data include both horizontal and vertical wear at the origin of rifling to account for the
asymmetrical wear pattern seen in some artillery charges; however, both points are practically

coincidental for this plot, including values not shown for the M203 charge.
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Figure 7. Computed and Experimental Normalized Erosion per Round vs. Adiabatic Flame
Temperature. The Numerical Calculations Are Also Normalized for Charge Mass
Effects. The Adiabatic Flame Temperature for Various Propellants Is Shown for
Reference.

The computed numerical data shown in Figure 7 consist of two curves of four points each and
are plotted as triangles. Both curves have been normalized to the maximum amount of computed
wear occuring at the 635-mm axial location. The lower of the two curves reflects this normalization
by having 1.0 as the maximum value of regression. This computed data was then renormalized to
incorporate the maximum charge mass, as well as the maximum surface regression (percent
maximum erosion/percent maximum charge), which resulted in the slightly higher plot. The general
trend and values of erosivity vs. adiabatic flame temperature seems to be reasonable when compared
to the experimental data presented for the 155-mm and 25-mm guns, which has also been normalized

for regression.

While the general regression trend and shape holds for the data of Ahmad [16], the values appear
to be inexplicably shifted in temperature by about 700 K, possibly due to the fact the Ahmad was
firing experimental charges. An interesting note in Figure 7 is that, even though no melting occurred

for the propellant having the adiabatic flame temperature very close to that of M30A1, the computed

10



surface regression was about that seen by Kruczynski [17] who was firing M30A1 propellant. These
pyrolization products and related effects, as was stated, are an area of a follow-on study that will
investigate the products that the equilibrium chemistry calculation indicates and what actually is

being removed from the surface.

The photo of a 155-mm-howitzer origin of rifling in Figure 8 shows what type of erosion or
pyrolization can occur at the origin of rifling. This photograph shows evidence of heat checking,
cracking, and loss of lands; however, there is no obvious evidence of surface melting of this scale
as the calculations predicted. Nonetheless, the situation is quite different for the M256 chromed gun
tube shown in Figure 9, which fired JA2-type propellants. Evidence of chrome removal, surface

pitting, and melting are all present in this photograph, as was also expected from the calculations.

Figure8. 155-mm Howitzer Origin of Rifling Showing Pyrolysis, Loss of Chrome, and Rifling
Degradation [17].
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Holes

Substrate Material

Figure9. 120-mm M256 Tank Cannon Surface at Forcing Cone Showing Chrome Stripping,
Pits, and Melt Regions [25].

Propellant combustion, product species, and molar concentrations are presented in Figures 10
and 11. The differences between the core flow product species in Figure 10 and the wall surface
product species in Figure 11 are illustrative of the effect of multicomponent mass transport upon the
species concentration at the surface. The species principally affected using nominal propellant by
the mass transport are CO and CO,. The concentrations in the core flow appear to contain less CO
and more CQO, than at the wall, where the concentration of CO rises and that of CO, is less. The
CO/CO, varies approximately 15% between these regions. This ratio is thought to be very important

[1,19-24]. Fundamental studies are underway to investigate mechanisms in which free carbon may

12



0.40 25
0.35 co - 24
0.30 - - 23
H, - 2.2
20254 T —— T ———— 0
g N - 21 @
-] N2 o
£ 0.20 3
S‘ - - 2.0 8
o 0151 CO2 S
g CO/COy - 19§
] o
0.10 | s
0.05 - L 1.7
Hy0
0.00 f oo - 1.6
I I 1 1 1.5
3 4 5 6 7 8
Time (ms)
Figure 10. Selected Product Species Mole Fractions and the CO/CO, Ratio for the Gun Tube
Core Flow.
0.40 2.5
co
0.35 - T T —— - 2.4
0.50 - - 2.3
H, - 2.2
2 0.25 - — == 0
g [ — \ - 21 o
§ 0.20 - Ng CO/COy 3
£ - 20
= 0.15 - 8
g > COy L 19 S
: ° 8
0.10 - 18
0.05 - - 1.7
Hy0
0001 55, - 1.6
1 1 1 T 1-5
3 4 5 6 7 8
Time (ms)

Figure 11. Selected Product Species Mole Fractions and the CO/CO, Ratio for the Gun Tube
Surface.
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be formed from either CO or CO, [24]. Eventually, the primary surface reactions and rates will be
known and included in the surface reaction models. The proper state and species concentrations will

be required to provide results based on experimentally validated physical processes.

5. Conclusions

Flame-temperature effects on erosion have been studied with four notional computational
charges with the assumed gun tube properties for an M256 nonelectroplated cannon. These four
notional charges had propellant adiabatic flame temperatures of 3,843 K; 3,603 K; 3,384 K; and
3,004 K. While the trends in erosion match those seen previously of Ahmad, the actual values agree
better with recent system data, specifically, recently measured data from the 155-mm M203A1

charge and 25-mm M919 round erosion.

Differences in species concentrations exist between the core flow and wall region. This
difference may be critical in providing the correct input for chemical reactions at the surface, but,

as of yet, the actual mechanisms of erosion at the surface remain unknown.

Further parametric investigations of this type are needed in order to provide an understanding
of the interactions of the thermal and chemical, with the ultimate inclusion of mechanical,
components as well to erosion/wear. Also, this type of investigation provides guidance for further

fundamental studies.
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