
ARMY RESEARCH LABORATORY

A Lumped Circuit Model of a Compensated
Pulse Generator and Rail Gun

Charles R. Hummer

ARL-TR-1990 JUNE 1999

19990722 076 j .__.-- ____- ______..___--- ______.-_._-
Approved for public release; distribution is unlimited.

PentiumTM is a trademark of Intel Corporation.

Visual C++@ is a registered trademark of Microsoft Corporation.

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of
the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 2 10055066

ARL-TR-1990 June 1999

A Lumped Circuit Model of a Compensated
Pulse Generator and Rail Gun

Charles R. Hummer
Weapons & Materiais Research Directorate

Approved for public release; distribution is unlimited.

i

Abstract

Because of its compact size, an electrical generator that uses an internal
rotating mass as an energy source for electrical power is being developed to
power a rail gun in a future combat system. At this stage of development,
there are many proposed designs for these electric generators and many
proposed designs for their possible uses: rail guns, coil guns,
electromagnetic armor, etc. To study these various designs, a computer
program was written to calculate the current in all parts of the electric
generator, the load, the angular velocity of the rotating mass, and the
velocity of the projectile from a rail gun or a coil gun. This was
accomplished by modeling the electric generator and the rail gun by a circuit
of inductors and resistors. This model results in a set of differential
equations that are coupled with the equation of motion for the rotating mass
and with the equation of motion for the projectile.

ii

TABLE OF CONTENTS

1.

2.

3.

4.

5.

LISTOFFIGURES .. vii

INTRODUCTION ... 1

EQUIVALENT CIRCUIT MODEL 3

COMPUTER PROGRAM ... 17

SUBROUTINES ... 23

DISCUSSION AND RESULTS 28

REFERENCES.. .. 33

APPENDIX

A. ComputerProgram .. 35

DISTRIBUTION LIST ... 59

REPORT DOCUMENTATION PAGE 61

. . .
111

.

.

INTENTIONALLY LEFT BLANK

iv

LIST OF FIGURES

Pure Fi Page

2

2

3

8

9

10

11

12

30

30

.

Cross Section of a Six-pole/Three-phase Cornpulsator

Cornpulsator Circuit ...

Magnetically Coupled Circuits ..

Schematic of the Full Wave Rectifier Bridge to Field Coil

Four-phase Compulsator ...

Conducting Diode Equivalent Circuit.

Four-phase Load Circuit . : ...
\

Four-phase Simplified Circuit. ..

Self-Exciting Field Current ..

RailGunCurrent ...

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

V

.

INTENTIONALLY LEFT BLANK

.

.

vi

A LUMPED CIRCUIT MODEL OF A COMPENSATED
PULSE GENERATOR AND RAIL GUN

1. INTRODUCTION

A -pensated &e generm (cornpulsator) [11, is an electrical generator that uses

an internal rotating mass as an energy source for electrical power. One type of cornpulsator was

built under the Sub-Scale Focused Technology Program (SSFTP) by the Center of Electromagnetics

(CEM) and the Institute of Advanced Technologies (IAT), University of Texas at Austin, Texas,

as a step to develop a cornpulsator that will power a rail gun on a future combat system. It is

speculated, however, that a compulsator could be used to power coil guns, electromagnetic armor,

etc. Computer programs that can evaluate the usefulness of a cornpulsator for these other

purposes do exist, but they are not readily available. Therefore, a program was written to do this

evaluation by calculating the current in all parts of the cornpulsator and the load, the angular

velocity of the rotating mass, and the velocity of the projectile from a rail gun or a coil gun. To

keep the program simple, some features of the cornpulsator were not included and some

assumptions were made, and the program was written for a particular type of cornpulsator. This

program, however, could be rewritten to include these features and it could be a start for modeling

other types of cornpulsators. The intent of this report is to provide the growing community with a

documented computer program of a simple model of a cornpulsator. This documentation may

allow members of the community to modify or expand it to satisfy their needs.

The rotating mass in the SSFTP is a titanium cylindrical shell 1 .O meter long and 0.3 meter in

radius. This assembly is designed to rotate at 12,000 revolutions per minute @pm) for an energy

storage of 25 megajoules (MJ). A field winding (see Figure 1) located on the outside surface of the

cylindrical shell will produce a magnetic field with six poles when a current is passed through it.

Once the magnetic field is produced, voltages are induced by the rotating magnetic field in the nine

armature windings that are mounted on a stationary cylindrical shell surrounding the rotor. The

armature windings are electrically connected in three groups @I, $2, and $3, with three windings in

each group. The alternating voltage induced in each group or phase coil is shifted in phase relative

to the other phase coils. Because there are six magnetic poles produced by the field winding and

three phase coils, this cornpulsator is typed as a six-pole/three-phase generator.

The three phase coils and the field coil are connected to a circuit (see Figure 2) made of

silicon-controlled rectifiers (SCRs) that control and direct the currents. The ends of the phase coils

connect to a full-wave rectifier bridge whose output is connected to the field coil Lf and to a half-

wave rectifier bridge whose output is connected to the load. The other ends of the phase coils are

1

connected to a common ground in a “Y” configuration. After the drum has been spun, a small

“seed” current is started in the field coil by an auxiliary capacitor bank, not shown in Figure 2, to

produce a small magnetic field. This magnetic field induces alternating currents, which are full wave

rectified and directed to the field coil by the “Pos. Bus Bar” and the “Neg. Bus Bar” in the phase

coils. This additional current through the field coil will continue to increase if the current gain is

greater than the energy losses. Thus, the field coil current is “self-excited” from a small seed

current until it reaches a larger current by using some of the rotational energy. After the field coil

current reaches the desired level, the SCRs to the “Load Bus Bar” are closed to deliver current to

the load.

Figure 1. Cross Section of a Six-nole/Three-chase Comnulsator.

Load Bus Bar

Figure 2. Comnulsator Circuit.

2

.

2. EQUIVALENT CIRCm MODEL

The variables to be calculated are the shaft position and angular velocity, the projectile’s

position and velocity, the temperature of all the resistors, and all the currents. This is done by

taking the time derivative of all these variables, which results in a system of first order differential

equations that can be solved by numerical methods. These differential equations are introduced

by considering a number (N) of simple circuits, each having a resistor and an inductor (see Figure

3). It will be shown later that each circuit represents a current loop in the cornpulsator circuit.

The inductor and resistor in the simple circuits represent the total inductance and resistance in

the current loop, and the mutual inductance between the simple circuits represents the magnetic

coupling between the current loops. So let all the inductors inside the dashed box be magnetically

coupled to each other, except for LL which represents the inductance of the rail gun or the coil

gun. The dots represent all the other similar circuits that are not shown. Ii is the current in each

circuit with an inductor Li and resistor Ri. To find the time derivative of the currents, consider

the magnetic flux times the number of turns in each inductor, @i, inside the box:

(1)

,...................i..........*..................,..
.
.
. . -tJ i
:

I : :
I

l

.: ,4 4 . : :
: @3 L

b .

.e .
.

l

:
+.I* 2

. .

.

.

.
: ‘.. ,R1 . i . . 43 .
. .
.

.

. .
* .
. ..~..................

Figure 3. Maaneticallv Counled Circuits.

The off-diagonal elements of the symmetrical matrix kfj,j are the mutual inductance between

the i-th and the j-th inductor, while the diagonal elements, .ktj, j, are the self inductances. The

electromotive force of the coil, &in each circuit is the electric field induced in the coil by the

3

changing magnetic flux Ei =-d@i/dt. This electromotive force must equal the voltage drop across its

resistor, Ei = R$i, or

(2)

The time derivative of the mutual inductance will not be zero because the field coil is moved by

the rotor, causing the mutual inductance between it and the other inductors to change with time.

Equation 2 can now be solved for the time derivative of the currents after a diagonal matrix, Rk,j,

is introduced:

.

4

in which the diagonal element, Rk,k, is the resistance in the k-th circuit and all off-diagonal elements

are zero. This matrix makes it is possible to conveniently factor out the currents in the form of a

vector and permit the addition of the matrices in the parentheses and the multiplication of the

inverted matrix. It is found that Equation 3 applies to more complicated circuits, such as the

cornpulsator, when the matrix, Ri,j, has some off-diagonal elements that are not zero. Therefore,

the introduction of the matrix, Ri,j, is a generalization of the equation.

The time derivative of the shaft’s angular velocity, the time derivative of the projectile’s

velocity (the acceleration), and the time derivative of the temperatures of the resistors can be

derived from the total energy stored in the system:

w I
N,N N

=-
2 c Ii"i,jIj ++9,, +$LL(X)Ii +$eVZV2 +Cffi(Ti). (4)

i=I, j=l i=l

The first term is the total magnetic energy in the coils. The second term is the rotational energy

of the rotor, in which Q is the moment of inertia of the rotor and o is the angular velocity of the

rotor. The third term is the magnetic energy of the launcher in which the inductance of the

launcher depends on the position of the projectile X. The fourth term is the kinetic energy of the

projectile, in which m is the mass and v is the velocity of the projectile. The last term is the sum

of the enthalpy of the resistors:

H,(T) = &(T)dT, (5)
Ta

in which Ci(T) is the specific heat of the resistor at constant pressure and mi is the mass of the

resistor. The enthalpy is the energy required to raise the temperature of the resistor from

ambient temperature T, to the temperature T. The rate-that this total energy changes with time,

after using the circuit equations, Equation 2, is

dW I N’NI dMi,#)I +9wdw I; dLL(x)+mvdv N’N -=--_
c

dt 2 i dt j dt 2 dt z-

~IiRj,iIi+&Z~C’i(T~)$ (6)

i=l, j=l i=l, j=l i=l

If the total energy of the system is to be constant, Equation 6 must be equal to zero at all times.

This condition can be satisfied by identifying the terms that depend on a particular variable and

setting the sum of the terms to zero. As an example, the first two terms depend on the shaft -

angle 8 and its time derivative o. This identification gives the equation of motion for the rotor:

i=I, j=I

Since the rotor or the field coil is the only coil that is moving, this equation could be rewritten as

qdw -= c N d"f,jte)I.
dt If

j=l de

J’
(8)

in which If is the current in the field coil and MJj(@ are the mutual inductances between the field

coil and the armature coils that are carrying currents $. The chain rule was used to eliminate the

time derivative inside the summation. The next two terms in Equation 6 depend on the position

of the projectile x and its time derivative v. Setting the sum of these terms to zero gives the

equation of motion for the projectile:

dv I; d&(x)

mdt=7 a5 ’
(9)

in which the chain rule was again applied to eliminate the time derivative on the right-hand side.

The last two summations in Equation 6 depend on the temperatures of each individual resistor.

Equating like terms in the summations yields the rate that the temperature increases for each

resistor:

which depends on its temperature Ti. The temperature dependence of the resistance is

Ri(T$ = Roi (1.0 - Ci [Ti - TJ), in which Roi is the resistance of the resistor at the reference

temperature T,. and ci is the temperature coefficient. In general, the specific heat of materials

depends on the temperature, but the specific heats for the resistors are assumed to be constant,

CT = Ci. If the values of all the variables are given at a particular time, Equations 3,8,9, and

10 give the rate at which these variables are changing at the given time. The values of the

variables can now be calculated for later times by numerically solving this system of first order

differential equations. Bahder and Bruno [2] used this approach to find a system of differential

equations for the circuit containing the rail gun, the N-th circuit in Figure 3. They replaced the

rest of the circuits by a rotating “hard magnet,” and numerically solved the differential equations

for a single-phase alternating current flowing through the rail gun.

The boundary conditions for the differential equations are dictated by the action of the

SCRs, which can be modeled by switches that are opened or closed during certain conditions.

Using a switch as a model for an SCR ignores the voltage drop across the SCR when it is

conducting, and the reverse current that flows through it for a brief time when it is becoming non-

conducting. Assume that current is flowing through an SCR in the forward or positive direction,

anode to cathode. The current will flow until the current decreases to zero and tries to flow in

the reverse or negative direction, cathode to anode. This action is modeled by a closed switch

that opens when the current through it decreases to zero. Now assume that the SCR is not

conducting and there is a reverse bias voltage across the SCR. The SCR will not conduct a

current until the reverse bias voltage reaches zero and there is a forward voltage across the SCR,

provided that the SCR is triggered at this time. This action is modeled by an open switch that is

closed when the voltage across the switch becomes zero. Thus, the first step in analyzing the

compulsator circuit is to determine which SCRs are conducting and which are not and substitute

them with a open or closed switch. After this substitution, the cornpulsator circuit then becomes

a network of inductors and resistors that can be described by a set of differential equations. The

solution of the differential equations (see Equation 3), the rotor (Equation 8), and the projectile

(Equation 9) are all performed until the state of an SCR changes and is replaced by an open or

closed switch. When the SCRs are replaced by an open or closed switch, all the currents are kept

the same. Thus, the currents are continuous at all times in all parts of the circuit, but the time

6

derivatives of these currents are not continuous, and there will be discontinuous voltage changes

across an opening SCR when modeled by an opening switch. Snubber circuits are usually placed

in parallel to the SCRs to limit the voltage spikes across them and protect them from damage.

These snubber circuits are ignored in this analysis, but there is a resistor and an inductor in series

with each SCR to model the resistance and inductance of the connections to the SCR.

A number of conventions were made to aid in the writing of the program. One convention

is the use of a “phase” angle rather than the angular position of the rotor. To illustrate these

angles, consider just one of the phase coils $1 in Figure 1, for example. Because there are six

magnetic poles on the field winding, the magnetic flux through the phase coil will go through three

cycles for each rotation of the rotor. One cycle is produced when an N-Pole and an S-Pole pass

the phase coil. Thus, the shaft angle 9 is in proportion to the “phase” angle a, a = N, S/2, in

which N, is the number of magnetic poles. The equation of motion of the rotor Equation 8 in

terms of the phase angle is then

This is convenient because the emphasis is on the calculation of the currents and not on the

angular position of the rotor.

The next convention is the choice of currents and their directions that will become the basic

variables, and the choice of voltage loops that will generate the differential equations. Because the

boundary conditions for these differential equations are determined by the currents through the

SCRs, it is convenient to choose these currents. The direction of a current is selected so as to be

positive when the SCR is conducting, which is the established standard for specifying a current

through SCRs and diodes. Given the currents through each SCR in the compulsator, it is possible

to find the current through any other part of the circuit by using Kirchhoff s law. The currents in

the full wave rectifier bridge, however, are not all independent. Consider the current through

the field coil as shown in Figure 4 when no current is flowing through the load.

This is the mode of operation when the current through the field coil is being self-excited to

a higher current, starting from the small seed current. Although SCRs are used in the full-wave

rectifier bridge, they are gated so that they act as diodes and will be referred to as such.

Furthermore, the diodes that are connected to the positive bus bar will be called “the positive

diodes,” and the diodes that are connected to the negative bus bar will be called “‘the negative

diodes.” The current through each diode is denoted by the symbol next to it. The numerical

7

subscript corresponds to the number labeling the phase coil, and the superscript indicates that

the diode is either a positive diode or a negative diode. Applying Kirchhoff s law to the positive

bus bar in the general case when all the positive diodes are conducting, the field current is If=

17 + 1; + 1;. Applying KirchhofYs law to the negative bus bar in the general case when all the

negative diodes are conducting, the field current must also be If= 17 + 1F + 1;. Thus, the sum of

the currents through the positive diodes must be equal to the sum of the currents through the

negative diodes. Once the values of five of the currents are independently chosen, there is no

choice for the sixth current. In the specific case when some of the diodes may not be conducting,

the current through a nonconducting diode is zero and is not a variable. Therefore, the total

number of independent currents, N, is equal to the sum of the number of conducting positive

diodes, N,, plus the number of conducting negative diodes, Nr, - 1, after applying Kirchhoff s

law,orN=Np+Nn- 1.

Positive Bus Bar

_’

Negdive.B.us :Bar

Figure 4. Schematic of the Full Wave Rectifier Bridge to Field Coil.

Now that a convention for the independent currents and their number is established, an equal

number of linearly independent differential equations must be found that can be solved for the time

derivative of each current (Equation 8). A differential equation is found by summing the voltages

across the elements that make a loop in the c-ircuit and setting their sum to zero. Because one loop

results in one differential equation, the number of loops must be equal to the number of

independent currents. Choosing the required number of loops in this circuit is a difficult subject

because of the large number of possible combinations of conducting and non-conducting diodes.

Each combination can produce a circuit with a number of possible loops. The following is a

procedure that the program uses to choose these loops for a given combination of conducting and

8

non-conducting diodes. This procedure is motivated by the desire to treat compulsators with an

arbitrary number of phase coils. In fact, this procedure is presented here for a compulsator with four

phase coils. If this procedure were to be applied to a cornpulsator with three phases, some of the

.

steps would seem to be trivial, and it would be difficult to explain why the steps are necessary.

Figure 5 is a partial circuit for a four-phase compulsator, which is a possible design for the exit

criteria machine (ECM) at IAT. The same notation for the diode currents is used here as in Figure 4.

Positive Bus Bar

rl+. l

2
-+

4

?+fegative.Bus Bar

Figure 5. Four-nhase Comnulsator.

The circuit to the load is not considered at this time and is not shown. The load circuit is easy to

analyze and can be easily included with the loop equations, as is shown later.

The number of possible loops through this circuit is reduced by the fact that not all

combinations of conducting and non-conducting diodes can occur. For example, diodes 17 and

I; cannot be conducting at the same time. Current can either be leaving the phase coil +I and be

directed to the positive bus bar through diode f;, or the current can enter the phase coil @1 from

the negative bus bar through diode IT, but not both at the same time. This is true for the other

like pairs of diodes: 1; and IF, 1; and -17, and 1: and 17. It is possible, however, for both

diodes in these pairs to be non-conducting at the same time, which means that no current is

following through the phase coil. In addition, at least one positive diode and at least one negative

diode must be conducting at all times so that a current can flow through the field coil.

Using these rules, assume that diodes 17, I;, 17, and 1; are conducting and the rest are

not conducting. After eliminating the non-conducting diodes from the circuit, it is possible to

rearrange the elements into a simpler equivalent circuit (see Figure 6).

9

B c Pos. Bus I+

E F Neg. Bus Bar

Figure 6. Conductinp Diode Eauivalent Circuit.

In this example, there are two conducting positive diodes, N, = 2, and two conducting

negative diodes, Nn = 2. Thus, there are three independent currents, and three loops must be

constructed from this circuit. These loops are found in two sets. All the loops in the first set go

through the field coil and the first negative diode on the left 1; and through a different positive

diode. The first loop in this scheme is traced by going through the points ABCFEA, and the

second loop is traced by the points ADCFEA. If the compulsator had more phases and more

conducting positive diodes, each additional loop would go through one of the additional positive

diode, through the field coil and through the first negative diode 17 for a total of N, loops. In the

second set, all the loops go through the first positive diode on the left I/, through the field coil

and return through a different negative diode but exclude the first negative diode 1; that was used

in the first set. Thus, there is only one loop in this set that is traced by going through the points

ABCFDA, including diode 17. If the cornpulsator had more phases and more conducting

negative diodes, each additional loop would still go through the first positive diode IT, through

the field coil, and return through one of the additional negative diode for a total of Nn-1 loops.

The total number of loops in both sets is N,+N,- 1, which matches the number of independent

currents. This is not the only possible scheme, but the amount of effort to write the computer

code to automate it was reasonable.

After the field coil current has accumulated from the small seed current during the self-

excitation stage of operation, the SCRs to the load are allowed to conduct. This, of course, will

10

add to the number of currents or basic variables and will add to the number of loops in the circuit.

Because of the nature of the circuit, half-wave rectifying bridge, the number of additional basic

variables is simply the number of SCRs that are conducting to the load as shown in Figure 7.

Figure 7. Four-Phase Load Circuit.

Here, the field coil and its full-wave bridge have been eliminated. Current to the load is the sum

of the currents through the SCRs Iload = 1: + 1; + 1; + 1:. This current leaves the load and

returns to the circuit at the common connection of the phase coils through the ground. Because

there are no diodes or SCRs in this return path, there are no additional basic variables and no

additional conditions on the currents. The additional loops simply go through a phase coil, its

SCR, and the load. Each loop will then have a different phase coil-SCR combination and the load

for a total of Nl additional loops. Thus, the total number of basic variables and loops will be N =

Nl + N, + Nn - 1, when the currents to the field coil are included. It is possible that the load

could be connected to the phase coils by a full-wave bridge in some future cornpulsator. In this

case, the analysis of the load circuit and the field circuit would be the same.

This concludes the discussion of all the essential details needed to write the program. What

have not been discussed are the details about how the program performs the task of setting up

the differential equations to be solved. The method used by the program is illustrated by

considering the simplified circuit of a four-phase cornpulsator (see Figure 8).

11

Positive Bus Bar

Negative,Bus Bar

Figure 8. Four-Phase Simnlified Circuit.

In this case, there is current in the load, which means that the stage of operation when this circuit

configuration occurred was after the self-excitation of the field and some time after current to the

load has been started. The phase coil, 44, is shown even though it is not connected to anything.

This means that all three diodes connected to it, two in the full-wave bridge and one to the load,

are not conducting and no current is flowing through it at this time. At some later time, the

voltage across this phase coil will become equal to the voltage on the positive bus bar, the

negative bus bar, or the load when the appropriate diodes become conducting and change the

configuration of the circuit. Thus, it is necessary to calculate the voltage output of any open

phase coil and to test its value.

The method that is used by the program to set up the differential equations is based on

matrix algebra. One matrix embodies Kirchhoff s law, which produces a list of currents in a given

order when it is multiplied with a list of the basic variables or diode currents. Another matrix

performs the summation of the voltages around the required number of loops. Using these

matrices and others, one can construct a matrix that will give a list of the time derivative of the

diode currents when it is multiplied by a list of the diode currents as in Equation 3. Indeed, the

steps leading to Equation 3 are equivalent to the steps taken here. The only difference is that the

matrix for the Kirchhoff s law and the matrix for the summation~of the voltage around the circuit

12

loops are included here. This is the most complicated part of the program. The other parts of

the program are simple manipulation, sorting, and bookkeeping of the data. Thus, this part of the

program is discussed by using the circuit in Figure 8 as an example and presenting all the matrices

in detail.

The matrix for Kirchhoff s law is constructed in two steps. This first step is to list the

diode currents that are not zero in a specific order. This order starts with the first phase coil that

is conducting to the positive bus bar, to the load, or both ($1 in Figure 8). In this case, there are

two conducting diodes, I;’ and 1;. Of these two currents, the one conducting to the positive bus

bar 17 appears first, followed by the current to the load 1;. If either one of these currents were

zero, it would be eliminated from the list, leaving the other as the first on the list. As an example,

if 1; were zero or not conducting, it would be eliminated and 1: would be the first entry.

Conversely, if 1: were zero, it would be eliminated and IT would be the first entry. The next

two possible entries would be the next phase coil that is conducting to the positive bus bar or the

load. The source of the next entry could have been $4 if one or both of its diodes,. 1: or 1:, were

conducting. Thus, the next two entries could have been 1:, followed by 1: if both diodes were

conducting, or just 1; if it was the only conducting diode, or just 1: if it was the only conducting

diode. The next set of entries is simply the negative diodes listed from left to right in Figure 8,

17 and 1;. Using these four diode currents, the current through any other part of the circuit can

be found. Note that these currents are not independent and one of them must eventually be

eliminated, but for now, assume that they are independent. Using Kirchhoff s law, a list of

currents through the rest of the circuit is found by multiplying a matrix with the list of diode

currents (see Equation 12).

The list of currents on the left is also in a specific order. First are the currents through the

phase coils, followed by the current through the field coil. The next set of entries is the same as

the list of currents on the right of the matrix. The last entry is the load current, if any diode is

conducting to the load. The load current will not be in the list when there is no load current.

Given the conducting state of all the diodes, the program constructs this matrix. There is one

complication: the direction for a positive current through a phase coil is directed away from the

common connecting point that must be adopted so that the sign of the mutual inductance between

the phase coils is to be consistent with the current directions. If a positive current is flowing

through the phase coil $1, for example, the magnetic flux through another coil will increase when

the mutual inductance between them is positive or will decrease when it is negative. Likewise, a

negative current through $1 will decrease the magnetic flux through another coil when the coil’s

mutual inductance is positive and will increase the magnetic flux when it is negative. Thus, the

13

direction of the positive current must be specified when the mutual inductance is measured. The

next step is to eliminate one of the diode currents. The convention adopted here is to eliminate

the first negative diode, IT, and use the other diode currents as the basic variables.

=

1100

0 O-I 0

0 0 0 -1

100 0

100 0

010 0

0010

000 1

010 0

IT is eliminated by using the following matrix equation:

=
I 1 01 1 00 0 0 -1 1 0 0 I x

<

. (12)

(13)

Multiplying the two matrices together, the currents through the rest of the circuit in terms of the

basic variables are
$1.
I@
143

If

Ii+

I!

Ii

4

I1

=

I I 0‘
-1 0 I

0 O-l

I 0 0

I 0 0

01 0

I 0 -1

00 I

.o 1 0

X (14)

This relationship also holds for the time derivative of the currents.

14

Now that the current and the time derivative of the currents are known in all parts of the

circuit, it is now possible to calculate the voltage drop across any coil. .Each inductor in Figure 8

is in series with a resistor that represents the resistance of the windings of the coil. Therefore,

the voltage drop across any coil is V = 6 + RI when the voltage is measured in the direction of a

positive current. If the coil is magnetically coupled to other coils, such as the phase coils, the

time derivative of the magnetic flux in the coil is found by taking the time derivative of Equation 1

to give the voltage drop across the coil as

in which ii is the time derivative of a current and ~i,j is the time derivative of the mutual

inductance. If the coil is not magnetically coupled to another coil, its voltage drop would simply

be V = RI + Li + LI in which L is the self-inductance of the coil. Normally, the self-inductance

of a coil will not change with time, but the rail gun and other loads may have an inductance that

will change with time. Explicitly, Equation 15 for the circuit in Figure 8 is shown in Equation 16
in which the second 9x9 matrix is the sum of the matrix, ~i,j, and the resistance matrix, Ri,j,

which has the resistance of the coils on its diagonal. These two matrices fit well together because
most of the diagonal elements of n;l,,j are zero and the resistance matrix Rjj is diagonal. In

Equation 16, v is the velocity of the projectile, L ’ is the inductance gradient of the rail gun, cu is

the angular velocity of the phase angle, and the M’s are the derivatives of the mutual inductance

between the phase coils and the field coil with respect to the phase angle.

The next step is to construct a matrix that will sum the voltage drops around the loops in

the circuit and make the sum be zero:

15

41 42 43 Ml,/ 0 0 0 0 0 \ ~

M2,l $2 M2,3 M2,f ' o ' ' '

M3,1 M3,2 L$3 M3,f o o ' ' '

MS,1 Mf,2 Mf.3 Lf 0 0 0 0 0

0 0 0 0 LdO 0 0 0 x

0 0 0 0 0 'r, 0 0 0

0 0 0 0 0 0 LdO 0

0 0 0 0 0 0 0 LdO

0 0 0 0 0 0 0 OL,
\ /

(1

i

1

A

\

$1 0 0 aw+f 0000 0 '

3 42 0 oM;,f 0000 0

3 0 %3 oM;,f 0 0 0 0 0

OMj-,I ~oMj_,~ CIIM),~ Rf 0 0 0 0 0

0 0 0 0 RdOOO 0

0 0 0 0 ORdO 0

0 0 0 0 OOR,O 0

0 0 0 0 OOORd 0

0 0 0 0 0 0 0 0 R,+vL'

The loops are the ones that were described before. The first row of the matrix sums the voltages

in the loop that goes through the first phase coil, $1, the first positive diode, I,?, the field coil, If,

the first negative diode, 17, and its phase coil, h. The second row of the matrix sums the

voltages in the loop that goes through the first phase coil, $1, the first positive diode, 17, the

field coil, If, the second negative diode, 1;) and its phase coil, &. The last row of the matrix

sums the loop that goes through the first phase coil, $1, the first diode to the load, 1!, and the

load, Il.

The final step is to solve the above equations for the time derivatives of the basic variables.

Instead of using the explicit matrices and vectors, the above equations are rewritten in the usual

matrix notation. Starting with Equation 17 for the sums of the voltage drops around the loops,

we have Ln,i Vi = 0, in which .P$ is the matrix that performs the summations. Substitute this

into Equation 15 in matrix notation, Vi = Mi,,~~ + (Ri,M + &fi,,)9m, and the equation becomes

&tz,i Mi,tn4w + ln,i (Ri,m + n;li,tn)l;lm = 0, in which 9m is the list of all the currents. Now let qm

= XmjIj and q* = XMiii in which Xmj is the Kirchhoff matrix in Equation 14 and Ij is the list of

the independent basic variables. With this substitution, it is now possible to solve for ij to find

an equation that is equivalent to Equation 3:

This equation, the equation of motion of the rotor (Equation 13), the equation of motion of the

projectile (Equation 9), and the enthalpy equation for the resistors (Equation 10) are all used by a

fourth order Runge-Kutta method [2] to calculate the values of all the basic variables at some

future time. These results are tested for a change in the conducting state of a diode. If a diode

has become conducting or non-conducting, then a new Kirchhoff matrix, a new loop matrix, and

an new list of independent currents are constructed and used until the conducting state of a diode

again changes.

3. COMPUTER PROGRAM

The discussion of the program that is presented in Appendix A starts with a “header”

section where the important variables, constants, functions, and structures are either declared or

defined. This is followed by a discussion of the “main” section. Subroutines that are important

for reporting the results are also discussed. A user should be able to edit these sections and use

the program for his or her purposes after reading this part. This approach, however, will omit a

discussion of some very important subroutines because they do not appear explicitly in this part

17

of the program, but they will be covered in the next section. The program to be discussed is

listed in the appendix and is referred to by line number or by quoting the statement. The line

numbers are for reference only and are not part of the C Language. All the parameters in the

header section are taken directly or derived from Kitzmiller.[3]

All the parameters that describe a cornpulsator are defined at the beginning of the program.

“6:#define PHASE 3” defines the number of phases and “7:#define POLES 6” defines the number

of poles of the field coil. “9:#define MAX 11” is a maximum number that is used for

dimensioning arrays which is equal to the number of SCRs plus one for the field current and plus

one for the load current or three times the number of phases plus two. “lO:#define TREF 20.0”

is the reference temperature in degrees Celsius. Statement 11 defines a structure tagged “resistor”

which holds the parameters for a resistor. “rO ” is the resistance at the reference temperature

“TREF”. “c” is the temperature coefficient for the resistance. “cp” is the heat capacity or the

specific heat of the resistor. “mass” is the mass of the resistor. Kitzmiller [3] does not give the

masses for the resistors, but he does give the resistivity, Ye, the cross-sectional area, A, the

density, s, and the resistance at ambient temperature, r0 , that could be used to find the mass

m oA2ro _

PO
(19)

Next is a list of all the resistive elements in the cornpulsator, starting with Statement 12 which

defines a structure with the parameters for the field coil resistance. Statement 13 defines the

common parameters for each resistor in series with an SCR that is connected to the positive bus

bar “Pos. Bus Bar” in Figure 2. Statement 14 lists the common parameters for the resistors in

series with the SCRs that are connected to the negative bus bar “Neg. Bus Bar,” and Statement 15

contains the common parameters for the resistors in series with the SCRs that are connected to

the “Load Bus Bar.” The values for “r. s’l of the resistors were taken from Kitzmiller [3], but

the rest of the parameters in Statements 13 through 15 were derived by assuming that the

connections between the cornpulsator and the SCRs are made of aluminum, which establishes the

temperature coefficient c and the specific heat cp. The masses are a rough guess. Fortunately,

these masses are not critical to the final results as long as the temperature rise in these resistors is

small compared to that of the field coil and the armature coils. Statement 16 stores the

parameters for the resistance of the phase coils in an array.

The two-dimensional array in Statement 17 defines the self and mutual inductances of the

armature. The diagonal elements are the self-inductance of a phase coil while the off-diagonal

elements are the mutual inductances between the pairs of phase eoils. As an example, the self

18

inductance of the phase coil, $1, identified by the starting index 0, is the element “mut[O][O]” in

the array or l.l6e-06 H, and the self inductance of & is the element “mut[l][11” in the array or

l.l2e-06 H. Thus, the mutual inductance between these two phase coils is the element

“mut[O] [11” or, equivalently, “mut[l][O]” which is -4.72e-07 H. The next array in Statement 18

contains the maximum mutual inductance between the field coil and each of the phase coils. If the

field coil and the phase coils had perfect symmetry, the phase shift between each phase would be

120” of the phase angle. Because a real compulsator is not perfectly symmetrical, the phase

shifts are slightly different. The phase shift angles are tabulated in the array “os[]” in Statement

19 where the angles are in radians. The first entry in this array is always zero, since this phase is

taken to be the reference phase from which all other phases are measured. The next entry is then

the phase shift for the next coil, etc. The next four statements, 20 through 23, are the inductances

of the field coil “hfield,” the inductance to the SCRs that are connected to the positive bus bar

“hpscr,” the inductance to the SCRs that are connected to the negative bus bar “hnscr,” and the

inductance to the SCRs that are connected to the load bus bar “hlscr.” Statement 24 is the

moment of inertia of the rotor scaled to the phase angle (Equation 13). This concludes the

section that contains all the constants for the compulsator.

The next section contains constants and functions that model the load of the compulsator.

In this case, the load is a 3.0-m-long rail gun launching a 0.32-kg projectile. The “mass” in

Statement 25 is double the mass of the projectile. The function defined by Statements 26

through 28 is the load inductance as a function of the position of the projectile in the rail gun.

Any stray inductance between the output of the compulsator and the breach of the rail gun is

included in this function. The next function “dhdx” in Statements 29 through 3 1 is the derivative

of “hload.” Statements 32 through 34 are the load resistance as a function of the position of the

projectile and include the resistance between the output of the compulsator and the breach of the

rail gun. All the constants and all the functions that model the compulsator and the rail gun are

now defined. Other compulsators, rail guns, or loads can be modeled by editing the Statements 6

through 34. No further editing is needed. In some rail guns, a circuit is placed across the muzzle

to limit the voltage at the muzzle or to recover some of the energy stored in the rail gun after the

projectile exits. Some of these circuits may be modeled by these functions, but if the circuit

contains a capacitor then the program must be modified.

Statements 49 through 113 define various structures and variables that are used by

procedures that are discussed in a later section. The structures between Statements 50 and 55 are

important for printing the results of the calculations and are discussed here. One of the features

of the C Language is the ability to group variables that have some common feature into one

19

structure. As an example, Statement 50 groups all the mechanical variables into a structure called

“mechanical.” These variables are the phase angle “th,” the time derivative of the phase angle or

the angular frequency “w,” the position of the projectile “x, ” and the velocity of the projectile

“v.” The next set or structure of variables, Statement 5 1, is the temperatures of all the resistive

elements: the SCRs to the positive bus bar ‘prec,” the SCRs to the negative bus bar “nrec,” the

SCRs to the load “lrec,” the phase coils “phs,” and the field coil “field,” All the variables in this

structure are indexed except for “field.” The index of these variables refers to an phase coil

labeled with the index. As an example, prec[O], nrec[O], and lrec[O] are the temperatures of the

SCRs that are connected to the phase coil $1 whose temperature is stored in phs[O]. The

“config” structure in Statement 52 contains logical variables that give the conducting state of each

SCR which is “TRUE” if the SCR is conducting or “FALSE” if the SCR is not conducting. The

names of the variables in this structure are the same as the ones in the “thermal” structure. Thus,

the like variables in both of these structures refer to the same SCR when the indices of all these

variables are the same. The variable “load” in Statement 52 is special. When this variable is

FALSE, all the SCRs connected to the load “hec” are forbidden to become conductive even when

the conditions for becoming conductive are satisfied. Thus, the load is disconnected from the

compulsator and the compulsator is in the self-excitation mode. When it is set to TRUE, all the

load SCRs that have a forward voltage are immediately closed. Afterward, any nonconducting

load SCR is allowed to become conductive when its forward voltage becomes positive. Thus, the

compulsator is in the launch mode when the projectile is being accelerated down the rail gun.

This variable is returned to FALSE at some later time when any SCR that was conducting while

“load” was TRUE remains conducting and will continue to conduct until its current reverses and

becomes nonconductive. Once the SCR becomes nonconductive, it is forbidden to become

conductive again. Thus, the current to the load is being shut off as the conducting SCRs become .

nonconducting and are not being gated back on. Statement 53 defines a structure for the currents

in the compulsator using the same variable names used in the previous structures.

“prec[PHASE]” are the currents through the SCRs that are connected to the positive bus bar,

“nrec[PHASE]” are the currents through the SCRs connected to the negative bus bar, and

“lrec[PHASE]” are the currents through the SCRs connected to the load. The field coil current

and the load current are included for convenience. All these structures are then united into a

single structure, Statement 54, which is defined as the state of the compulsator. The final

structure in the header section, Statement 55, contains the voltages at various points in the circuit

relative to the ground point in Figure 2: the voltage across the phase coil “vphs,” the voltage of

the positive bus bar “vplus,” the voltage of the negative bus bar “vminus,” and the voltage across

the load “vload,” which includes the resistance and inductance of connections between the output

20

terminals and the breach of the rail gun. These voltages are used to determine if a nonconducting

SCR becomes conducting.

This completes the discussion of the header section of the program. The main part of the

program, Statements 56 through 15 1, organizes the computation by calling the procedures in

proper order and analyzing the results. These procedures are discussed only in general terms in

this section, along with the discussion of the statements. Statements 78 through 97 prompt the

user to enter information for the simulation, starting with the name of the output file. Next is the

initial current in the field coil “seed” which seeds the magnetic field for self-excitation and the

initial revolutions per minute of the rotor. The ambient temperature “tamb” and time step

between calculations “tstep” are entered next. “tclose” is the time when the SCRs are permitted

to conduct to the load. “topen” is the time when the conducting SCRs to the load are forbidden to

conduct again after they have become nonconducting. “tend” is the maximum time that the

calculation is allowed to continue. Because “tstep” is usually much smaller than “tend,” it takes a

large number of steps to reach “tend.” If the results of the calculations were to be written to a file

at each step, the resulting file could be large and contain too much information to be useful. The

“Report Skip = ” asks for the number of steps that will skip the writing of the results to the file.

The first procedure to be called is “initiate” in Statement 101 and is defined in Statements

154 through 198 which fill the state structure named “yo” with the initial values of all the

variables at the time the seed current through the field coil has been established. This procedure

does not model the discharge of the auxiliary capacitor bank into the field coil. Instead, the final

seed current is taken as a given value. To determine the values for the rest of the variables, the

voltages of the phase coils are found by assuming that there is no current in them, but there is a

steady current in the field coil. These voltages are searched for a maximum voltage magnitude

between a pair of phase coils, Statements 180 through 188. Once the pair of phase coils are

found, the phase angle is set so that the voltage difference across the phase coils is at its peak

value. The SCRs of the positive phase coil, Statement 189, and the negative phase coil,

Statement 192, are made conductive. The current through the conducting diodes is set to be equal

to the seed current in Statements 190 and 193. A procedure is then called, statement 198, that

sets up the “bookkeeping” for the calculations. The time derivatives of all the variables in the

structure “yo” are calculated by calling the “deriv” procedure in Statement 102 and the results are

stored in the “dyo” structure which primes the numerical method for solving the differential

equations. The initial conditions are written to the output file by the “report” procedure.

21

The “advance” procedure in Statement 105 uses the fourth order Runge-Kutta method “rk4”

to advance the values in both structures to a later time specified by “tstep.” The procedure tests

for a change in the conducting state of the SCRs. If there is a change, the procedure performs a

sub-step to the time when the change occurs. It then analyzes the conditions of each SCR and

changes its conducting state accordingly and advances the solution to the end of the time step.

The values of all the variables at the end of the time step are returned in the same structures.

This procedure is repeatedly called until the time for the closing of the load SCRs.

The “dump” procedure in Statement 111 writes all the values in the structure to a special

file for diagnosis, or the data may be used to pick up the simulation for later times. One possible

use is to dump the data just before a load is connected to the cornpulsator. The data can then be

used to simulate various rail gun or other loads without recalculating the self-excitation mode of

the cornpulsator. This program does not have this feature.

Statements 113 through 142 are a work in progress and are subject to change. When the

SCRs to the load are closed, there are significant changes in the time derivatives of the currents,

accompanied by a change in the voltages across all the coils. Some combination of the

nonconducting SCRs will become conductive under these new conditions. The problem is finding

the correct combination. The strategy used here is to close all the load SCRs that could conduct

to the load and to keep the conducting state of the rest of the SCRs the same. Using this

configuration, the currents and voltages are calculated for a time step later, Statement 124, when

the state of the SCRs is examined by the “check” procedure in Statement 132 and a new

combination is suggested. The currents are then recalculated, using the original currents and the

new combination, and checked again. This is repeated until the currents and the voltages are

consistent with the conducting state of the SCRs. If a consistent configuration is not found

within three attempts, the program will signal a “reconfiguration error” in Statement 127 and will

terminate. Reconfiguration errors may occur with this strategy. When they do occur, it is

common practice to change the closing time of the SCRs “tclose”‘by at least a time step or change

the time step and run the program again. Other more robust strategies are now being considered

and tested. Statements 144 through 151 cover the time that the cornpulsator is driving the load.

When the time “t” is greater than the opening time ‘topen, ” Statement 14.5, the load SCRs are not

allowed to become conductive by setting “yo->load” to “FALSE.” The program again has some

difficulties when the last conducting SCR to the load becomes nonconducting. This sudden

transition from a conducting state to a nonconducting state again causes a large change in the time

derivatives of the currents, accompanied by large changes in voltages. Finding the correct

22

conducting states of the SCRs after this time is not as important because this is usually the end

of the simulation.

The “report” procedure, Statements 152 through 153, can be modified to produce an output

file of any of the variables in the structure “s” in any format or to do other calculations. In this

case, the procedure simply reports the time, the field and the load currents.

4. SUBROUTINES

The discussions in the previous section of some of the subroutines were limited to the

necessary details to edit the program for other cornpulsators and rail guns and how to report the

results in a desirable format. These subroutines are presented again with further details, and the

details of other subroutines not explicitly used in the main program are also given here. This

should allow one to modify them to include features that were ignored: the presence of

compensating windings, reverse recovery current of the SC%, a gating schedule for the SCRs, etc.

The first procedure-to be discussed is “setup,” which must be called as soon as the

conducting states of the diodes have been determined or when there is any change in the

conducting states of the diodes. Given the conducting state of the SCRs in the form of the

“config” structure, “setup” first constructs various arrays of indices, Statements 199 through

293, that are used to construct the Kirchhoff matrix and the matrix that sums the voltage drops in

the circuit, “loop.” These arrays are also used for various bookkeeping tasks. One task is to

retrieve the currents stored in a “state” structure and to form a list of the basic variables of the

differential equations. Another task is to do the reverse, i.e., store a list of the basic variables or

their time derivatives back into the “state” structure. As an example, the values for these arrays

and indices in the following discussion are for the state of conduction of the SCRs in Figure 8.

“nt_d” is the total number of conducting diodes or SCRs, which is four, and “np_d” is the

number of diodes conducting to the positive bus bar and to the load, which is two. The array

“diode” is a map between an assigned number for a conducting diode (the index of the array) and

the number of the phase coil that it is connected to (the value of its element). Because the

numbering in the C language starts with zero, the array element diode[O] = 0 means that diode #O

is connected to phase coil #l in Figure 8. Therefore, diode[O] = 0, diode[l] = 0, diode[2] = 1, and

diode[3] = 2 are referring to diodes 17, I:, 1j’, and I;, respectively, in Figure 8. Associated

with this array are two other arrays, “b_field” and “b-load.” A “TRUE” value in the “b-field”

array means that the diode is conducting to or from the field coil. A “TRUE” value in the

“b-load” array means that the diode is conducting to the load. Thus, the “b_field” array has the

23

following entries: b_field[O] = TRUE, b_field[l] = FALSE, b_field[2] = TRUE, and

b_field[3] = TRUE. The “b-load” array is the complement of the “b-field” array: b_load[O]

= FALSE, b_load[l] = TRUE, b_load[2] = FALSE, and b_load[3] = FALSE. The “index” array

is a list of the phase coil numbers that are conducting a current. Any phase coil with no current

will not be listed. Thus, index[O] = 0, index[l] = 1, and index[2] = 2. “ntqhs” is the total

number of phase coils that are carrying a current, which is three in this example. “npqhs” is the

number of phase coils that are either conducting current to the load or to the positive bus bar,

which means that npqhs = 1.

Statements 234 through 239 test for a phase coil having a load diode and a negative diode,

the one connected to the negative bus bar, which are conducting at the same time. This condition

occurs when the current through an inductive load is decreasing, which may cause the voltage

across the load to be less than the voltage of the negative bus bar, resulting in a forward voltage

bias on a load diode. Because this program assumes that all the SCRs are gated to act as diodes, it

is assumed that the load diode will act as a diode, even though it is actually an SCR and could be

nonconducting during these circumstances.

“Setup” then constructs the Kirchhoff s matrix, “kir’-’ in Statements 241 through 264, and

the loop matrix, “loop” in Statements 265 through 293 that are declared in Statement 39.

Equation 14 shows an example of the Kirchhoff matrix, and Equation 17 shows an example of the

“loop” matrix.

The “advance” procedure, Statements 294 through 344, advances the values of the state

variables stored in the structure “y” and their time derivatives “dy” by a time step “ts.” The

first procedure that is called uses a Runge-Kutta method, “rk4,” in Statement 308 to calculate the

new state variables “yn” from the old state variables “y,” its derivatives “dy,” and a time step

‘YS. ” “rk4” does not return the time derivative of the new state variables, but they are calculated

by calling “deriv” in statement 309. The next procedure to be called is “check” in the conditional

part of statement 3 10, which tests for a change in the conducting state of the diodes. If it detects

a change in the conducting state of a diode, it returns a “TRUE” value, and the body of the “if’

statement will then be executed. This procedure also returns a new configuration for the diodes

“c-n” and an estimate of the time “dt” when the change of the configuration had occurred in units

of the time step “ts.” A new set of state variables and their derivatives is found for this

approximate time, Statements 3 15 and 3 16, which are copied to the original structures,

Statements 3 17 and 3 18. The new configuration that was found when the “check” procedure was

called in Statement 411 is adopted, and a new set of state variables and their derivatives is found

24

for a full time step after the approximate time, Statements 3 19 through 332, and the configuration

is once again checked in Statement 333. If necessary, Statements 323 through 333 will be

repeated at most three times or until the “check” subroutine does not report a change in the

conducting states of the diodes. If these statements are repeated three times, it is assumed that

the conducting states of the diodes cannot be found. The program then dumps the data and

terminates. This repetition covers the possibility that the conducting state of more than one

diode may have changed during this time step. Even though the “check” procedure tests for a

change in the conducting state of all the diodes, it does so under the assumption that the

conducting state of all the diodes does not change. All this procedure does is to test if a diode has

a reverse current or a forward voltage bias. It does not consider the fact that a change in the

conducting state of a diode will cause a discontinuous change in the current derivatives and a

discontinuous change in the voltages, which may change the test conditions. Furthermore, if

more than one diode changes its conducting state at different times during the time step, only the

earliest time is used. In spite of this fact, a consistent configuration can be found by repeating

the calculation and testing if the configuration needs changing. Once a new consistent

configuration is found, it is adopted (Statements 334 through 340), and the solution is continued

to the end of the present time step (Statements 341 and 342). The new set of state variables and

their derivatives is then copied to the original structures before returning to the main program.

To test for a change in the conducting state of the diodes, the “check” procedure,

Statements 623 through 678, first calls the “volts” procedure in Statement 629. This procedure

calculates the voltages across each phase coil, the positive bus bar, the negative bus bar, and the

load at the beginning of the time step. It is called again in Statement 630 to calculate these

voltages at the end of the time step. After some variables are initialized, Statements 631 through

633, the diodes on each phase coil are tested, Statements. 638 through 676. The original

conducting state of the diodes for a given phase coil is copied to another in Statements 635

through 637 which is returned at the end of the procedure. The first diode to be examined is the

one connected to the positive bus bar, Statements 638 through 643. If it is conducting, it is then

tested for a negative current statement 638. If the current is negative, the “test” flag is set to

“TRUE,” signaling that a change of any kind has been detected. The approximate time for a zero

current through the diode is found by linearly interpolating the diode current at the beginning of

the time step “so->a.prec[i]” and the current at the end of the time step “sn->a.prec[i], Statement

640. The state of the diode is set to “FALSE,” Statement 641, and its current is set to zero,

Statement 642. This estimated time is tested for a minimum. If it is less than the minimum time

so far, it becomes the new minimum, Statement 643. If this diode was not conducting, it is tested

for a forward bias voltage, Statement 644. If it is forward biased, the “test” flag is set to

25

“TRUE” in Statement 645. The approximate time that the voltage across the diode is zero is

estimated by linearly interpolating the voltages of the phase coil “vo.phs[i]” and the positive bus

bar “vo.plus” at the beginning of the time step, and the voltages of the phase coil “vn.phs[i]” and

the positive bus bar “vn.vplus” at the end of the time step. The conducting state of the diode is

set to “TRUE” and its current is set to zero. If the estimated time is less than the minimum time

until this point, it becomes the new minimum. The conducting state of the diode to the negative

bus bar and the conducting state of the diode to the load are examined and recorded in a similar

manner. At the end, the structure “cn” has all the changes in the conducting states of the diodes

and is accessible to the calling program, as well as the minimum time when a change had occurred.

The “check” procedure returns the value of “test” which is “TRUE” when there is any change or

“FALSE” when there is no change in the conducting state of a diode.

The “deriv” procedure, Statements 462 through 604, calculates the time derivatives of all the

state variables that have been a major-subject of this report, and in which many of the equations are

encoded. Statements 477 through 483 calculate the derivatives of the mechanical variables, and

Statements 485 through 489 calculate the rate at which the temperature of the resistors increases

with time. The rest of the procedure calculates the derivatives of the currents. Starting with

Statement 490, the currents that will be the basic variables are recalled from the state structure and

organized into a vector “di.” After various matrices are set to zero, Statements 495 through 604, the

matrices that were illustrated in the previous sections are constructed. The first matrix to be

constructed is “rmf,” Statements 5 13 through 534, which contains the resistances of all the

elements, the products of the angular frequency, and the gradient of the mutual inductance between

the phase coils and the field coil and the product of the velocity of the projectile and the inductance

gradient of the load. An example of this matrix is the second 9x9 matrix in Equation 16. This matrix

is then multiplied on the right by the Kirchhoff s matrix “kir” and on the left by the “loop” matrix.

The resulting matrix “I-” is the L’~,~ (Ri,m + tii,,)~m,k term in Equation 18. A matrix of the

inductances of the elements “temp” is constructed in Statements 544 through 564. An example of

this matrix is the first 9x9 matrix in Equation 16. It, too, is multiplied on the right by “kir” and on

the left by “loop.” The inverse of the resulting matrix “h” is found by calling a matrix inverting

procedure “minv” to give the (L’~,~M~,~~,,)-’ t erm in Equation 18. The matrix “h,” the matrix

“r,” and the vector of the basic variables “di” are multiplied together in Statements 575 through 580

to yield the time derivative of the basic variables “di-dot.” This vector, “di-dot,” is multiplied by

the “kir,” Statements 588 through 591, to generate a vector of the derivatives of all the currents in

the circuit. The values in this vector are then stored into the appropriate locations in the structure

26

“ds,” Statements 592 through 604. This results in a structure of the same type as the data structure

“s,” but values stored in the returned structure “ds” contain the time derivative of the variables.

Using these variables and their time derivatives at a given time, “rk4” calculates the

variables at a later time as specified by the time step. This procedure uses the Euler method,

which is most elementary method for numerically solving first order differential equations of the

form y’ = f(t,y), in which y’ is the derivative of y with respect to t. The Euler method is simply

y(t+h) = y(t) + h F&y(t)) in which h is the time step. This method is encoded in Statements

474 through 536. Because the Euler method is only accurate to the first order of the step size, it

is seldom used by itself. It is a basis, however, for other methods that are accurate to higher

orders. One method is the fourth order Runge-Kutta which is accurate to the fourth order. There

are other Runge-Kutta methods that are accurate to higher orders, but the fourth order Runge-

Kutta has proved to be economical and practical in practice. This Runge-Kutta [4], Statements

375 through 423, uses the Euler method, Statements 424 through 442, to find the derivatives of y

at four points:

kb = F t,+;,y,,+;k,

kc = F t,+;,Y,+;&
(20)

kd = F(fn + h, y, + hk,)

A weighed average of these derivatives is used to estimate the value of yn+l at the time tn + h:

(21)

The “volts” procedure, Statements 605 through 622, calculates the voltages at various points in

the circuit. Statements 612 through 615 find the voltages across each phase coil with respect to

the central ground point, even when a phase coil may not be carrying a current. Statement 616

calculates the voltage across the load. The voltage of the positive bus bar is found by first

searching for a diode that is conducting a current to it, calculating the voltage drop across the

diode, and subtracting it from the voltage across its phase coil (Statements 617 through 619). A

similar procedure is used to determine the voltage of the negative bus bar (Statements 620

through 622). The “check” procedure uses these results to test for a forward bias voltage on a

nonconducting diode.

27

5. DISCUSSION AND RESULTS

Although this program produces results, it is a work in progress in which some areas can be

improved. One area of improvement is the testing for the conducting state of the SCRs, especially

when the load current just starts and when the load current ends. Although the present strategy

works for this cornpulsator, it may need improvement for cornpulsators that have more phase

coils. When there are more phase coils, there are more SCRs, which means there is an increased

chance that two or more SCRs are changing state at the same time or very close to the same time.

The present strategy may not resolve this situation. Another possible area for improvement is to

use a Runge-Kutta routine that changes the step size and tests the quality of the solution. When

these routines detect that the variables are slowly changing during a time step by some criteria,

they will increase the next step size, and they will also decrease the next step size when the

variables are changing too much. The routines are usually faster than the ones that keep the same

time step, because they quickly step over regions where the variables are not changing

significantly, while the fixed step size routine will simply step through these regions. These

routines that do vary the step size assume that the transition from the regions where the variables

are changing slowly to the regions where the variables are changing quickly or vice versa is

continuous and detectable. The currents in the cornpulsator, however, do not have this property.

Because the currents vary smoothly when the conducting state of the diodes does not change,

these routines may continue to increase the step size during this time. By the time a diode does

change its conducting state and the currents are changed very quickly at some unforeseen time, the

step size may be large. These routines may then spend a lot of effort in decreasing the step size

and testing when the currents have suddenly started to quickly change. This effort may cancel the

advantage of changing the step size. Thus, a fixed time step is used in this program. Other

Runge-Kutta routines test the quality of the solution, which is desirable. Because this program

does not have an intrinsic test for the quality of the solution, it should be repeated several times

with decreasing step sizes and the results examined. If the results do not significantly change

when the step size is decreased, then the quality of the results is good.

Because the SCRs are modeled by an open or closed switch, the characteristics of the SCRs

are ignored. These characteristics are the voltage drop across the SCRs when they are

conducting, and the recovery characteristics when the current through them is starting to reverse.

If is assumed that the characteristics of the SCRs should not have a significant effect on the

performance of the cornpulsator, then the reason for including them would be to study other

aspects of the cornpulsator: voltage transits, snubber circuits, etc. Including these characteristics

may solve the configuration problem in this program because they will make the discontinuous

28

.

change of an SCR in a conducting state to a nonconducting state into a continuous transition. By

taking small time steps, this transition may allow “rk4” to follow a solution through this period

and determine the conducting state of all the other SCRs.

If a compulsator is powering a rail gun, it may be desirable to shape or control the current

pulse so that the muzzle velocity of the projectile is at a maximum without over-stressing the rail

gun. By gating the SCRs to the load at different times, it is possible to change the shape of the

current pulse. This program does not have this pulse-shaping capability, but it could be modified

to use a gating schedule for the load SCRs and find the resulting current pulse.

The program was validated in two ways. First, the total energy of the system, Equation 4,

was calculated in a previous version, and it was observed that the total energy was conserved.

Second, the results of the program agree very well with the results reported in Kitzmiller [3]. As

an example, one of the results is duplicated with the following prompted input:

Output File: results.out
Field current (a) = 6000.0
Initial rpm = 10000.0
Temperature (C) = 20.0
Time step = 5.0e-06
Close Time = 0.0756
Open Time = 0.0796
End Time = 0.0820
Report Skip = 20
Report Skip = 20

The program run time is about 13 seconds on a loo-MHz PentiurnTM when compiled with Visual

C++@ 5.0 when the “release’? configuration was selected. The field coil current during the self-

excitation is compared to the results of Kitzmiller [3] (the squares in Figure 9) after 4 ms was

subtracted from K&miller’s time scale.

Four milliseconds is the approximate time for the capacitor bank to establish the seed

current in the field coil which was included in Kitzmiller’s graphs. The rail gun currents are

compared in Figure 10 for the time after the current starts.

29

60 80

Time (ms)

Figure 9. Self-Exciting Field Current.

1000 I-

*

900

-
9

800

z 7oo
g 600

0' 500

0
8

400

J 300

200

100

0

1 e n Kitzmiller
- Present talc.

0 1 2 3 4 5 6

Time(ms) ’

Figure 10. Rail Gun Current.

The closing time was varied until there was a good agreement. This is necessary because

the initial conditions of the two calculations are not the same. In the present calculation, the

initial conditions were chosen so that an initial phase angle can be determined. Kitzmiller,

however, use the initial conditions for a model of the auxiliary capacitor bank that establishes the

seed current in the field coil. Thus, this liberty was taken to produce this agreement. The

30

present calculation gives the final velocity of the projectile as 1248 m/s, while Kitzrniller reports

a final velocity of 1200 m/s. Another point of comparison is the field current. I&miller fmds

that the field current had reached 28 kilo-amperes (kA) in 80 ms. The present calculation finds

that the field current had reached 28 kA in about 76 ms. This difference may be attributable to

the different ways in which the two programs solve differential equations. Still, this program has

nearly reproduced the results of other cases given in Kitzmiller’s report, showing that the two

programs are close equivalents. This program is now being used to study the SSFTP

compulsator as a power supply for coil guns and electromagnetic armor. The results of this

study will be given in future reports.

31

INTENTIONALLY LEFT BLANK

32

REFEXENCES

1. Walls, W.A., M.L. Spann, S.B. Pratap, and J.R. Kitzmiher, “Rotating Machine Development
at the University of Texas,” 8th IEEE International Pulsed Power Conference, San Diego,
CA, editors R. White and K. Prestwitch, pp 533-536, 1991.

2. Bhader, T.B, and J.D. Bruno, “Transient Response of an Electromagnetic Rail Gun: A
Pedagogical Model,” ARL-TR-1663, May 1998.

3. Kitzmiller, J., “FTP-Subscale System Performance Predictions,” Internal memorandum,
CEM Univ. of Texas at Austin.

4. Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, “Numerical Recipies: The
Art of Scientific Computing,” Cambridge University Press, Cambridge, 1986.

33

INTENTIONALLY LEFT BLANK

34

APPENDIX A

COMPUTER PROGRAM

35

INTENTIONALLY LEFT BLANK

36

1:
2: .
3:
4:
5: .

6:

7:
8:
9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:
20:
21:
22:

. 23:
24:

25: const double

COMPUTER PROGRAM

#include <stdio.h>
#include <math-h>
#include <stdlib.h>
FILE *fp;
#define PI 3.141592654
/* Version: This version keeps track of the */
/* temperatures of all the resistors. */
/* --Start of parameters & function block--------*/
// SSFTP compulsator driving a rail-gun
// Number of phases
#define PHASE 3
// Number of poles
#define POLE 6

// MAX = 3*PHASE + 2
#define MAX 11
// Reference temperature for the resistors
#define TREF 20.0
struct resistor {

double ro; // Resistance at TREF
double c; // Temperature coefficient
double cp; // Heat capacity (J/g/C)
double mass; // Resistors mass (g)

];
const struct resistor rfield = { 0.078, 0.0025,

0.963, 8.44e+04 ?;
const struct resistor rpscr = { 1_27e-04, 0.0045,

0.906, 3.00e+03 1;
const struct resistor rnscr = { 1.22e-03, 0.0045,

0.906, 3.00e+03 1;
const struct resistor rlscr = { 1.27e-04, 0.0045,

0.906, 3.00e+03];
const struct resistor rphs[PHASE] =

{ { 4.46e-04, 0.004, 0.963, 3.41e+04],
{ 3.71e-04, 0.004, 0.963, 2.83e+04],
{ 3.41e-04, 0.004, 0.963, 2.60e+04]];

//Inductance table for the stator
const double mut[PHASE][PHASE] =
{ { l.l6e-06, -4.72e-07, -4.35e-07],

{ -4.72e-07, l.l2e-06, -4.74e-07 },
{ -4.35e-07, -4.74e-07, 1_07e-06] >;

//Mutual inductance phase coil and field coil
const double mf[] = {2.92e-05, 2.68e-05, 2_46e-05 };
//Angle offset
const double
const double
const double
const double
const double
const double

os[l = (0.0, X.9635, 3.9270 };

hfield = 2.28e-03; //Field coil
hpscr = 1.94e-07; //Diode inductance
hnscr = 2.60e-06; //Diode inductance
hlscr = 1.94e-07; //Diode inductance
moi = 2.83333; //4*Mom. of inertia

//(kg*m*)/POLE/POLE
mass = 0.640; //2 * Mass (kg)

37

26:
27:
28:

// The load inductance as a function of a position
double hload (const double x) {

if (x < 3.0) return 3.6e-07*x + 2.5e-07;
return 13.3e-07;

]

29:
30:
31:

// The gradiant of the load inductance
double dhdx (const double x) {

if (x c 3.0) return 3.6e-07;
return 0.0;

]

32:
33:
34:

35:
36:
37:

// The rail-gun resistance
double rload (const double x) {

if (x -z 3.0) return 8.33e-05*x + 2.38e-04;
return 4.879e-04;

]
/*____ End of parameter & function block--------*/
typedef short int BOOL;
#define TRUE 1
#define FALSE 0

38:
// Structure for a matrix of real values
struct matrix {

double v[MAX] [MAX];
int r; //Row index dimension
int c; //Column index dimension

] rmf, temp, h, r;

39:
// Structure for a matrix of integer values
struct i-matrix {

short int v[MAXl [MAXI;
short int r; // Row index dimension
short int c; // Column index dimension

] kir, loop:
40: short int index[PBASE]; // Phase index
41: short int np_phs; // Number of pos. phases
42: short int nt_phs; // Total number phases
43: short int diode[MAX]; // Diode number
44: BOOL b_load[MAX]; // Diode conducting to load
45: BOOL b_field[MAXl; // Diode conducting to field
46: BOOL load-flag; // A diode conducts to load
47: short int np_d; // Number of pos. diodes
48: short int nt_d; // Total conducting diodes

49:

50:

51:

// Structure for a real vector
struct rvec {

double v[MAXl;
int n;

1;
struct mechanic {

double w; //
double th; //
double v; //
double x; //

I;
struct thermal 1

double prec[PRASE]; //
double nrec[PHASEl; //

Angular frequency
Phase angle
Projectile velocity
Projectile position

Pos. diode temp
Neg. diode temp

38

.

.

double lrec[PHASEl; // Load diode temp
double phs[PHASE]; // Phase coil temp
double field; // Field coil temp

I;
52: struct config {

// Conducting state of the pos. diodes.
BOOL prec[PHASEl;
// Conducting state of the neg. diodes.
BOOL nrec[PHASEl;
// Conducting state of the load diodes.
BOOL lrec[PHASEl;
BOOL load;

lcf; // The configuration
53: struct current {

// All diode currents are positive
double prec[PHASEl; // Pos. diode current
double nrec[PHASEl; // Neg. diode current
double lrec[PHASE]; // Load diode current
double phs[PHASEl; // Phase coil current
double field; // Field coil current
double load: // Load current

I;
54: struct. state {

struct mechanic m;
struct thermal tc;
struct current a;
struct config *c; // Active configuation

);
55: struct voltage 1

// Voltage across each phase coil
double vphs[PHASEl;
-// Voltage of the positive busbar.
double vplus;
// Voltage of the negative busbar
double vminus;
// Voltage across the load.
double vload;

);
/* -______-_-__ main () _-________________~~~~~~-~*/

56: void main 0 {
57: void initiate (struct state *, double,

double, double); 1

58: void deriv (const struct state *, struct state *);
59: void setup (const struct config *);
60: void advance (struct state *, struct state *,

double 1;
61: void report (const struct state * , const double);
62: void copy (struct state *, const struct state *);
63: void rk4 (struct state *, const struct state *,

const struct state *, const double);
64: BOOL check (const struct state *,

const struct state *, struct state *,
const struct state *, struct config *,
double * 1;

39

65: void dump (const double t, const struct state * 1;
66: double seed; //Seed field current (amps)
67: double tamb; //Ambient Temperature

68: double rpm; //Initial rpm
69: char fname[40]; //Output file name
70: double t, tstep, tclose, topen, tend;
71: double dt;
72: int i, skip, rc;
73: struct state yo; // State variables
74:'struct state dye;// and derivatives
75: struct state yn;
76: struct state dyn;
77: struct config *pc_o;
78: struct config c-n;
79: printf ("Output File: "1;

80: scanf (u%s", fname);

81: fp = fopen (fname, "w');

82: printf ("Field current (a) = "1;
83: scanf ("%le", &seed);
84: printf ("Initial rpm = "1;
85: scanf ("%le", &rpm) ;
86: printf ("Temperature (C) = "1;
87: scanf ("%le", &tamb);

88: printf ("Time step = "1;
'89 : scanf ("%le", &tstep) ; .
90: printf ("Close Time = "1;
91: scanf ("%le", &tclose);
92: printf ("Open Time = ");
93: scanf ("%le", Gtopen);

94: printf ("End Time = ");
95: scanf ("%le", &tend);
96: printf ("Report Skip = "1;
97: scanf ("%d", &skip);
98: rc = 1;
99: y0.c = &cf; // The original configuration

100: t = 0.0;
101: initiate (&yo, tamb, seed, rpm);

102: deriv (&yo, &dyo 1;
103: report (&yo, t 1;
104: while (t < tclose 1 t
105: advance (&yo, &dyo, tstep 1;
106: t += tstep;
107: if (rc == skip) {

108: report (&yo, t 1;
109: rc = 0;

]
110: rc++;

]
111: dump 1 t, &YO 1;

112: if (t c tend 1 {
113: for (i = 0; i < PHASE; i++) {

114: c_n.prec[il = yo.c->prec[il;

115: c_n.nrec[i] = yo.c->nrec[il;

116: c_n.lrec[il = yo.c->lrec[il; -

40

117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128: 0
129:
130:

131:
132:

133:
134:
135:
136:
137:
138:

139:
140:
141:
142:

143:
144:
145:
146:
147:
148:
149:
150:

151:

152:

153:

154:

155:
156:

c_n.load = TRUE;
PC-0 = y0.c;
y0.c = &c-n;
1= 0;
do 1

setup (&c-n 1;
deriv (&yo, &dyo 1;
rk4 (&yn, &yo, stdyo, tstep);
deriv (&yn, &dyn 1;
if(i==3)(

printf ("Reconfiguration Error\n");
'Y0.C = pc_o;

dump (t, &YO 1;
exit(0);

1
i++;

1 while (check (&yo, &dyo, &yn,
&dyn, &c-n, &dt));

y0.c = pc_o;
dyo.c = PC-O;
for (i = 0; i < PHASE; i++) {

yo.c->prec[il = c_n.prec[il;
yo>c->nrec[il = c_n.nrecCil;
yo.c->lrec[il = c_n.lrec[il;

I
yo.c->load = c_n.load;
report (&yo, t 1;
printf ("Report Skip = ");
scanf ("%d", &skip) ;

I
rc = 1;
while (t -c tend && load-flag) 1

if (t > topen) yo.c->load = FALSE;
advance (&yo, &dyo, tstep);
t += tstep;
if (rc == skip 1 1

report (&yo, t);
rc = 0;

1
rc++;

I
1 // End of main 0
void report (const struct state *s,

const double time 1 {
fprintf (fp, II %8.3f %8.3f %8.3f\n",

time*lOOO.O, s->a.field/lOOO.O,
s->a.load/lOOO.O);

1
// Initiates struct state *t
void initiate (struct state *t, double ta,

double af, double rpm) 1

void setup (const struct config *PC);
double mag, arg, magmax;

41

157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:

189:
190 :

191:
192:
193:

194:

195:

196:

197:
198:

i

double xa, ya, dx, dy;
int i, j, imax, jmax;

t->m.th = 0.0;
t->m.w = PI*POLE*rpm/GO.O
t->m.v = 0.0;
t->m.x = 0.0;
t->tc.field = ta;
t->c->load = FALSE;
magmax = -1.0;
for (i = 0; i < PHASE; i++)

t->c->prec[i] = FALSE;
t->c->nrec[i] = FALSE;
t->c'>lrec[i] = FALSE;
t->a.prec[il = 0.0;
t->a.nrec[il = 0.0;
t->a.lrec[i] = 0.0;
t->a.phs[il = 0.0;
t->tc.prec[il = ta;
t->tc.nrec[il = ta;
t->tc.lrec[i] = ta;
t->tc.phs[il = ta;
xa = mf[il*cos(os[il 1;
ya = mf[i]*sin(os[il 1;

I

for (j = i+l; j < PHASE; j++) {
d_x = xa - mf[jl*cos (os[jl 1;
dy = ya - mf[jl*sin (os[jl 3;
mag = sqrt(dx*dx
if (mag > magmax

imax = ii
jmax = j;
magmax = mag;

arg = atan (

1
1

1
t->c->prec[jmax] = TRUE;
t->a.prec[jmaxl = af;
t->a.phs[jmaxl = af;
t->c->nrec[imax] = TRUE;
t->a.nrec[imaxl = af;
t->a.phs[imax] = -af;
t->m.th = -arg; ’
t->a.load = 0.0;
t->a.field = af;
setup (t->c 1;

1 // End of initiate ()

+ dy*dy)i
1 1

dy, dx];

199: void setup (const struct config *c 1 {
200: int i, j;

// Zero out the matricies

201: for (i = 0; i < MAX; i++)
202: for (j = 0; j < MAX; j++ 1 1
203: kir.v[il[jl = 0;
204: loop.v[il[jl = 0;

>

42

205:
206:
207:
208:
209:
210:
211:

212:
213:

214:
215:
216:
217:
218:

219:
220:
221:
222:
223:
224:

225:

226:
227:

228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:

240:

241:
242:

243:

244:
245:

kir.r = 0;
kir.c = 0;
loop-r = 0;
1oop.c = 0;
nt_d = 0;
nt_phs = 0;
load-flag = FALSE;
// Diodes on the positive phases
for (i = 0; i < PHASE; i++) {

if (!c->nrec[il &&
(c->prec[il 11 c->lrec[il))

if (c->prec[il) {
diode[nt_dl = nt_phs;
b_field[nt_dl = TRUE;
b_load[nt_dl = FALSE;
nt_d++;

I
if (c->lrec[il) (

load-flag = TRUE;
diode[nt_dl = nt_phs;
b_field[nt_dl = FALSE;
b_load[nt_d] = TRUE;
nt_d++;

I
index[nt_phs++] = i;

]
>
np_d = nt_d;

np_phs = nt_phs;
// Diodes on the negative phases
for (i = 0; i < PHASE; i++)

if (c->nrec[i]) (
diode[nt_dl = nt_phs;
b_field[nt_d] = TRUE;
b_load[nt_dl = FALSE;
nt_d++;
if (c->lrec[i]) {

load-flag = TRUE;
diode[nt_d] = nt_phs;
b_field[nt_d] = FALSE
b_load[nt_d] = TRUE;
nt_d++;

?
index[nt_phs++] = i;

]
// Construct the Kirchhoff matrix

for (j = 0; j < np_d; j++) {
kir.v[diode[j]][jl = 1;
// Field current
if (b_field[jl) kir.v[nt_phsl[jl =
// Diode identity
kir.v[nt_phs + 1 + jl[jl = 1;
if (b_load[jl)

1

kir.v[nt_phs + nt_d + 11 [jl = 1 ;

43

246:
247:
248:

249:
250:

for (j = np_d; j c nt_d; j++) {
if (b_field[jl) kir.v[diode[j]][jl = -1;
else kir.v[diode[j]][j] = 1;
// Diode identitiy
kir.v[nt_phs + 1 + j] [j] = 1;
if (b_load[j])

kir.v[nt_phs + nt_d + 11 [jl = 1;

]
251: kir.r = nt_phs + nt_d + 1;
252: if (load-flag) kir.r++;
253: kir.c = nt_d;

254:
255:
256:
257:

// Eliminate the first negative diode current
for (i = 0; i -z np_d; i++)

if (b_field[i]) {
kir.v[np_phs] [il += -1;
kir.v[nt_phs + np_d + 11 [il += 1;

]
258:
259:
260:
261:

for (i = np_d; i e nt_d; i++)
if (b_field[i]) {

kir.v[np_phs][i] += 1;
kir.v[nt_phs + np_d + 11 [il += -1;

]

262:
263:
264:

265:

266:

267:

268:

269:

270:

271:
272:

273:

274:

275:

// Eliminate the zero column from the matrix
kir.c--;
for (i = 0; i c kir.r; i++)

for (j = np_d; j < kir.c; j++)
kir.v[il[j] = kir.v[i][j+l];

// Construct the loop matrix
// The loops through the pos. phase currents
for (i = 0; i < np_d; i++) {

// Loop through the phase coil,
//field coil & first neg.
if (b_field[i]) {

// The phase coil
loop.v[loop.r][diode[il] = 1;
// The field coil column
loop.v[loop.rl[nt_phs] = 1;
// The pos. field diode
loop.v[loop.r][nt_phs + i + l] = 1;
// The first neg. phase
loop.v[loop.r][np_phs] = -1;
// The neg. field diode
loop.v[loop.r][nt_phs + np_d + l] = 1;
loop-r++;

]
]
// Loop through the first pos.
// field coil & rest of neg. phase
j = 0;
//Find first pos. phase to field
while (!b_field[j]) j++;
//Index to the pos. phase.
j = diode[jl;

44

276:
277:

278:

279:

280:

281:

282:
283:

284:

285:
286:
287:
288:
289:
290:
291:

292:

293:

294:

295:

296:
297:
298:
299:

300:
301:
302:
303:
304:
305:
306:
307:
308:
309:
310:

for (i = np_d + 1; i -C nt_d;
if (b_field[il 1 {

// First phase coil
loop.v[loop.rl[jl = 1 ;
// Field coil
loop.v[loop.rl
// First pos.
loop.v[loop.rl
// Neg. phase
loop.v[loop.rl

i++) {

[nt_phsl = 1;
field diode
[nt_phs + j + 11 = 1;
coil
[diode[i]] = -1;

// Neg. field diode
loop.v[loop.r][nt_phs + i + l] = 1;
loop.r++;

3
]
1oop.c = nt_phs + nt_d + 1;
// Loop through the load
if (load-flag) {

for (i = 0; i c nt_d; i++) {
if (b_load[il 1 {

loop.v[loop.r] [diode[i]] = 1;
loop.v[loop.r][nt_phs + i + 11 = 1;
loop.v[loop.r] [loop.c] = 1;
loop.r++;

I

I
loop.c++;

]
return;

] // End of setup0
// Advance the state structures by a time step
void advance (struct state *y, struct state *dy,

double ts) {
void rk4 (struct state *, const struct state *,

const struct state *, const double 1;
void deriv (const struct state *, struct state * 1;
void copy (struct state *, const struct state * 1;
void setup (const struct config *);
BOOL check (const struct state *,

const struct state *,
struct state *, const struct state *,
struct config *, double * 1;

void dump (const double , const struct state *);
struct state yn;
struct state dyn;
struct config c-n;
struct config *co; // Original config.
double dt;
int 1, cnt;

co = y->c;

rk4 (W-L y, dy, ts 1;
deriv (&yn, &dyn);

if (check (y, dy, &yn, &dyn, &c-n, &dt)) {
// Advance to the approx. time of -

45

311:
312:
313:
314:

315:
316:

317:
318:

319:
320:
321:

322:
323:
324:
325:
326:
327:
328:
329:
330:
331:

332:
333:

334:
335:
336:
337:
338:
339:
340:

341:
342:

343:
344:

// change using the original configuration
if (dt c 0.0 11 dt > 1.0) {

printf ("dt = %e out of bounds\n", dt);

dump (dt, Y 1;
exit(0);

]
rk4 (&yn, y, dy, ts*dt);
deriv (&yn, &dyn 1;
//The new becomes the original
copy (y, &y-n);

COPY (dy, &dyn);
// Try advancing a full time step
// using the new config.
Y-X = &c-n;

dy->c = &c-n;
cnt = 0;

do 1
setup (&c-n 1;
deriv (y, dy 1;

rk4 (&yn, y, dy, ts 1;
deriv (&yn, &dyn);
if (cnt == 3) {

printf ("Reconfiguration Error\n");
Y-X = co;
dump (0.0, Y 1;

exit(0);

]
cnt++;

] while (check (y, dy, &yn,

y->c '= co;

&dyn, &c-n, &dt) 1;

dy->c = co;
y->c->load = c-n-load;
for (i = 0; i < PHASE; i++) {

y->c->prec[i] = c_n.prec[il;
y->c->nrec[i] = c_n.nrec[i];
y->c->lrec[i] = c_n.lrec[i];

I
// Advance to the end of the time step
rk4 (&yn, y, dy, ts*(l.O-dt) 1;
deriv (&yn, &dyn 1;

]
copy (Y, Wn 1; //The new becomes the original

COPY (dy, &dyn 1;
} // End of advance 0
// Generates a dump file for the state structure

345: void dump (const double t,
const struct state *s) 1

346: FILE *fdmp;
347: int i;
348: fdmp = fopen ("DUMP-OUT", “w”);
349: fprintf (fdmp, ' %24.16e\n", t);
350: fprintf (fdmp, V %24.16e\n", s->m.w);
351: fprintf (fdmp, II %24.16e\n", s->m.th); _

46

352:
353:
354:
355:
356:
357:
358:

359 :

360:
361:
362:
363:
364:

365:
366:
367:

368:
369:

370:
371:

372:
373:
374:

375:

376:
377:
378:
379:
380:

381:
382:
383:
384:
385:

386:

387:
388:

389 :

390 :

391:

fprintf (fdmp, ' %24.16e\n", s->m.v);
fprintf (fdmp, ' %24.16e\n", s->m.x);
for (i = 0; i -C PHASE; i++) {

fprintf (fdmp, V %24.16e", s->tc.prec[i]);
fprintf (fdmp, U %24.16e", s->tc.nrec[i]);
fprintf (fdmp, M %24.16e", s->tc.lrec[il);
fprintf (fdmp, ' %24.16e\n", s->tc.phs[il);

I
fprintf (fdmp, M %24.16e\n", s->tc.field);
for (i = 0; i < PHASE; i++) {

fprintf (fdmp, n %24.16e", s->a.prec[i]);
fprintf (fdmp, It %24.16e", s->a.nrec[il);
fprintf (fdmp, N %24.16e", s->a.lrec[il);
fprintf (fdmp, w %24.16e\n", s->a.phs[i]);

1
fprintf (fdmp, U %24.16e\n", s->a.field);
fprintf (fdmp, ’ %24.16e\n", s->a.load);
for (i = 0; i c PHASE; i++)

-fprintf (fdmp," %ld", s->c->prec[i]);
fprintf (fdmp, "\nU);
for (i = 0; i < PHASE; i++)

fprintf (fdmp,ll %ld", s->c->nrec[i]);
fprintf (fdmp, "\nu);
for (i = 0; i < PHASE; i++)

fprintf (fdmp," %ld", s->c->lrec[i]);
fprintf (fdmp, "\n");
fprintf (fdmp, U %ld\n", s->c->load 1;
fclose (fdmp);

I // End of dump
// The fourth-order Runge-Kutta
void rk4 (struct state *sn, const struct state *so,

const struct state *dso,
const double h) I

struct state dym;
struct state yt;
struct state dyt;
void deriv (const struct state *, struct state *);
void euler (struct state *, const struct state *,

const struct state *, const double);
double hh, hs;
int i;

hh = h/2.0;
hs = h/6.0;
sn->c = so->c;
// First step
euler (&yt, so, dso, hh);
// Second step
deriv (&yt, &dyt 1;
euler (&yt, so, &dyt, hh);
// Third step
deriv (&yt, &dym I;
euler (Lyt, so, &dym, h 1;
// Add the derivatives
dym.m.x += dyt.m.x;

47

392:

393:

394 :

395:

396:

397 :

398:

399:
400:
401:
402:
403:
404:
405:
406:

407:
408:

409:

410:

411:

412:

413:

414:

415:
416:

417:

418:

419 :

420:

421:

dym.m.v += dyt.m.v;
dym.m.w += dyt.m.w;
dym.m.th += dyt.m.th;
dym.a.load += dyt.a.load;
dym.a.field += dyt.a.field;
dym.tc.field += dyt.tc.field;
for (i = 0; i c PHASE; i++) (

dym.tc.prec[il += dyt.tc.prec[il;
dym.tc.nrec[il += dyt.tc.nrec[il;
dym.tc.lrec[il += dyt.tc.lrec[il;
dym.tc.phs[il += dyt.tc.phs[il;
dym.a.prec[il += dyt.a.prec[il;
dym.a.nrec[i] += dyt.a.nrec[il;
dym.a.lrec[il += dyt.a.lrec[il;
dym.a.phs[il += dyt.a.phs[il;

>
// Fourth step
deriv (&yt, &dyt 1;
sn->m.x = so->m.x +

hs*(dso->m.x + dyt.m.x + 2.0*dym.m.x);
sn->m.v = so->m.v +

hs*(dso->m.v + dyt.m.v + 2.0*dym.m.v);
sn->m.w = so->m.w +

hs*(dso->m.w + dyt.m.w + 2.0"dym.m.w);
sn->m.th = so->m.th +

hs*(dso->m.th + dyt.m.th + 2.0*dym.m.th);
sn->a.load = so->a.load

+ hs*(dso->a.load + dyt.a.load
+ 2.0*dym.a.load);

sn->a.field = so->a.field
+ hs*(dso->a.field + dyt.a.field
+ 2.0"dym.a.field);

sn->tc.field = so->tc.field
+ hs*(dso->tc.field + dyt.tc.field
+ 2.0*dym.tc.field);

for (i = 0; i < PHASE; i++) {
sn->tc.prec[il = so->tc.prec[il

+ hs*(dso->tc.prec[il + dyt.tc.prec[il
+ 2.0*dym.tc.prec[il);

sn->tc.nrec[il = so->tc.nrec[il
+ hs*(dso->tc.nrec[il + dyt.tc.nrec[il
+ 2.0*dym.tc.nrec[il);

sn->tc.lrec[il = so->tc.lrec[il
+ hs*(dso->tc.lrec[il + dyt.tc.lrec[:il
+ 2.0*dym.tc.lrec[il);

sn->tc.phs[il = so->tc.phs[il
+ hs*(dso->tc.phs[il + dyt.tc.phsLi.1
+ 2.0*dym.tc.phs[il);

sn->a.prec[i] = so->a.prec[il
+ hs*(dso->a.prec[il + dyt.a.prec[il
+ 2.0*dym.a.prec[il);

sn->a.nrec[i] = so->a.nrec[il
+ hs*(dso->a.nrec[i] + dyt.a.nrec[il
+ 2.0*dym.a.nrec[il);

48

422:

423:

sn->a.lrec[il = so->a.lrec[il
+ hs*(dso->a.lrec[il + dyt.a.lrec[i
+ 2.0*dym.a.lrec[il);

sn->a.phs[i] = so->a.phs[il
+ hs*(dso->a.phs[il + dyt.a.phs[il
+ 2.0*dym.a.phs[il);

1
) // End of rk40
// Euler method advances the state by a time step

424: void euler (struct state *sn,

425:
426:

427:
428:
429:
430:
431:
432:
433:
434:

435:

436:

437:

438:

439:

440:

441:

442:

const struct state *so,
.const struct state *dso,
const double h) 1

int i;
sn->c = so->c;
// The mechanical part
sn->m.x = so->m.x + h * dso->m.x;
sn->m.v = so->m.v + h * dso->m.v;
sn->m.th = so->m.th + h * dso->m.th;
sn->m.w = so->m.w + h * dso->m.w;
'sn->tc.field = so->tc.field + h * dso->tc.field;
sn->a.field = so->a.field + h * dso->a.field;
sn->a.load = so->a.load + h * dso->a.load;
for (i = 0; i < PHASE; i++) {
// The temperatures

sn->tc.prec[il = so->tc.prec[il
+ h * dso->tc.prec[il;

sn->tc.nrec[il = so->tc.nrec[il
+ h * dso->tc.nrec[il;

sn->tc.lrec[i.l = so->tc.lrec[il
+ h * dso->tc.lrec[il;

sn->tc.phs[il = so->tc.phs[il
+ h * dso->tc.phs[il;

// The currents
sn->a.prec[il = so->a.prec[il

+ h * dso->a.prec[il;
sn->a.nrec[il = so->a.nrec[il

+ h * dso->a.nrec[il;
sn->a.lrec[il = so->a.lrec[i

+ h * dso->a.lrec[i];
sn->a.phs[il = so->a.phs[il

+ h * dso->a.phs[il;

1
) // End of euler0
// Copies the source structure over to the target

443: void copy (struct state *St,
const struct state *ss 1 {

444: int i;
445: st->c = ss-x!;

// The mechanical part
446: st->m.x = ss->m.x;
447: st->m.v = ss->m.v;
448: st->m.th = ss->m.th;
449: st->m.w = ss->m.w;

49

450: st->tc.field = ss->tc.field;
451: st->a.field = ss->a.field;
452: st->a.load = ss->a.load;
453: for (i = 0; i -C PHASE; i++) {

// The temperature part

454: st->tc.prec[il = ss->tc.prec[il;

455: st->tc.nrec[il = ss->tc.nrec[il;

456: st->tc.lrec[i] = ss->tc.lrec[il;
457: st->tc.phs[il = ss->tc.phs[il;

// The currents
458: st->a.prec[il = ss->a.prec[il;
459: st->a.nrec[il = ss->a.nrec[il;
460: st->a.lrec[il = ss->a.lrec[il;

461: st->a.phs[il = ss->a.phs[il;

1
I// End of copy0
// Returns the derivative of a state

462: void deriv (const struct state *s,
struct state *ds 1 l

463: double hload (const double x 1;
464: double dhdx (const double x 1;
465: double rload (const double x 1;
466: double mfi (const double , const int 1;
467: double dmfi (const double , const int 1;
468: double dTdt (const struct resistor *r,

const double 1;
469: double rt (const struct resistor *r,

const double);
470: BOOL minv (struct matrix *);
471: int i, j, k, m, n;
472: double sum;
473: struct rvec di; // List of diode currents
474: struct rvec di_dot; // Derivative of diode currents
475: struct rvec amp-dot;// Vector of all the i-dots
476: ds->c = s->c; // Both have the same config.

477:

478:

479 :

480:
481:
482:

483:

484:

485:
486:

// The mechanical variables
ds->m.x = s->m.v; // Projectile velocity
// Projectile acceleration
ds->m.v = s->a.load * s->a.load

* dhdx (s->m.x)/mass;
ds->m.th = s->m.w; // Angular velocity
sum = 0.0;
for (i = 0; i < PHASE; i++)

sum += s->a.phs[i] * dmfi(s->m.th, i);
// Angular acceleration
ds->m.w = sum * s->a.field /moi;
// The thermal variables and
// zero out the current section
ds->tc.field = s->a.field * s->a.field *

dTdt (&rfield, s->tc.field 1;
for (i = 0; i < PHASE; i++) {

ds->tc.prec[il = s->a.prec[i]*s->a.prec[il
* dTdt (&rpscr, s->tc.prec[il 1;

50

487:

488:

489:

490:
491:
492:
493:

494:

495:
496:
497:

498:

499:
500:
501:
502:
503:
504:

505:
506:
507:
508:
509:
510:
511:
512:

513:
514:
515:
516:
517:

518:
519:
520:
521:

ds->tc.nrec[il = s->a.nrec[i]'*s->a.nrec[i]
* dTdt (&rnscr, s->tc.nrec[i]);

ds->tc.lrec[i] = s->a.lrec[il*s->a.lrec[il
* dTdt (&rlscr, s->tc.lrec[i]);

ds->tc.phs[il = s->a.phs[i]*s->a.phs[i]
* dTdt (&rphs[il, s->tc.phs[i]);

I
// The currents

di.n = 0;
for (i = 0; i < np_d; i++) {

j = index[diode[i] I;
if (b_field[il)

di.v[di.n++] = s->a.prec[j];

if (b_load[il 1
di.v[di.n++l = s->a.lrec[j];

// Skips the first negative diode
for (i = np_d + 1; i < nt_d; i++) {

j = index[diode[il 1;
if (b_field[i])

di.v[di.n++] = s->a.nrec[j
if (b_load[il)

I;

di.v[di.n++l = s->a.lrec[jl;

// Zero out the matricies
for (i = 0; i < MAX; i++)

for (j = 0; j -z MAX: j++) {
rmf.v[i][jl = 0.0;
temp.v[il[jl = 0.0;

..h.v[il[jl = 0.0;
r'.v[i][j] = 0.0;

]
rmf.r = 0;
rmf.c = 0;
temp.r = 0;
temp.c = 0;
h.r = 0;
h.c = 0;
r.r = 0;
r.c = 0;
// Construct the matrix of the resistances
// The phase coil resistances
for (i = 0; i < ntghs; i++) {

j = indexCi1;
rmf.v[i] [i] = rt(rphs + j, s->tc.phs[jl);
rmf.v[il [nt_phsl = s->m.w * dmfi(s->m.th,j);
rmf.v[nt_phsl[il = rmf.v[il [nt_phsl;

I
// The field coil resistance
rmf.v[nt_phsl[nt_phsl = rt(&rfield,s->tc.field);
for (i = 0; i < np_d; i++) {

j = index[diode[il 1;
k = nt_phs + i + 1;
// The positive diode resistances -

51

522: if (b_field[il 1
rmf.v[kl[kl = rt(&rpscr,s->tc.prec[jl);

if (b_load[il)
rmf.v[k] [k] = rt(&rlscr,s->tc.lrec[jl);

]
for (i = np_d; i < nt_d; i++) {

j = index[diodeIi.1 1;
k = nt_phs + i + 1;
// The negative diode resistances
if (b_field[il 1

rmf.v[kl [kl = rt(&rnscr,s->tc.nrecIjl);

if (b_load[il)
rmf.v[k][k] = rt(&rlscr,s->tc.lrec[j]);

523:

524:
525:
526:

527:

528:

529:
530:
531:
532:

533:
534:

535:
536:
537:
538:
539:
540:
541:

542:
543:

544:
545:
546:
547:
548:

549:
550:
551:
552:
553:

554:
555:
556:
557:
558:
559:
560:

I
rmf.r = nt_phs + nt_d + 1;

rmf
if

c = rmf.r;

; load-flag 1 1
rmf.v[rmf.rl[rmf.cl = rload (s->m.x)

+ s->m.v*dhdx(s->m.x);

rmf.r++;
rmf.c++;

// Multiply loop * rmf * kir
for (i = 0; i < kir.c; i++)

for (j = 0; j -z 1oop.r; j++) {
for (m = 0; m c rmf.r; m++) C

sum = 0.0;
for (n = 0; n < kir.r; n++)

sum += rmf.v[ml[nl*kir.v[nl [jl
r.v[i][j] += loop.v[i][ml * sum;

;

I
I

r.r = 1oop.r;
r.c = kir.c;
// Construct the matrix of the inductances
for (i = 0; i < nt_phs; i++) {

temp.v[i][nt_phs] = mfi(s->m.th,index[i]);
temp.v[nt_phs][i] = temp.v[i][nt_phs];
for (j = 0; j -z nt_phs; j++)

temp.v[il[j] = mut[index[i]][index[j]];

temp.v[nt_phs] [ntqhs] = hfield;
for (i = 0; i -z np_d; i++) {

j = nt_phs + i + 1;
if(b_field[il) temp.v[jl[jl
if (b_load[il) temp.v{jl[jl

]
for (i = np_d; i -z nt_d; i++) 1

j = nt_phs + i + 1;
if(b_field[il) temp.v[jl[jl
if (b_load[il) temp.v[jl[jl

]
temp.r = nt_phs + nt_d + 1;
temp .c = nt_phs + nt_d + 1;

= hpscr;
= hlscr;

= hnscr;
= hlscr;

52

561:
562:
563:
564:

565:
566:
567:
568:
569:
570:
571:

572:
573:
574:
575:
576:
577:
578:
579:

580:

581:
582:
583:
584:
585:
586:
587:

588:

589:
590:
591:

592:
593:
594:

595:
596:
597:

if (load-flag) {
temp.v[temp.rl [temp.c] = hload (s->m.x);
temp.r++;
temp.c++;

// Multiply loop * temp * kir
for (i = 0; i < kir.c; i++)

for (j = 0; j < 1oop.r; j++) {
for (m = 0; m c temp.r; m++)

sum = 0.0;
{

for (n = 0; n c kir.r; n++)
sum += temp.v[ml [nl*kir.v[nl[j

h.v[i][j] += loop.v[il Em1 * sum;

1
1

h.r = 1oop.r;
h.c = kir.c;
minv (&h);

I;

for (di_dot.n = 0; di_dot.n < h.r; di_dot.n++) {
di_dot.v[di_dot.n] = 0.0; I

for (m = 0; m < h.c; m++) {
sum = 0.0;
for (j = 0; j < r.c; j++)

sum += r.v[ml[jl*di.v[jl;
di_dot.v[di_dot.nl -=

h.v[di_dot.nl [ml*sum;.

3
1
ds->a.load = 0.0;
ds->a.field = 0.0;
for (i = 0; i < PHASE; i++) (

ds->a.prec[i.l = 0.0;
ds->a.nrec[il = 0.0;
ds->a.lrec[il = 0.0;
ds->a.phs[il = 0.0;

// Put all the derivatives and currents
// into the structure
// Multiply the vector di_dot by the kir matrix
for (amp_dot.n = 0; amp_dot.n < kir.r;

amp_dot.n++) {
amp_dot.v[amp_dot.nl = 0.0;
for (j = 0; j < kir.c; j++)

amp_dot.v[amp_dot.nl +=
kir.v[amp_dot.nl[jl*di_dot.v[jl;

1
// amp_dot.v is now a list of all the i-dots
for (i = 0; i -C nt_phs; i++) 1

j = index[il;
ds->a.phs[jl = amp_dot.v[il;

1
ds->a.field = amp_dot.v[nt_phsl;
for (i = 0; i < np_d; it+ 1 {

j = index[diodetil I;

53

598 : if (b_field[il
ds->a.prec[jl

if (b_load[il
ds->a.lrec[jl

]

599 :

= amp_dot.v[nt_phs + i + 11;

1
= amp_dot.v[nt_phs + i + 11;

600:
601:

602:

603:

for (i. = np_d; i < nt_d; i++) {
j = index[diode[i] I;
if (b_field[i])
ds->a.nrec[j] = amp_dot.v[nt_phs + i + 11;

if (b_load[il)
ds->a.lrec[j] = amp_dot.v[nt_phs + i + 11;

]
604: if (load-flag)

ds->a.load = amp_dot.v[nt_phs + nt_d + 11;
// End of deriv()

6.05: void volts (struct voltage *volt,

const struct state *s,
const struct state *ds)I

606: double mfi (const double th, const int i);
607: double dmfi (const double th, const int i 1;
608: double rt (const struct resistor *, const double t);
609: int i, j;
610: double d;
611:
612:
613:

614:
615:

616:

617:
618:
619:

620:
621:
622:

d = s->a.field * s->m.w;
for (i = 0; i < PHASE; i++) (

volt->vphs[i] = -d*dmfi(s->m.th, i)
- rt(rphs + i, s->tc.phs[il)*s->a.phs[il
- ds->a.field * mfi(s->m.th, i);

for (j = 0; j < PHASE; j++)
volt->vphs[i] -= mut[il[jl*ds->a.phs[jl;

1
volt->vload = s->a.load*rload(s->m.x)

+ ds->a.load*hload(s->m.x)
+ s->m.v*dhdx(s->m.x)*s->a.load;

// Search for a phase coil
// conducting to the pos. busbar
j = 0;
while (!s->c->prec[jl && j < PHASE) j++;
volt->vplus = volt->vphs[jl

- rt (&rpscr, s->tc.prec[jl) * s->a.prec[jl
- hpscr * ds->a.prec[jl;

// Search for a phase coil
// conducting to the neg. busbar
j = 0;
while (!s->c->nrec[j] &EC j -z PJJASE) j++;
volt->vminus = volt->vphs[jl

+ rt(&rnscr, s->tc.nrec[j]) * s->a.nrec[jl
+ hnscr * ds->a.nrec[j];

// End of volts 0 3

t

// Routine checks the new results for a change in
// the configuration. Returns TRUE if there is a ’

// change and a dt for an approximate time when
// the change occures.

623: BOOL check (const struct state *so,

54

const struct state *dso,
I struct state *sn,

const struct state *dsn,
struct config *cn, double *dt 1

624: void volts (struct voltage *v,
const struct state *s,
const struct state *ds 1;

625: BOOL test:
626: struct voltage vo, vn;
627: double tmin, t, dv;

int i; 628:
629:
630:
631:
632:
633:
634:
635:
636:
637:
638:

volts (&vo, so, dso 1;
volts (m-n, sn, dsn 1;
tmin = 1.0;

639:
640:

641:'
642:
643:

644:

645:
646:
647:
648:
649:
650:

test = FALSE; // Assume no change in config.

cn->load = so-x->load;
for (i = 0; i < PHASE; i++) 1

cn->prec[il = so-x->prec[il;
cn->nrec[i] = so-xc->nrec[il;
cn->lrec[i] = so->c->lrec[il;
if (so->c->prec[i] WC

(sn->a.prec[il < 0.0)) {
// Diode has a reverse current
test = TRUE;
t = so->a.prec[il /

(so->a.prec[il - sn->a.prec[i]);
// Diode not conducting
cn->prec[i.] = FALSE;
sn->a.prec[i] = 0.0;
if (t < tmin) tmin = t;

I
if (!so->c->prec[i] &&

(vn.vphs[i] > vn.vplus)) {
// Nonconducting diode is forward biased
test = TRUE;
dv = vo.vplus - vo.vphs[il;
t = dv/(vn.vphs[i] - vn.vplus + dv);
cn->prec[i] = TRUE; // Conducting diode
sn->a.prec[il = 0.0;
if (t -c tmin) tmin = t

]
651:

652:
653:

if (so-z-c->nrec[il &&
(sn->a.nrec[il < 0.0 1

// A diode has a reverse
test = TRUE;
t = so->a.nrec[il /

1 {
current

654:
655:
656:

657:

(so->a.nrec[il - sn->a.nrec[il);
cn->nrec[i] = FALSE;
sn->a.nrec[il = 0.0;
if (t c tmin) tmin = t;

]
if (!so->c->nrec[i] &&

(vn.vphs[i] < vn.vminus 1) i
// Nonconducting diode is forward-biased

E

55

658:
659:
660:

661:
662:
663:

664:

665:
666:

667:

668:
669:

670:

671:
672:
673:
674:
675:
676:

677:
678:

679 :
680:

681:
682:

683:

684:

685:

686:

687:

test = TRUE;
dv = vo.vminus - vo.vphs[il;
t = dv/(vn.vphs[il - vn.vminus + dv);
// Diode becomes conducting
cn->nrec[i] = TRUE;
sn->a.nrec[i] = 0.0;
if (t -z tmin) tmin = t;

]
if (so->c->lrec [il

&& (sn->a.lrec[i] < b.0)) {
// Load diode has a reverse current
test = TRUE;
t = so->a.lrec[il

/ (so->a.lrec[i] - sn->a.lrec[il);
// Diode is no longer conducting
cn->lrec[i] = FALSE;

sn->a.lrec[i] =,O.O;
if (t c tmin) tmin = t;

]
if (so->c->load &&

!so->c->lrec[i]&&(vn.vphs[il>vn.vload~~~
// A nonconducting diode has a forward
// voltage bias. Section is skipped
// when the load is not connected.
test = TRUE;
dv = vo.vload - vo.vphs[il;
t = dv/(vn.vphs[il - vn.vload + dv 1;
cn->lrec[i] = TRUE;
sn->a.lrec[il = 0.0;
if (t < tmin) tmin = t;

]
]
*dt = tmin;
return test;

] // End of check 0
double mfi (const double th, const int i 1 1

return mf[i]*sin(th + os[il);
) // End of mfi0
double dmfi (const double th, const int i 1 I

return mf[i]*cos(th + os[il);
] // End of dmfi 0
// The increase rate of the resistor's temperature
double dTdt (const struct resistor *Is,

const double temp 1 1
return (rs->ro*(1.0 + rs->c*(temp-TREF))

/ rs-amass / rs->cp 1;
] // End of dTdt0
// The resistance at the temperature
double rt (const struct resistor *rs,

const double temp 1 1
return (rs->ro*(l.O + rs->c*(temp-TREF) 1 1;

) // End of rt0
// Inverts the matrix
BOOL minv (struct matrix *a) i

56

.

688: int ik[
689: double
690: double
691: int i,j
692: if

.

MA.W,jk[MAXl;
amax,save;
fabs();
,k;
(a->r != a->c) return FALSE;

693: for (k = 0; k < a->c; k++) {
/*Find the largest element of the matrix.*/

694 :

695:
696 :

697 :

698 :

699 :

700:

amax = 0.0;
for (i = k; i < a->c; i+t)

for (j = k; j < a->c; j++)
if (fabs(amax) c fabs(a->v[i

amax = a->v[il[jl;
ik[kl = i;
jk[kl = j;

1

l[jl)) {

/*Switch rows and columns to put amax on diagonal.*/
701: i = ik[k];
702: if (i != k)
703: for (j = 0; j -z a->c; j+t) {
704: save = a->v[kl[jl;
705: a->v[kl[jl = a->v[il[jl;
706: a->v[il[j] = -save;

I
707: j = jk[k];
708: if (j != k)
709: for (i = 0; i < a->c; it+) {

710: save = a->v[i] [k];
711: a->v[il [kl = a->v[il[jl;
712: a->v[il[jl = -save;

)
/*Accumulate elements of the inverse matrix.*/

713: for (i = 0; i < a->c; i+t)
714: if (i!=k) a->v[il [kl = -a->v[il
715: for (i = 0; i < a->c; it+)
716: for (j = 0; j c a->c; j++)
717: if ((i!=k) && (j!=k))
718: a->v[i][jl =

719 :

720:
721:

722:
723:
724:
725:
726:
727:

728:
729:

[kl/amax;

a->v[il [jlta->v[il [kl
*a->v[kl[jl;

for (j = 0; j -z a->c; jtt)
if (j!=k) a->v[kl[jl = a->v[kl [jl/amax;
a->v[kl[kl = l.O/amax;

I
/*Restore ordering of matrix.*/

for (k = a->c - 1; k > -1; k--) 1

j = ik[kl;
if (j>k) for (i = 0; i c a->c; i++) 1

save = a->v[il [kl;
a->v[il [kl = -a->v[ilIjl;
a->v[il[jl = save;

I
i = jk[kl;
if (i>k) for (j = 0; .j c a->c; j++) I-

57

730: save = a->v[kl[jl;
731: a->v[k][j] = -a->v[i][j];
732: a->v[i.l[j] = save;

I
.
j

733: return TRUE;
} // End of minv0

58

NO. OF
COPIES

2

ORGANIZATION

ADMINISTRATOR
DEFENSE TECHNICAL INFO CENTER
ATTN DTIC OCP
8725 JOHN J KINGMAN RD STE 0944
FT BELVOIR VA 22060-6218

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL CS AL TA REC MGMT
2800 POWDER MILL RD
ADELPHI MD 20783-l 197

DIRECTOR
US ARMY RESEARCH LABORATORY
AT-l-N AMSRL CI LL TECH LIB
2800 POWDER MILL RD
ADELPHI MD 207830- 1197

DIRECTOR
US ARMY RESEARCH LABORATORY
Al-TN AMSRL DD J J ROCCHIO
2800 POWDER MILL RD
ADELPHI MD 20783- 1197

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL SE EP T B BAHDER

J D BRUNO
BLDG 203
2800 POWDER MILL RD
ADELPHI MD 20783-I 197

DIRECTOR
MICOM RDEC
ATTN AMSMI RD W C MCCORKLE
REDSTONE ARSENAL AL 35898-5240

THE UNIV OF TEXAS AT AUSTIN
INST FOR ADVANCED TECHNOLOGY
AT-TN DR H FAIR DR I MCNAB

DR D ECCLESHALL
4030-2 W BRAKER LANE
AUSTIN TX 78759-5329

U BUFFALO
DEPT EE
AT-I-N J SARJEANT
BOX 601900
BONNER HALL ROOM 3 12
BUFFALO NY 14260-1900

NO. OF
COPIES

1

ORGANIZATION

SAIC
ATTN KEITH A JAMISON
1247-B N EGLIN PKWY
SHALIMAR FL 32579

SAJC
ATTN W RIENSTRA
8200 N MOPAC EXPRESSWAY STE 150
AUSTIN TX 78759

SAIC
AT-TN J GULLY
1410 SPRING HILL ROAD STE 400
MCLEAN VA 22102

SAIC
ATTN G CHRYSSOMALLIS
3800 WEST 80TH STREET STE 1090
BLOOMINGTON MN 5543 1

DARPA
ATTN DR M FREEMAN DR D RADACK

DR D FIELDS B KASPAR L STOTTS
370 1 N FAIRFAX DR
ARLINGTON VA 22203-1714

THE UNIV OF TEXAS AT AUSTIN
J J PICKLE RSRCH CAMPUS
ATTN MAIL CODE R7000 A WALLS

MAIL CODE R7000 S PRATAP
CENTER FOR ELECTROMECHANICS
AUSTIN TX 78712

PM-TMAS
A’ITN AMSTA AR FSP E -D LADD
BLDG B354
PICATINNY ARSENAL NJ 07806-5000

ABERDEEN PROVING GROUND

DIRECTOR
US ARMY RESEARCH LABORATORY
AT-IN AMSRL CI LP (TECH LIB)
BLDG 305 APG AA

DIR USARL
ATTN AMSRL WM B E M SCHMIDT
BLDG 390A

DIR USARL
ATTN AMSRL WM BC P WEINACHT

A ZIELINSKI
BLDG 390

59

NO. OF
QRGANIZATION COPIES

1 DIR USARL
ATTN AMSRL WM BE G KATULKA
BLDG 390A

1 DIR USARL
AMSRL WM M A B TANNER
BLDG 4600

3 DIR USARL
AMSRL WM MB R BOSSOLI

S CORNELISON F PIERCE
BLDG 120

19 DIR USARL
ATTN AMSRL WM TE P BERNING

J CORRERI C HUMMER (5 CYS)
D DANIEL L KECSKES
T KOTTKE K MAHAN
M MCNEIR A NIILER
J POWELL A PRAKASH
S ROGERS H SlNGH
C STUMPFEL G THOMSON

BLDG 120

ABSTRACT ONLY

1 DIRECTOR
US ARMY RESEARCH LABORATORY
AT-l-N AMSRL CS AL TP TECH PUB BR
2800 POWDER MILL RD
ADELPHI MD 20783- 1197

60

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the cdlection of informatron. Send comments r

“9
arding this burden estimate or any other aspect of this

collectton of information, mcluding suggestions for reducing this burden, to Washington Headquarters Services, Directorate or Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Cffice of Management and Budget, Paperwork Reduction Project (0704-0128). Washrngton, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

June 1999 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Lumped Circuit Model of a Compensated Pulse Generator and Rail Gun
PR: 61104BH62

s. AUTHOR(S)

Hummer, C.R. (ARL)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS

U.S. Army Research Laboratory
Weapons Technology Directorate
Aberdeen Proving Ground, MD 2 10 lo-5066

8. PERFORMING ORGANIZATION
REPORT NUMBER

3. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS

U.S. Army Research Laboratory
Weapons Technology Directorate
Aberdeen Proving Ground, MD 21010-5066

Il. SUPPLEMENTARY NOTES

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ARL-TR-1990

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 wonis)

Because oiits compact size, an electrical generator that uses an internal rotating mass as an energy source for electrical power
is being developed to power a rail gun in a future combat system. At this stage of development, there are many proposed
designs for these electric generators and many proposed designs for their possible uses: rail guns, coil guns, electromagnetic
armor, etc. To study these various designs, a computer program was written to calculate the current in all parts of the electric
generator, the load, the angular velocity of the rotating mass, and the velocity of the projectile from a rail gun or a coil gun.
This was accomplished by modeling the electric generator and the rail gun by a circuit of inductors and resistors. This model
results in a set of differential equations that are coupled with the equation of motion for the rotating mass and with the

equation of motion for the projectile.

4. SUBJECT TERMS

pulse generator

rail gun

15. NUMBER OF PAGES

70
16. PRICE CODE

7. SECURITY CLASSIFICATION
OF REPORT

Unclassified
_ _ _ _ _ _ _ _ _

NSN 754POl-Z&J-55W

18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF THIS PAGE OF ABSTRACT _

Unclassified Unclassified

61

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-lb
298102

