Modifying ModSAF Terrain Databases to
Support the Evaluation of Small Weapons
Platforms in Tactical Scenarios

MaryAnne Fields

ARL-TR-1996 AUGUST 1999

ERP— 19990909 294

Approved for public release; distribution is unlimited.

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or aj roval of
pp!
the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-1996 August 1999

Modifying ModSAF Terrain Databases to Support
the Evaluation of Small Weapons Platforms in
Tactical Scenarios

MaryAnne Fields

Weapons & Materials Research Directorate

Approved for public release; distribution is unlimited.

Abstract

In this report, we describe tools for the creation and modification of
modular semi-autonomous forces (ModSAF) terrain databases to support
the evaluation of a small autonomous robot in a tactical scenario. Our work
is motivated by the modeling and simulation needs of the Demo III robotics
program which is developing a small tactical robot called the experimental
unmanned vehicle (XUV). The XUV is a small wheeled robot which must
autonomously navigate through its environment. The primary mission of
the XUV will be to augment the scout forces, so it must provide
reconnaissance, surveillance, and target acquisition information (RSTA) to
its operators. Modeling the XUV in a simulated environment is challenging
since existing terrain databases do not have sufficient resolution to examine
the mobility characteristics of small vehicles.

Our tools increase the resolution and detail of existing terrain databases so
that the databases have sufficient detail to challenge the mobility, chassis
dynamics, and RSTA models of a small unmanned platform. To properly
model a small vehicle such as the XUV, the terrain database in ModSAF
needs to be modified. The modification is done in two phases. In the first
phase, the resolution of the grid underlying the terrain is increased by
placing additional elevation grid posts between the existing posts.
Elevations are assigned to the new grid posts using mathematical terrain
models such as the variable resolution terrain Model (Wald & Patterson,
1992). The new, higher resolution terrain directly affects the vehicle
dynamics and the line-of-sight algorithms. The new terrain does not
directly affect the ModSAF route-planning algorithms. In the second phase
of our terrain database modifications, the slopes on the new terrain are
examined. Regions that are steep or inaccessible to the XUV are marked as
obstacles in the database. The route-planning algorithms use these
“obstacles” to avoid planning routes through regions that are too steep for

the XUV.

ii

TABLE OF CONTENTS

LISTOFFIGURES i it i it eiaeaanaen
LISTOFTABLES . . .o i i ettt i e aaaea
INTRODUCTION . . .o i i ittt ittt e i et eaeaa
INCREASING THE RESOLUTION OF THE ELEVATIONGRID
ADDING ABSTRACT REGIONS AND ADJUSTING SOIL TYPES........
CONCLUSIONS ...ttt ittt ittt anaanaeannns
REFERENCES. i i i ittt eeanan
APPENDICES

A. The Add Vrt.CCode . . . ivii it e i e e
B. A Sample Entity ParameterFile i i i

DISTRIBUTION LIST . . oot e e it iieeaee

REPORT DOCUMENTATION PAGE

iii

INTENTIONALLY LEFT BLANK

iv

LIST OF FIGURES

Figure Page
I. TheXUV ...ttt et e 1

2. Change in Elevation as a Function of Climb Angle 2

3. A 100-meter Patch of Terrain at Fort Hood, Texas.o vive oot 3
4. A 10-kilometer by 10-kilometer Section of the Fort Hood Database 6
5. Adding Subcanopiestoa CTDB Databasecoiiiii.... 10

INTENTIONALLY LEFT BLANK

vi

T

abl

1.

2.

€

LIST OF TABLES

Bit Definition for the Binary SoilCode,

ModSAF’s Soil Types

..

vii

INTENTIONALLY LEFT BLANK

viii

MODIFYING MODSAF TERRAIN DATABASES TO SUPPORT THE EVALUATION
OF SMALL WEAPONS PLATFORMS IN TACTICAL SCENARIOS

1. INTRODUCTION

In this report, we describe tools for the creation and modification of modular semi-autonomous
forces (ModSAF) terrain databases to support the evaluation of a small autonomous robot in a
tactical scenario. Our work is motivated by the modeling and simulation needs of the Demo III
robotics program. Under the Demo III robotics program, the U.S. Army is developing a small,
survivable, experimental unmanned ground vehicle (XUV) (see Figure 1) capable of autonomous
operation over rugged terrain as a part of a mixed military force containing both manned and
unmanned vehicles. The primary role of the XUV will be to augment the Army battalion and brigade
task forces scout platoon. In this scout mission, the XUV is expected to move through the terrain
using proper military movement techniques and with minimal human oversight. Using its
reconnaissance, surveillance, and target acquisition (RSTA) package, the XUV can acquire
information about the disposition of enemy forces. We must include “models” of XUV chassis
dynamics, XUV mobility, and the XUV RSTA package to properly assess the contribution of the
robot to the overall mission. It is also important to use terrain databases that have sufficient detail to
challenge the mobility, chassis dynamics, and RSTA models.

Figure 1. The XUV.

To properly model a small vehicle such as the XUV, the terrain database in ModSAF needs
to be modified. The modification is done in two phases. In the first phase, the resolution of the
grid underlying the terrain is increased by placing additional elevation grid posts between the
existing posts. Elevations are assigned to the new grid posts using mathematical terrain models
such as the variable resolution terrain model (Wald & Patterson 1992). The new, higher resolution,
terrain directly affects the vehicle dynamics and the line-of-sight (LOS) algorithms. The new
terrain does not directly affect the ModSAF route-planning algorithms. In the second phase of our
terrain database modifications, the slopes on the new terrain are examined. Regions that are steep
or inaccessible to the XUV are marked as obstacles in the database. The route-planning algorithms
use these “obstacles” to avoid planning routes through regions that are too steep for the XUV.

Many ModSAF terrain databases, which the developers refer to as compact terrain
databases (CTDBs), have elevation posts spaced uniformly 125 meters apart. At this resolution,
it is difficult to examine mobility issues. As an example, consider the effect of terrain slope on
cross-country travel at Fort Hood, Texas. Figure 2 gives the change in elevation from one
elevation post to the next required to produce the desired slope across the elevation grid square.
The change in elevation required to produce a 30° slope on a 125-meter grid square (72.2 m) is
more likely to occur in mountainous regions where wheeled vehicles are not likely to go. The
125-meter resolution database representing Fort Hood is almost flat in most spots, presenting no
significant slopes to climb. However, Figure 3 illustrates that even within a single grid square,
there may be significant slopes to climb such as those associated with eroded areas, ditches, or
culverts. With the length of the vehicle being used to estimate the dimensions of the terrain area
shown in the picture, the photograph shows a 100- by 100-meter area of the terrain. This area

would be represented in most terrain databases as a single flat square.

300

2504 | — 125m | / /
—_— 50m / /

2004 | =—-25m

150 -

100

A Elevation (m)

50 -

Climb Angle (deg)

Figure 2. Change in Elevation as a Function of Climb Angle.

Figure 3. A 100-meter Patch of Terrain at Fort Hood. Texas.

There is information in a CTDB database concerning trafficability. Each grid square has a soil
type associated with it. By using a program such as the North Atlantic Treaty Organization
(NATO) reference mobility model INRMM), (Ahlvin 1992), users can adjust the maximum speed
of their vehicle for each soil type. In addition, there is an abstract layer in CTDB databases that
consists of polygons representing buildings, lakes, tree canopies, impassable regions, and other
features on top of the actual terrain skin. These polygons interact with the route-planning
~ algorithms by providing potential obstacles. They also can interact with the visibility algorithms
by blocking the LOS between points. As far as mobility is concerned, there are only two possible
responses to each type of abstract region: a class of vehicle may avoid all polygons of a given type
or may ignore all polygons of that type.

This behavior is a little simplistic for vehicles that travel through, instead of around, the tree
canopies. Canopy polygons do not affect the speed or the route of the vehicles that travel through
them. In addition, all canopy polygons on a given terrain database have the same effect on vehicle
mobility. An important parameter of the canopy that is not considered for mobility evaluation is
tree density (density is considered in the visibility analysis). Cultivated tree farms and orchards,
with uniformly spaced trees and little underbrush, should be easier to move through than natural

wooded areas with variably spaced trees and lots of underbrush.

In evaluating the potential contribution of the XUV to the scout mission, it is important
that we consider the impact of the XUV’s mobility on the mission. This is done by first

increasing the resolution of the terrain database. The information in the high-resolution terrain
database is used to adjust the soil types and to create abstract regions to decelerate and redirect
the XUV. This report presents only the methods used to modify the ModSAF terrain databases
to make them more useful for the evaluation of small vehicles. Actual evaluations of the XUV

will be presented in future reports.

2. INCREASING THE RESOLUTION OF THE ELEVATION GRID

Increasing the resolution of the elevation grid is, in theory, a relatively easy process. We
simply need to find a higher resolution terrain database for our battlefield and use it to construct
the new elevation grid. However, it is not always possible to find such a database. Standard
National Imagery and Mapping Agency digital terrain elevation data (DETED) databases
covering most of the world use 100-meter grid posts. As a substitute for measured elevation
data, we can artificially increase the resolution of the database by fitting the original elevation
posts with a mathematical function that fits the measured elevation posts to the desired accuracy
and gives statistically realistic surface variations between the measured posts. One such function

is variable resolution terrain (VRT) model.

The VRT model is a continuous, differentiable surface generated by summing several
simpler surfaces referred to as hills. The equation of a hill function defined on the two-
dimensional space of real numbers, R2, is written as

h(x,y)= e’ 100 &) o

Here, ot € R,(&,1) € R and "(x ¥), (&, n)”d is a metric on R2. The most familiar metric is the

Euclidian distance between points. The Euclidian metric gives relatively smooth hills, so other
metrics are often used to produce hills with sharper peaks.

By varying the metric, the function f, and the parameter @, it is possible to generate hills of
any size and shape. To create a generic VRT surface, hills of various sizes and shapes are
combined using the principle of self-similarity. Self-similar objects are invariant with respect to
scale so that a portion of the object, viewed at the proper magnification resembles the whole
object. In a generic VRT surface, the distribution of hills is statistically self-similar. More details
of the VRT model are given in the paper by Wald and Patterson (1992) and the later papers by
Wald (1994, 1995). These later papers discuss methods used to fit existing terrain databases
with VRT surfaces. The same software tools we describe in this report can also create new

terrain databases for ModSAF with specific characteristics designed to test movement algorithms
developed to model the movement of small vehicles within a ModSAF exercise.

The software we have developed is based on software and documentation available in the
ModSAF developers’ kit (Braudaway et al. 1996). CTDBs use compression methods to store
terrain databases in much less space than other terrain database formats require. In gridded
databases, the information about the terrain surface is stored independently from detailed
information about the feature layer on top of the surface. For each elevation post, the elevation,
two soil types, and flags indicating the presence or absence of features such as buildings, trees,
roads, or canopies are stored in 32-bit words. The elevation grid is broken into patches (a square
region typically four posts long by four posts wide). Each patch contains detailed feature
information, such as the location and size of buildings or the location and width of roads.
Features that pass through more than one patch must be subdivided so that a portion of the
feature is stored on each patch.

Much of our program add_vrt.c (given in Appendix A) is based on the program recompile.c
in the CTDB library in the ModSAF developers’ kit. Recompile.c converts older CTDB
databases to the current format. It can also add features such as additional roads, bridges, or
canopies to CTDB databases. We have extended this code so that we can change the resolution
of the CTDB databases. With our new program, we can change the soil types of the elevation
posts to affect the movement of the vehicles on that post, simulating rough or rocky regions on
the terrain. Impassable regions can be added to the databases, especially inside the existing
canopies, thus forcing vehicles to modify their plans to avoid the impassable regions.

Increasing the resolution of a database is relatively easy. The C routines
get original_elevations, look_for_features, and look_for_canopy_and_lakes, store information
from the original database so that it can be used to construct the new database. A major
difference between our code and recompile.c is that we must recompute the feature flags for each
post in the new database. For example, suppose a road intersects a post on the original 125-
meter database. At 25 meters’ resolution, this post is covered by a 5 by 5 square of 25-meter
posts. It is unlikely that the road will intersect all 25 of these smaller posts. These flags are used
to streamline search routines for the LOS and planning algorithms; it is not advisable to simply
pass the flags from the old posts to the new ones.

Our fitting routine is contained in the C routine make_vrt_hills. This routine uses the
fitting method outlined by Wald (1994). In his method, the VRT surface is determined

iteratively. The highest elevation post on the database determines the height and location of the
first hill. The parameters for the first hill are chosen to minimize the differences between the
elevation grid and this hill. Next, we compute the differences between the elevation posts and the
first hill. The largest of these differences determines the height and location of the second hill.
The process continues until the difference between the each of the elevation posts and the height

AL sl s VIDIT cncafmmn it dlend an n2nd 24 maan 211 e Ao 1.
Ol UIT VINI dUL1avc At tlat POLIL 1S diilall CHOURIL.

To produce a new terrain database, we must write the new elevation grid and rewrite all the
feature information. The routine write_elevation_posts transfers the refined elevation grid to the
new database. The C functions, collect trees, collect_canopies, collect_buildings, and
collect linears, allow us to collect the features from the original database. These routines were
modified from their original form in recompile.c. so that features could be properly subdivided
for the new patch size. Figure 4A shows a contour map of a 10-kilometer by 10-kilometer
section of Fort Hood, sampled at a 125-meter resolution. The contours are equally spaced, 2
meters apart. Figure 4B shows the same section enhanced with VRT hills, sampled at 50 meters’
resolution. The enhanced database has a number of small hills and valleys that are not present in
the original database. The heights of the original elevation posts have been preserved.

Figure 4. A_10-kilometer by 10-kilometer Section of the Fort Hood Database (2-meter contours).

(A shows the original 125-meter database; B shows the VRT-enhanced 50-meter
database.)

Using this program, it is possible to create very high-resolution databases. However, there
is a trade-off between database resolution and usability. Tests run at Fort Knox (Nida, 1998)
indicate that it is not practical to use extremely high resolution databases in large ModSAF
exercises involving hundreds of simulated entities. The amount of time ModSAF spends
processing terrain information increases to the point that operators must wait a long time for
tactical display screens to be redrawn. Also, the linear networks that describe the roads, rivers,
and other linear features become unwieldy since there must be at least two points on each patch
that intersects them. The planning algorithms limit the number of path points that can be stored
for a given plan. This number can be increased but not to the point that it can do much good.

At this time, there are four solutions to this problem. First, we can limit the dimensions of
the battlefield. The Fort Knox tests involved databases that represented a 50-kilometer by 50-
kilometer section of Fort Hood, Texas. In its original 125-meter resolution, the database was
represented by a 400 by 400 elevation grid and 10,000 500-meter patches containing feature data.
At 50 meters’ resolution, the elevation grid was a 1000 by 1000 matrix and the feature data were
contained in 62,500 200-meter patches. By reducing the dimensions of the battlefield, the
amount of data becomes easier to handle. This solution is well suited for studies involving small
vignettes in which the entities are confined to a small portion of the battlefield.

The second possible improvement is to increase the dimensions of the patch. This option
was discarded since it affects the portability of databases that we create. A potential user would
be forced to reset a parameter in the ModSAF code to use the databases. Also, the dimensions of
a patch were chosen by the ModSAF developers to optimize memory usage. Changing the
dimensions may decelerate rather than accelerate the LOS and route-planning algorithms.

The third option is to use ModSAF micro-terrain to add more detail to the terrain surface.
Micro-terrain is a layer of triangular facets on top of the terrain surface. It is used to describe
small terrain features, such as single boulders or berms. It is also used to describe multilevel
surfaces such as underpasses and overhangs. There are limits on the micro-terrain approach.
First, any changes should stay within a single patch so the added hills must effectively vanish
outside this patch. There is also a limit on the number of triangles that can be added to a
database. The fourth option is to create databases based on triangularized irregular networks
(TINs) rather than uniformly spaced grids. The triangles that comprise the TIN are not uniform
in size. Large triangles are used in relatively flat, featureless regions of the terrain. Small triangles
are used in rough terrain. The non-uniform size allows posts to be concentrated where greater
detail is required. The TIN representation of terrain is actually an extension of the method used

to add micro-terrain. In TIN databases, there is no elevation grid and the entire surface is
represented by triangular facets. We are still examining this option.

3. ADDING ABSTRACT REGIONS AND ADJUSTING SOIL TYPES

Refining the elevation grid in a CTDB database increases the probability that a ModSAF
vehicle will encounter a significantly steep region of the terrain as it travels cross country.
Unfortunately, the elevation grid is not used by the route-planning algorithms so the vehicle
cannot avoid a steep spot that is represented only by the elevation grid. In ModSAF, the
planning routines use the abstract layer of the terrain database to plan the route. This layer
consists of polygons representing features such as tree canopies and lakes, and line segments
representing features such as railroads, power lines, and fences. By using the simplified terrain
representation in the abstract layer, the route-planning algorithms efficiently plan routes that

avoid these regions.

We have to add polygons to the abstract layer of the CTDB database to force the vehicle to
“see™ the steep regions. The routine add_steep_regions, shown in Appendix A, is used to add steep
regions to the terrain database. This routine uses the dimensions of the VRT hills to assign a
“steepness” value to the entire hill. Steep VRT hills are enclosed in abstract soil regions. These
abstract soil regions are simply polygons with an additional parameter that specifies a soil type for
the entire region. Typically, these regions are used to designate lakes in the database. By specifying
another soil type, we can use these abstract soil regions to control the movement of vehicles on dry
land. By altering the vehicle parameter file, it is possible to force specific types of vehicles to avoid
these regions. An example of a vehicle parameter file is shown in Appendix B. In the terrain
analysis section of the entity parameter file, the avoidance mask includes the TERRAIN_WATER
flag which directs the vehicle to avoid soil regions. The specific types of soil regions are given in the
avoid _soils subsection. In this section, the soil type is referenced by a binary code. This 32-bit
integer contains mobility parameters and the Simnet and close combat tactical trainer (CCTT) indices
for the soil type. Table 1 shows a map of the bits for the binary soil code.

Table 1. Bit Definition for the Binary Soil Code

Bits31-13 | 12 [11 | 10 9 [8]7]6l5]4[3]2]1]0
Road | Slow {No Go| Water
R) |G N) | (W)

CCTT soil |Simnet soil| -
Unused Mobility parameters index index

Table 2 gives the indices, description, and binary code for the 16 most common soil types.
Generally, CTDB databases use the Simnet soil types, although it is possible to define additional
soils.

Table 2. ModSAF’s Soil Types

Simnet CCTT Mobility Binary
index index | Soil type description parameters | code
RIS|NIW

0 Undefined 0
1 20 Pavement, concrete, asphalt * 4417
2 17 Dry loose surface road * 4370
3 5 Soft 83
4 28 Water 60-inch depth *| *1 1988
5 26 Water 16-inch depth * *12981
6 4 Very soft * 2118
7 18 Wet loose surface road x| * 6439
8 15 Very hard (slippery) * 2296
9 19 Swamps, bogs—slow go * 2361
10 7 Hard 2170
11 7 Hard 123
12 7 Hard 124
13 22 Brush land * 2413
14 9 Very hard - * 1182
15 19 Swamps bogs—no go * 1343

To investigate the performance of the XUV in a scout mission, it may be necessary to allow
the vehicles to move through the tree canopies. Tree canopies are polygonal regions in the abstract
layer; they can be treated like obstacles by a class of vehicles or ignored. Treating the canopies as
obstacles is realistic for Iarge vehicles. Ignoring the canopies so that vehicles can move through the
areas of the battlefield covered by canopies is not realistic. It assumes that vehicles can negotiate
any region of the canopy at the same rate of speed. The routine look_for_canopy_and_lakes can
be used to adjust the soil parameters of the underlying posts within the canopies. By changing the

mobility parameters in the vehicle parameter file, vehicles will decelerate inside the canopies.
However, the vehicles will still drive in straight lines. In the mobility parameters section of the
vehicle parameter file given in Appendix B, the vehicle decelerates on water (soils 4 and 5) and on
soils 9 through 15. In this section, the soils are referenced by their Simnet soil index which is
shown in Table 2. By adding obstacles to the canopies, the vehicles will use realistic routes
through the canopies. The routine add_subcanopies alters the canopies by adding artificially
generated impassable regions to the canopies. Just like the steep regions, the impassable regions
are abstract soil regions—only the soil parameter is different. An example of an altered canopy
regions is shown in Figure 5. The original canopies are represented by the light gray hatched
polygons in Figure 5a and 5b. The sub-canopy regions shown as dark gray polygons in Figure Sb.
In this particular example, the sub-canopies are relatively large but they do not need to be. CTDB
databases do not have limits on the size of the polygons; however, there are limits on the total

number of vertices.

As an alternative to the sub-canopies, we can replace the canopies with distribution of trees
and tree lines. This approach is ideal for small battlefields since it affects both the LOS and the
mobility algorithms. On large high-resolution battlefields, it adds a significant number of features
to the patch data.

R N TP T
G O R R, O
NN
2 SRR SRR

RN
RO

S AT TR

N A ;
AR

et

NRR
Nkt
IR R S
o . X NS N
/R A R RN s
& o\ -~
>3 2 N
N

Ry
&"(}»\\\\\ ? AR R
k\\}‘\\\‘c HE SN N

b »Z\s\i‘t.w RN
A B

s
N

“py
PR X 8
%

Figure 5. Adding Subcanopies to a CTDB Database. (Figure 5a shows the original ModSAF
canopies; Figure 5b shows subcanopies in dark gray.)

10

4. CONCLUSIONS

We have designed tools to modify CTDB terrain databases to support the evaluation of a
small autonomous robot in a tactical scenario. The first tool increases the resolution of the
elevation grid. This modification has the most effect on the vehicle dynamics model and the LOS
algorithms. The second set of tools adds polygonal regions to the abstract layer of the terrain
database. These modifications affect the planning algorithms.

We have begun to use these databases in our examination of the XUV in tactical scenarios.
Tests were conducted at Fort Knox during the summer of 1998 to determine the feasibility of
using high resolution databases in large ModSAF exercises. Although the results were somewhat
disappointing, they have given us some useful information about the use of high resolution
databases. By using ModSAF micro-terrain or a TIN database, we may be able to increase the
resolution of the elevation grid substantially without the problems of the gridded approach.

By using steep regions and the sub-canopy regions, we can generate more realistic paths for
the vehicles. However, these regions are based on artificial modifications of the terrain database.
It is important that we consider several statistical variations of the same battlefield in a study to
avoid results that hinge on the exact location or shape of these regions.

11

INTENTIONALLY LEFT BLANK

12

S.REFERENCES

Ahlvin, R.B., and P.W. Haley, “NATO Reference Mobility Model,” GL-92-19, U.S. Army
Waterways Experiment Station, Vicksburg, MI, December 1992.

Braudaway, W., C.G. Buettner, F.L. Chamberlain, A. Evans, M. Longtin, J.E. Smith, and T.
Stanzione, “LibCTDB, Compact Terrain Database User Manual and Report,” Naval
Research Laboratory, Contract Number N00014-92-C-2150, 1996.

Nida Jon, personal communication, July 1998.
Sagacitech, LLC, “ModSAF3.0 Developer’s Course Workbook,” Monterey, CA, 1997.

Smith, J., “LibEntity Programmer’s Reference Manual,” Naval Research Laboratory, Contract
Number N00014-92-C-2150, 1996.

Wald, J.K., and C.J. Patterson, “A Variable Resolution Terrain Model for Combat Simulation,”
BRL-TR-3374, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD,
July 1992.

Wald, J.K., “Solving the ‘Inverse’ Problem in Terrain Modeling,” ARL-TR-605, U.S. Army
Research Laboratory, Aberdeen Proving Ground, MD, October 1994.

Wald, J.K., “Modeling Micro Terrain using the Variable Resolution Terrain Model,” ARL-TR-
866, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, September 1995.

13

INTENTIONALLY LEFT BLANK

14

APPENDIX A

THE ADD_VRT.C CODE

15

INTENTIONALLY LEFT BLANK

16

THE ADD_VRT.C CODE

A.1 Globals

Globals
#ifndef lint
static char resid [] = "SRCSfile$ $Revision$ $State$";
#endif
#define DEBUG
#define READ_MES
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fentl.h>
#include <libcmdline.h>
#include <math.h>
#ifndef sgi
ifndef MAP_AUTOGROW
define MAP_AUTOGROW 0
endif
#endif
#define TMPFILE "recompile.tmp"
#define PHYSICAL FEATURE_SIZE 40*1024*1024
#define MAX_NUM_LINEAR_MODELS 400000
#define MAX NUM_AGGREGATE_MODELS 50000
#define DEFAULT TRUNK_RADIUS 0.5 /* meters */
#define DEFAULT_FULLNESS 0.95
#define NO_FEATURES -1
#include <stdio.h>
#include <errno.h>
#include <stdstring.h> /*common/include/global*/

#include <libctdb.h>

#include <ct_feat.h> The boldface type indicates include files that can be found in the ModSAF 3.0
#include "ct_cmplr.h" fface typ fi f

#include "ct_reform.h" - source code.

#include <ct_post.h>

#include <libreader.h>

#include <stdalloc.h>

#include <stdext.h>

#include <time.h>

#include <string.h>

#include <libcoordinates.h>

#include <libgces.h>

#include <curses.h>

#define my_factor 1

int32 my_patch_x,my_patch_y;

struct MY_HDR { float64 incrD,inv_incr,patch_incrD

float64 max_z,min_z, patch_inv_incr,post_increment;

int32 incr,patch_incr,max_x,min_x,max_y,min_y,max_xX_post,
int32 min_x_post, min_y_post,max_y_post;

int32 pages_wide,pages_high,patches_wide,patches_high;} my_hdr;
#define INPUT_MEMORY 0

#define START_CELLS 50

static CTDB_CMP *ctdb_in, ctdb_out;

17

static int32 output_format;

static int32 input_format;

static int32 feature_offset = 0;

static int32 mf;static CTDB_COMPILER_QUAD quad_root;
static int32 num_cofrections = 0;

static READER_UNION *corrections;

static int32 output_db_patches_wide = 0;

static int32 output_db_patches_high = 0;

static int32 output_db_incr = 0;

static int32 output_db_patch _incr = 0;

static int32 offset_x = 0, offset_y = 0;

static int32 offset_x_meters = 0, offset_y_meters = 0;

static int32 min_patch_x, max_patch_x, min_patch_y, max_patch_y;
static int32 recompile_buildings = 0;

static int32 recompile_linears = 0;

static int32 recompile_trees = 0;

static float64 indb_south_lat, indb_north_lat, indb_west_long, indb_east_long;
static int32 ges_mode;

static COORD_TCC_PTR tcc;

static int32 cur_cell;

static int32 water_fix;

static CTDB_DBASE_TYPE dbase_type = CTDB_HYBRID;
static int32 te_offset=0;

static int32 total_tes=0;

static int32 trans_end = 0;

static FILE *fptr, *color_file; «

static TRANSITION PATCH [INFO *trans _patches = NULL;

static void look_for_features();

static void add_canopies(); In this section of code, the bold print specifies a function
static int32 encode_physical_features(); prototype. The code for these functions is found later in this

static void collect_nodes_and_edges();
static void encode_abstract_features();

appendix.

static void complete_micro_poly();
static void collect_microterrain();
static void collect_buildings();
static void collect_trees();

static void collect_canopies();
static void collect_linear();

static int32 *transform_posts();
static void fit_vrt();

static double vrt();

static double single_hill();
#define CMP_MAX_REF 1000
#define CTDB_INVALID_REF -1
typedef struct cmp_ref

int32 user_id;
int32 index;
} CMP_REF;
struct { CMD_STRING_OPTION input_ctdb;
CMD_STRING_OPTION output_base_name; } options =
{
{"Input Ctdb", "Absolute pathname to the input CTDB",
NULL , CMD_STRING, "input_ctdb" , NULL , "knox-0311.ctb", },
{"Output Name Base", "Output database base name" , NULL ,CMD_STRING , "output_base_name"
NULL,NULL, }

18

%

struct PARAMETERS {double cx,cy,hgt,angle,wgtx,wgty,power,w1,w2;}
hill[1000],patch_hills[100][1003[10];

int nhills, saved_pages_high,saved_pages_wide;

float64 hgt_max,original[500][500] = { 0.0};

float64 temp[500][500], mat_step = 10.0;

short int my_soil[500][500] = {0,canopy[5500][5500] = {0};

short int hills_per_patch[100][100];

A.2 Main

int main (int argc, argv_t argv)
{
int32 result;
CTDB_FILE_HEADER_CMP hdr;
char **correction_files, first db_name[CTDB_NAME_LENGTH], *input_db_name;
int32 num_correction_files, header_assigned = FALSE,i;
int32 *elev_ptr = ctdb_out.elevations,*soil_ptr = ctdb_out.soils;
extern int atoi();
char dbname,s;
int32 leftover_argc;
argv_t leftover_argv; -
char *rest_of_str, *cpy_rest_of_str, *current_file;
int32 err, chars_processed;
char sp = "\040";
int32 *cells = NULL,ncells,cell_idx;
float64 cell_south_lat, cell_north_lat, cell_west_long, cell_east_long;
float64 cell_min_ges_x, cell_max_ges_x, cell_min_ges_y, cell_max_ges_y;
float64 cell_min_utm_x, cell_max_utm_Xx, cell_min_utm_y, cell_max_utm_y;
float64 cell_origin_x, cell_origin_y;
int32 *patch_water_state = NULL;
©int ix,iy tloc;
float64 loc_x,loc_y;
uint32 p;
int32 norm_x, norm_y;
bzero((void*)&quad_root, sizeof(quad_root));
cmd_process_options(argc, argv, &leftover_argc, &leftover_argy,
(CMD_OPTION *)&options, sizeof(options), TRUE);
cmd_gripe(leftover_argc, leftover_argv);
gcs_mod.e =CTDB_MODE_SIMNET; This section processes the command line
reader_init(0); argument and initializes coordinate system
coord_set_tcc_awareness(TRUE); .
ges_init(coord_get_datum_info); routines.
ges_set_cell_awareness(GCS_MULTI_CELL);
ctdb_cmplr_init();
num_correction_{files = 0;
ctdb_in = ctdb_cmplr_read(options.input_ctdb.value, &input_format);

ctdb_set_tiling_mode(FALSE);

ctdb_intern_print_description(ctdb_in); This loop reads the elevations from the
ctdb_in->max_z = -999999.0; original terrain database, specified by
ctdb_in->min_z = 999999.0; . . din th
look_for_features(patch_water_state); ctdb_in. These elevations are stored in the
for (iy=0; iy<=ctdb_in->max_y_post; iy++) array original. The soil for each grid post is

{

initially set at a constant value. The soil is
modified by transform_posts.

19

loc_y = iy*ctdb_in->incrD;
for (ix=0; ix<=ctdb_in->max_x_post; ix++)

{

loc_x = ix*ctdb_in->incrD;

original[ix][iy] = ctdb_intern_get_ground_elevation
(ctdb_in,loc_x,loc_y,FAVOR_TES);

if (original[ix][iy] > ctdb_in->max_z)
ctdb_in->max_z = original[ix][iy];

if (original[ix][iy] < ctdb_in->min_z)
ctdb_in->min_z = original[ix][iy];

my_soil[ix]{iy] = 131074;

}

hgt max = ctdb_in->max_z - ctdb_in->min_z; This section initializes coordinate

output_format = CTDB_FILE_FORMAT; transformation routines

dbase_type = CTDB_GRIDDED;)

tcc = coord_define_tcc(COORD_UTM_NE,
ctdb_in->origin_northing,ctdb_in->origin_easting,
ctdb_in->origin_zone_number,ctdb_in->origin_zone_letter,
ctdb_in->datum,(ctdb_in->max_x - ctdb_in->min_x),
(ctdb_in->max_y - ctdb_in->min_y));

get_ll_bounds(COORD_TCC, GCS_ILLEGAL CELL, tcc,
(float64)ctdb_in->min_x, (float64)ctdb_in->min_y,

(float64)ctdb_in->max_x, (float64)ctdb_in->max_y, R
&indb_west_long, &indb_south_lat, This program uses only one cell.
&indb_east_long, &indb_north_lat);

ncells = START_CELLS;
if(!cells) cells = (int32 *)STDALLOC(ncells * sizeof(int32));
if (!ges_extent_to_cell list(indb_south_lat, indb_west_long,
indb_north_lat, indb_east_long,
&ncells, cells))

{
cells = (int32 *)STDREALLOC(cells, ncells * sizeof(int32));

}

cells[0] = GCS_ILLEGAL_CELL;

ncells =1;

cur_cell = cells[0]; '

dbname = ctdb_generate_tdb_filename(CTDB_MODE_SIMNET,
options.tdb_path.value, -
options.output_base_name.value,
output_format, GCS_ILLEGAL_CELL, FALSE);

header_assigned = TRUE; ,
feature_offset = 0; Mpy_hdr stores the information needed to
bzero((void*)&hdr, sizeof(hdr)); . .y
my. hdr.max_x_post = 2.0%ctdb, in->max_x_post; increase the grid size for t.he out‘.nut
my_hdr.max_y_post = 2.0*ctdb_in->max_y_post; | database, ctdb_out. In this particular

my_hdr.pages_wide =my_hdrmax x post32+1; 400 the number of grid posts is doubled.

my_hdr.pages_high=my_hdr.max_y_post/32 +1; . ;

hdr.pages_wide = my_hdr.pages_wide; The page variables specify how many
hdr.pages_high = my_hdr.pages_high; pages (a 32 x 32 array of integers) are
ctdb_in -> pages_wide = my_hdr.pages_wide;

ctdb_in -> pages_high = my_hdr.pages_high; needed to store the final database. A
ctdb_intern_pack_header(ctdb_in, &hdr); patch is a 4x4 array of posts used to

hdr.format = output_format; , .
time((time_t *)&t0c); streamline feature lookup routines.

20

strepy(hdr.date, ctime((time_t *)&tloc));

hdr.num_linear_models = CTDB_MAX CANOPY_MODELS;

sprintf(hdr.name,options.output_base_name.value);
ctdb_intern_unpack_header(&ctdb_out, &hdr);
ctdb_out.elevations = elev_ptr;

ctdb_out.soils = soil_ptr;

my_hdr.min_x =0.0; my_hdr.min_y = 0.0; my_hdr.min_z = 0.0;

my_hdr.max_x = ctdb_in->max_x;
my_hdr.max_y = ctdb_in->max_y;
my_hdr.max_z = ctdb_in->max_z;
my_hdr.patches_wide = (my_hdr.pages_wide*32 + 2)/4;
my_hdr.patches_high = (my_hdr.pages_high*32 + 2)/4;
my_hdr.incrD =
(my_hdr.max_x - my_hdr.min_x)/
(my_hdr.max_x_post + 0.0);
my_hdr.inv_incr = 1.0/my_hdr.incrD;
my_hdr.patch_incr = 4;
my_hdr.patch_inv_incr = 1.0/(float) (my_hdr.patch_incr);
my_hdr.patch_incrD = my_hdr.patch_incr;
my_hdr.incr = (float) (my_hdr.incrD + 0.5);
min_patch_x = 0; min_patch_y =0;
max_patch_x =my_hdr.patches_wide;
max_patch_y =my_hdr.patches_high;
ctdb_out.min_x =my_hdr.min_x;
ctdb_out.min_y =my_hdr.min_y;
ctdb_out.min_z =my_hdr.min_z;
ctdb_out.max_x =my_hdr.max_x;
ctdb_out.max_y = my_hdr.max_y;
ctdb_out.max_z =my_hdr.max_z;
ctdb_out.pages wide = my_hdr.pages_wide;
ctdb_out.pages_high = my_hdr.pages_high;
ctdb_out.max_x_post =my_hdr.max_x_post;
ctdb_out.max_y_post =my_hdr.max_y_post;
ctdb_out.patches_wide = my_hdr.patches_wide;
ctdb_out.patches_high = my_hdr.patches_high;
ctdb_out.incr = my_hdr.incr;
ctdb_out.inv_incr = my_hdr.inv_incr;
ctdb_out.incrD = my_hdr.incrD;
ctdb_out.patch_incr = my_hdr.patch_incr;
ctdb_out.patch_inv_incr = my_hdr.patch_inv_incr;
ctdb_out.patch_incrD = my_hdr.patch_incrD;
ctdb_out.soil_tables = (int32 **)
ctdb_alloc(NULL, ctdb_in->num_soil_tables *
sizeof(int32 *)," Compiler rep. soil table');
ctdb_out.soil_table_storage = (int§ *)

Note: my_hdr.incr is an integer
whereas my_hdr.incrD is a float64.
It is important that my_hdr. incrD is
calculated from my_hdr. incr. Both
variables are used by the ModSAF
terrain routines.

These variables in the my_hdr
structure are recalculated based on
the array size specified by
my_hdr.post_high and
my_hdr.posts_wide. The structure for
the output database, ctdb_out, is
updated with the new information
stored in the structure my_hdr.

ctdb_alloc(NULL, ctdb_in->soil_table_size,""Compiler rep. soil table data');
beopy((void*)ctdb_in->soil_table_storage,(void*)ctdb_out.soil_table_storage,

ctdb_in->soil_table_size);

ctdb_out.soil_tables[0] =(int32 *)ctdb_out.soil_table_storage;

for(i=1;i<ctdb_in->num_soil_tables;i++)

{

The soil table is copied from the old

terrain database to the new datahase.

ctdb_out.soil_tables[i] = (int32 *)(ctdb_out.soil_table_storage +
((int8 *)ctdb_in->soil_tables{i] - ctdb_in->soil_table_storage));

}
ctdb_out.pat_table_ptr=(CTDB_PAT_TABLE CMP *)

ctdb_alloc(NULL, sizeof(CTDB_PAT_TABLE_CMP),

21

"Compiler Polygon Attribute Table');
ctdb_out.pat_table_ptr->num_columns = ctdb_in->pat_table_ptr->num_columns;
ctdb_out.pat_table_ptr->alloced_columns = ctdb_in->pat_table_ptr->num_columns;
ctdb_out.pat_table ptr->num_entries = ctdb_in->pat_table_ptr->num_entries;
ctdb_out.pat_table_ptr->alloced_entries = ctdb_in->pat_table_ptr->alloced_entries;
ctdb_out.pat_table_ptr->columns = (CTDB_PAT_COLUMN_HDR_CMP *)
ctdb_alloc(NULL, ctdb_out.pat_table_ptr->alloced_columns *
sizeof(CTDB_PAT _COLUMN_HDR_CMP),
"Compiler PAT column headers');
for(i=0; i<ctdb_out.pat_table_ptr->num_columns; i++)

{
ctdb_out.pat_table_ptr->columns[i].facc =)
ctdb_in->pat_table_ptr->columns[i].facc; The polygonal pattern table is
ctdb_out.pat_table_ptr->columnsfi].data = transferred from ctdb_in to ctdb_out.
(CTDB_PAT DATA_CMP *)ctdb_alloc(NULL,

ctdb_out.pat_table_ptr->alloced_entries *

sizeof(CTDB_PAT _DATA_CMP), "Compiler PAT data");
beopy((void*)ctdb_in->pat_table_ptr->columns[i].data,

(void*)ctdb_out.pat_table_ptr->columns][i].data,

ctdb_in->pat_table_ptr->num_entries *
sizeof(CTDB_PAT DATA_CMP)); The water characteristics and the
d}b hars = (CTDB. WATER_CHARS_CMP *) tidal zone information are passed
ctdb_out.water_chars = _ __CHARS _ . ;
ctdb_alloc(NULL, ctdb_in->num_water_chars * directly from ctdb_in to Ctdb—out'

sizeof(CTDB_WATER_CHARS_CMP),"Cmp. rep. water chars'’);
beopy((void*)ctdb_in->water_chars, (void*)ctdb_out.water_chars,
ctdb_in->num_water_chars *sizeof(CTDB_WATER_CHARS_CMP));
ctdb_out.water_chars[0].tidal zone_index = 1;
ctdb_out.tidal_zones = (CTDB_TIDAL_ZONE_CMP *)
ctdb_alloc(NULL, ctdb_in->num_tidal_zones *
sizeof(CTDB_TIDAL ZONE_CMP),
"Cmp. rep. water chars’');
beopy((void*)ctdb_in->tidal_zones, (void*)ctdb_out.tidal zones,
ctdb_in->num_tidal_zones *sizeoff CTDB_TIDAL_ZONE_CMP));
ctdb_out.volume_models = NULL;
ctdb_out.mes_volume models = NULL;
ctdb_out.origin_x=-(ctdb_out.min_x-+ctdb_out.max_x)/2;
ctdb_out.origin_y=-(ctdb_out.min_y-+ctdb_out.max_y)/2;
ctdb_out.cell_id = GCS_ILLEGAL_CELL;

ctdb_out.gcs_mode = gcs_mode;
ctdb_out.west_long = indb_west_long; Transform_posts writes the new
ctdb_out.south_lat = indb_south_lat;

ctdb_out.east_long = indb_east_long; elevation posts to ctdb_out.

ctdb_out.north_lat = indb_north_lat;

_ ctdb_out.elevations =transform_posts(ctdb_in->elevations);
ctdb_in->pages_wide = saved_pages wide;

ctdb_in->pages_high = saved_pages_high;

patch_water_state = (int32 *)

ctdb_alloc(NULL, (ctdb_out.patches_wide)* (ctdb_out.patches_high)*

sizeof(int32), "Patch water state array");

bzero((void*)patch_water_state, (ctdb_out.patches_wide) * Encode_abstract features adds canopies
(ctdb_out.patches_high)* sizeof(int32)); and other polygonal features to the
encode_abstract_features(patch_water_state); database. Encod e p hysica] fe atures

add_subcanopies (patch_water_state);
hdr.num_features = encode_physical_features(output_format,
dbname, dbase_type,&hdr.num_linear_models, to the database.

adds roads, rivers, trees and buildings

22

&hdr.num_aggregate models, patch_water_state);
ctdb_encode_abstract(&ctdb_out, &quad_root);
hdr.num_quad_data = ctdb_out.num_quad_data;
collect_nodes_and_edges(&hdr);
ctdb_cmplr_write(&ctdb_out, dbname, output_format);
ctdb_print_feature_stats();
if (ctdb_out.features)

munmap(ctdb_out.features,

hdr.num_features * sizeof(CTDB_FEATURE_DATA_CMP));
if (patch_water_state)

STDDEALLOC(patch_water_state);

}

return 0;

}

A.3 Reorder_patch_features
static void reorder_patch_features (offsets, sizes, dbname, num_features)
int32 *offsets; «

int32 *sizes;

char *dbname: Reoder_patch_features is

int32 num_features; unchanged from the original
{FILE *p; program recompile.c in the
char tem;;_fname[255]; ModSAF 3.0 source code.

int32 patch_x, patch_y, patch_number, offset = 0;

sprintf(temp_fname, "%s.features”,dbname);
fwrite(ctdb_out.features, sizeof(CTDB_FEATURE_DATA_CMP),
num_features, fp);

fclose(fp);
for(patch_y = 0; patch_y < ctdb_out.patches_high; patch_y++)
g .
for(patch_x = 0; patch_x <ctdb_out.patches_wide; patch_x++)
{

patch_number = (patch_y * ctdb_out.patches_wide) + patch_x;
if(offsets[patch_number] != NO_FEATURES)

fseek(fp, offsets[patch_number] *
sizeof(CTDB_FEATURE_DATA_CMP),0);
fread(ctdb_out.features + offset,
sizeof(CTDB_FEATURE_DATA_CMP),

sizes[patch_number], fp);
ctdb_set_patch_feature_start(&ctdb_out, patch_number, offset);
offset += sizes[patch_number];

}
}
fclose(fp);

unlink(temp_fname);

} N
A.4 Encode_physical_features

static int32 encode_physical_features (format, dbname, dbase_type,
num_linear_models, num_aggregate_models, patch_water_state)
int32 format;

23

char *dbname;
CTDB_DBASE_TYPE dbase_type;
int32 *num_linear_models;

int32 *num_aggregate_models;
int32 *patch_water_state;

int32 patches;
int32 patch_meters, old_patch_meters,new_patch_meters;
int32 patch_x, patch_y, new_patch_x, new_patch_y;
int32 old_patch_x, old_patch_y;
int32 added = 0;
CIDB_LAID_LINEAR *linear, *all_linear;
char temp_fname[CTDB_FILENAME DIMENSION_CMP];
int32 i,j,gcs_patch_num;
static CTDB_LAID_LINEAR local;
CMP_REF tz_refs[CMP_MAX REF];
int8 *post_array = NULL;
int32 *offsets, *sizes;
trans_patches = (TRANSITION_PATCH_INFO *);
ctdb_alloc(NULL,sizeof(TRANSITION_PATCH_INFO)*
ctdb_out.patches_wide * ctdb_out.patches_high, ""trans patches');
bzero((void*)trans_patches, sizeof(TRANSITION PATCH_INFO) *
ctdb_out.patches_wide * ctdb_out.patches_high);
offsets = (int32 *)ctdb_alloc(NULL, sizeof(int32) *
ctdb_out.patches_wide *ctdb_out.patches_high, "offsets");
for(i = 0; i < ctdb_out.patches_high * ctdb_out.patches_wide; i++)
offsets[i] = NO_FEATURES;
sizes = (int32 *)ctdb_alloc(NULL, sizeof(int32) *
ctdb_out.patches_wide *ctdb_out.patches_high, ''sizes'");
bzero((void*)sizes, sizeof(int32) * ctdb_out.patches_wide *
ctdb_out.patches_high);
ctdb_zero_out_patch_buffer();
sprintf(temp_fname, "%s.te",dbname);
patches = ctdb_out.patches_wide * ctdb_out.patches_high;
if(!ctdb_out.patch_groups)
{ .
ctdb_out.patch_groups =(CTDB_PATCH _GROUP_CMP *)STDALLOC(
sizeof(CTDB_PATCH_GROUP_CMP)*
(patches/CTDB_PATCHES_PER_GROUP_CMP));
bzero((void*)ctdb_out.patch_groups,sizeof(CTDB_PATCH_GROUP_CMP)*
(patches/CTDB_PATCHES_PER_GROUP_CMP));

if(!ctdb_out.linear_models)

ctdb_out.linear_models = (CTDB_LINEAR_MODEL_CMP *)
STDALLOC(MAX NUM_LINEAR_MODELS *
sizeof(CTDB_LINEAR_MODEL_CMP));
bzero((void*)ctdb_out.linear_models, MAX_NUM_LINEAR_MODELS *
sizeof(CTDB_LINEAR MODEL_CMP));
}

if(!ctdb_out.aggregate_models)

ctdb_out.aggregate_models = (CTDB_AGGREGATE_MODEL_CMP **)
STDALLOC(MAX NUM_AGGREGATE_MODELS *
sizeof(CTDB_AGGREGATE_MODEL_CMP *));

bzero((void*)ctdb_out.aggregate_models,

24

MAX NUM_AGGREGATE_MODELS *

sizeof(CTDB_ AGGREGATE_MODEL_CMP %)),

old_patch_meters = ctdb_in->incr * ctdb_in->patch_incr;
new_patch_meters = ctdb_out.incr * ctdb_out.patch_incr;
for (new_patch_y = 0; new_patch_y < ctdb_out.patches_high; new_patch_y++, putchar(".’),fflush(stdout))

{

for (new_patch_x = 0; new_patch_x < ctdb_out.patches_wide; new_patch_x++)

old_patch_x = xx/old_patch_meters;
old_patch_y = yy/old_patch_meters;
patch_x = old_patch_x;
patch_y = old_patch_y;

The new patches may overlap more than one of the original
patches, so features must be collected for each of the nine
original patches that might intersect the new patch.

ges_patch_num = patch_y * ctdb_in->patches_wide + patch_x;

ctdb_init_patch_buffer();

‘collect_canopies(new_patch_x,new_patch_y,patch_x,patch_y);
collect_buildings (new_patch_x,new_patch_y, old_patch_x,old_patch_y);
collect_trees (new_patch_x,new_patch_y, old_patch_x,old_patch_y);
collect_linears (new_patch_x,new_patch_y, old_patch_x,old_patch_y);
if ((old_patch_y < ctdb_in->patches_high) && (old_patch_x > 0))

{

collect_buildings (new_patch_x,new_patch_y, old_patch_x-1,0ld_patch_y+1);
collect_trees (new_patch_x,new_patch_y, old_patch_x-1,0ld_patch_y+1);
collect_linears(new_patch_x,new_patch_y, old_patch_x-1,0ld_patch_y+1);

}
if (old_patch_y < ctdb_in->patches_high)

collect_buildings (new_patch_x,new_patch_y, old_patch_x,old_patch_y+1);
collect_trees (new_patch_x,new_patch_y, old_patch_x,0ld_patch_y+1);
collect_linears (new_patch_x,new_patch_y, old_patch_x,old_patch_y+1);

} .
if ((old_patch_y < ctdb_in->patches_high) && (old_patch_x < ctdb_in->patches_wide))

{

collect_buildings (new_patch_x,new_patch_y, old_patch_x+1,0ld_patch_y+1);
collect_trees (new_patch_x,new_patch_y, old_patch_x+1,0ld_patch_y+1)
collect_linear (new_patch_x,new_patch_y, old_patch_x+1,0ld_patch_y+1);

}

if (old_patch_x < ctdb_in->patches_wide)

collect_buildings (new_patch_x,new_patch_y, old_patch_x-+1,0ld_patch_y);
collect_trees(new_patch_x,new_patch_y, old_patch_x+1,0ld_patch_y);
collect_linear (new_patch_x,new_patch_y, old_patch_x+1,0ld_patch_y);

3
if ((old_patch_y > 0) && (old_patch_x <ctdb_in->patches_wide))
{

collect_buildings (new_patch_x,new_patch_y, old_patch_x+1,0ld_patch_y-1);
collect_trees (new_patch_x,new_patch_y, old_patch_x+1,0ld_patch_y-1);
collect_linears (new_patch_x,new_patch_y, old_patch_x+1,0ld_patch_y-1);

}
if (old_patch_y > 0)
{

collect_buildings (new_patch_x,new_patch_y, old_patch_x,old_patch_y-1);
collect_trees (new_patch_x,new_patch_y, old_patch_x,old_patch_y-1);

}

collect_linears (new_patch_x,new_patch_y, old_patch_x,old_patch_y-1);

if ((old_patch_x > 0) && (old_patch_y > 0)

25

{
collect_buildings (new_patch_x,new_patch_y, old_patch_x-1,0ld_patch_y - 1);
collect_trees (new_patch_x,new_patch_y, old_patch_x-1,0ld_patch_y - 1);
collect_linears(new_patch_x,new_patch_y, old_patch_x-1,0ld_patch_y - 1);

}
if (old_patch_x > 0)
{

collect_buildings (new_patch_x,new_patch_y, old_patch_x-1,0ld_patch _Y);
collect_trees (new_patch_x,new_patch_y, old_patch_x-1,0ld_patch_y);
collect_linears(new_patch_x,new_patch_y, old_patch_x-1,0ld_patch_y);

}
added = ctdb_store_patch_buffer(&ctdb_out,
new_patch_x + offset_x, new_patch_y + offset_y,
ctdb_out.features+feature_offset, ctdb_out.linear_models,
&ctdb_out.num_linear_models, ctdb_out.aggregate_models,
&ctdb_out.num_aggregate_models,complete_micro_poly,

&num_te, trans_patches, &trans_end, .

&max_elev, format, dbase_type, FALSE, Ctdb_store_patch_buffer writes all
_ FALSE, fptr, FALSE); the physical features to ctdb_out.
if(added)

offsets[(new_patch_y + offset_y) * ctdb_out.patches_wide +
new_patch_x + offset_x] = feature_offset;

sizes[(new_patch_y + offset_y) * ctdb_out.patches_wide +
new_patch_x + offset_x] = added;

}

feature_offset += added;

}

}
if(ctdb_in->features) STDDEALLOC(ctdb_in->features);
if (ctdb_in->elevations) STDDEALLOC(ctdb_in->elevations);
if (ctdb_in->soils) STDDEALLOC(ctdb_in->soils);
if (post_array) STDDEALLOC(post_array);
reorder_patch_features(offsets, sizes, dbname, feature_offset);
STDDEALLOC(offsets);
STDDEALLOC(sizes);
felose(fptr);
ctdb_out.n_te_bytes = total_tes * sizeof TERRAIN_ELEMENT_16);
*num_linear_models = ctdb_out.num_linear_models;
*num_aggregate_models = ctdb_out.num_aggregate_models;
return feature_offset;

}

A.5 Look_for_features
static void look_for_features (patch_water_state)
int32 *patch_water_state;

CTDB_SEARCH_SPACE_PTR_CMP search_space;

int32 i, j,ix,ly,ii,max_steps,flag;

int32 count,code, data_size;

float32 *verts, *lverts = NULL;

float32 x1,y1,x2,y2,cx,cy,delx,dely,slope,step,my_sign;
CTDB_ABSTRACT DATA_CMP *data;

1int32 num_lverts = 0, *soil_table,soil;

float64 meters_per_patch;

meters_per_patch = ctdb_in->incrD * ctdb_in->patch_incrD;

26

step = ctdb_in->incrD/10.0;
search_space =
ctdb_intern_create_search_space(ctdb_in, ctdb_in->min_x, ctdb_in->min_y,
ctdb_in->max_x, ctdb_in->max_y, CTDB_BY_PATCH);
while (ctdb_intern_next_quad_patch(search_space))

for (code=1;code<=24;code++)
while (count = ctdb_intern_next_abstract(search_space, code, &verts, &data, &data_size))

{

num_lverts = count;
if (code == CTDB_ABSTRACT_CANOPY_CMP) Look for_features finds all the
canopies and lakes on the original

for (i=2;i<(2"count);i+=2) database so that the soil type for

x1 = verts[i-2]; y1 = verts[i-1]; the underlying posts can be
X2 = verts[il; y2 = verts[i+1]; adjusted. The array canopy is a
delx = x2-x1; dely = y2-y1; high resolution map of the location
i{f ((delx*delx) > (dely*dely)) of,he canopies.

slope = dely/delx;

my_sign = 1.0;

if (detx <0) my_sign =-1.0;
max_steps = sqrt(delx*delx)/(2.0*mat_step);
for (ii = 0; ii < max_steps;ii++)
{
cx=x1 + ii*step*my_sign;
cy = slope*(cx - x1) +y1;
ix = (float) (cx/mat_step);
y = (float) (cy/mat_step);
canopy[ix]{iy] = 1;
}
}
else
{
slope = delx/dely;
my_sign = 1.0;
if (dely < 0) my_sign =-1.0;
max_steps = sqrt(dely*dely)/(2.0*mat_step);
for (ii = 0; ii < max_steps;ii++)
{
cy =yl +ii*step*my_sign;
cx = slope*(cy - y1) +x1;
ix = (float) (cx/mat_step);
iy = (float) (cy/mat_step);
canopy[ix][iy] = 1;

}
}

}
. for (iy = 0;iy < 5500;iy++)
{
flag =0;
if (canopy[0][iy]l == 1) flag = 1;
for (ix = 1; ix < 5500;ix++) '

27

if ((canopyix][iy] == 0) && (flag = 1))
canopy[ix][iy] = 2;

if ((canopy[ix][iy] == 1) && (flag == 0))
flag=1;.

else if ((canopylix][iy] == 1) && (flag == 1))
flag = 0;

}
}

ctdb_intern_destroy_search_space(search_space);
if (num_Iverts > 0) free(lverts);

}

A.6 Encode_abstract_features
static void encode_abstract_features (patch_water_state)
int32 *patch_water_state;

{
CTDB_SEARCH_SPACE_PTR_CMP search_space;

int32 1, j;

int32 count;

int32 code;

float32 *verts;

CTDB_ABSTRACT DATA_CMP *data;

int32 data_size;

float32 *lverts = NULL;

int32 num_lverts = 0;

int32 *soil_table;

int32 soil;

float64 meters_per_patch;

meters_per_patch = ctdb_out.incrD * ctdb_out.patch_incrD;

search_space = ctdb_intern_create_search_space(ctdb_in,
ctdb_out.min_x, ctdb_out.min_y,
ctdb_out.max_x, ctdb_out.max_y,
ctdb_BY_PATCH);

while (ctdb_intern_next_quad_patch(search_space))

{ .

for (code=1;code<CTDB_ABSTRACT MAX;codet++)

while (count = ctdb_intern_next_abstract(search_space, code,&verts, &data, &data_size))

{

if (count > num_lverts)

{
lverts = (float32*)STDREALLOC(lverts,2*count*sizeof(float32));

num_lverts = count;
} Encode_abstract tranfers the data for lakes,

for(i=0;i<(2*count);i+=2) canopies, and other abstract features from
ctdb_in to ctdb_out. Note that the polygons
do not depend on patch size so they do not
need to be adjusted for the new database.

Iverts[i] = verts[i] + offset_x_meters;
Iverts[i+1] = verts[i+1] + offset_y_meters;

3

if (code == CTDB_ABSTRACT_CANOPY_CMP)

data->canopy.impenetrable = 1;

~ ctdb_store_abstract(&ctdb_out, &quad_root,code, count, lverts,

CTDB_ABSTRACT DATA_SIZE(data_size),
(int32 *)data, min_patch_x * meters_per_patch,
min_patch_y * meters_per_patch,max_patch_x * meters_per_patch,
max_patch_y * meters_per_patch);

28

}
A7

static void collect_nodes_and_edges(hdr)

}
}
ctdb_intern_destroy_search_space(search_space);
if (num_lverts > 0) free(lverts);

Collect__nodes_and_edges

CTDB_FILE_HEADER *hdr; Collect_nodes_and_edges is copied from

{

}

A8

ctdb_create_networks(&ctdb_out, output_format); the original program recompile.c in the
hdr->num_nodes = ctdb_out.num_nodes; ModSAF 3.0 source code.
hdr->node_size = ctdb_out.node_size;

hdr->num_edges = ctdb_out.num_edges;
hdr->edge_size = ctdb_out.edge_size;

Transform_posts

static int32 *transform_posts()

{

float64 x,y,dx,dy,zz,200,210,z01,z11;

float64 xd,yd,loc_x, loc_y;

float64 page_meters, post_meters,inv_post_meters;

uint32 p, s;

int32 *new_posts, *new_soils;

int32 norm_x, norm_y ,ix,iy;

int32 post_index,page, index;

new_posts = (int32 *)ctdb_alloc(NULL, ctdb_in->pages_wide *
ctdb_in->pages_high * PAGE_SIZE,"New elevation posts'");

new_soils = (int32 *)ctdb_alloc(NULL, ctdb_in->pages_wide *
ctdb_in->pages_high* PAGE_SIZE, "New soil indices');

post_meters = ctdb_out.incrD;

page_meters = POSTS_PER_SIDE * post_meters;

inv_post_meters = 1.0/post_meters;

add_hills._to_patches(); Add_hills_to_patches adds vrt hills to

for (y:O; y<=ctdb_0ut_max_y; y+=page_meters) each patch N that the Original elevation
for (x=0; x<=ctdb_out.max_x; x+=page_meters) data are not altered. Transform_posts
for (dy=0.0; dy<page_meters; dy+=post_meters) produces the elevation grid for ctdb_out

for (dx=0.0; dx<page_meters; dx+=post meters) | 4.y the original elevation grid stored in

{loc x = xt+dx: original and the new vrt hills. This

loc_y = y+dy: routine also adjusts the soil type, based
ix = (float) (loc_x/ctdb_in->incrD); on the array my_soil.
iy = (float) (loc_y/ctdb_in->incrD); :

xd = (loc_x - (float) (ix*ctdb_in->incrD));

yd = (loc_y - (float) (iy*ctdb_in->incrD));

z00 = xd*(originallix +1][iy] - original[ix][iy])/ctdb_in->incrD+
yd*(original[ix][iy + 1] - original[ix][iy])/ctdb_in->incrD + original[ix][iy];

z11 = xd* (original[ix][iy+1] - original[ix+1][iy+1])/ctdb_in->incrD+ yd*
(original[ix+1][iy] - original[ix+1][iy+1])/ctdb_in->incrD + originalfix+1][iy-+1];

norm_x = (int32)POST_X(loc_x * inv_post_meters);

norm_y = (int32)POST_Y(loc_y * inv_post_meters);

zz = (200 + 211)/2.0;

zz = zz + add_vrt(loc_x,_locy);

29

p=BUILD_POST_ELEVATION (zz, ctdb_in->inv_fixed_point_basis);
p &=~POST_FLAGS;
if (canopy[ix]{iy] == 1) p |=POST_TREES;
s=my_soil[temp_x][temp_y];
post_index = ctdb_intern_get_post_index(ctdb_in, norm_x, norm_y);
new_posts[post_index] = p;
new_soils[post_index] =s;
3
ctdb_out.soils = new_soils;
return new_posts;

3
A.9 Add_hills_to_patches
add_hills_to_patches();

int ix,iy,ih;

float64 w,base_hgt,xx,yy,x0,y0,x1,y1;

float64 d,d00,d01,d11,d10;

w = ctdb_in->patch_width;

base_hgt =5.0;

for (iy =0;iy< ctdb_in->patches_high;iy++)
{

for (ix=0;ix < ctdb_in->patches_wide;ix++)

hills_per_patch[ix][iy] = 5.0*drand48();
for(ih=0;ih < hills_per_patch[ix][iy];ih++)
{

hill[ihill].cx = xx= w*drand48();
hill[ihill].cy = yy= w*drand48();
hill[ihill].hgt = base_hgt*drand48();
hill[ihill].angle = 180.0*drand48();
hili[ihill].wgty = 0.75*drand48() + 0.25;
hill[ihill].power = 5.0*drand48() + 0.5;
x0 = (int) (hill[ihill].cx/ctdb_in->incrD);
y0 = (int) (hill[ihill].cy/ctdb_in->incrD);
x1 =x0 + ctdb_in->incrD;
y1 =y0 + ctdb_in->incrD;
d00 = sqrt((xx-x0)*(xx-x0) +(yy-y0)*(yy-y0));
d10 = sqrt((xx-x1)*(xx-x1) +H(yy-y0)*(vy-y0));
d11 = sqrt((xx-x1)*(xx-x1) Hyy-y D*(yy-yD));
d01= sqrt((xx-x0)*(xx-x0) +(yy-y D*(yy-y1));
d = doo0;
if (d>d10)d=d10;
if(d>dl1)d=dl1;
if (d > d01)d=do01;
hill[ihill].wgtx = d*drand48() + 0.5;
hill[ihill].cx = hill[ihill}.cx + ctdb_in->patch_width;
hillfihill].cy = hill[ihill].cy + ctdb_in->patch_width;

Complete_micro_poly is copied from the

A.10 Complete_micro_poly original program recompile.c in the ModSAF
static void complete_micro_poly(poly) 3.0 source code

30

| CTDB_MC_POLYGON *poly;
f {
int32 i;
int32 norm_x, norm_y;
float64 midx, midy;
midx = midy = 0.0;
for (i=0;i<3;i++)
{
norm_x = poly->verts[i][X] * ctdb_out.inv_incr;
norm_y = poly->verts[i][Y] * ctdb_out.inv_incr;
if (gcs_mode == CTDB_MODE_SIMNET)

poly->verts[i][Z] =ctdb_intern_lookup_post_elevation(ctdb_in, norm_x, norm_y);

midx += norm_x;
midy += norm_y;
} .
midx /=3.0;
midy /= 3.0;
poly->soil = ctdb_intern_lookup_soil(ctdb_in, midx, midy);

}

A.11 Collect_building
static void collect_building (new_patch_x,new_patch_y,old_patch_x,old_patch_y)
int32 new_patch_x,new_patch_y, old_patch_x,old_patch_y;

{
CTDB_VOLUME_POLYGON building;
int32 n_verts, i, j, offset;
CTIDB_FEATURE DATA_CMP *feature, *last;
int32 patch_number = old_patch_x + old_patch_y * ctdb_in->patches_wide;
" int32 next, fclass,x,y;
int32 meters_per_patch = ctdb_in->incr * ctdb_in->patch_incr;
int32 patch_min_x = old_patch_x * meters_per_patch;
int32 patch_min_y = old_patch_y * meters_per_patch;
int32 patch_max_x = (old_patch_x+1) * meters_per_patch;
int32 patch_max_y = (old_patch_y+1) * meters_per_patch;
int32 intersection;
offset = 3;
feature = ctdb_intern_lookup_patch(ctdb_in, patch_number);
if (feature)
{
last = feature + feature->hdr.size;
feature++; ,
for(; feature < last; feature += next)

|
1
else
poly->verts[i][Z] =ctdb_intern_lookup_post_elevation(&ctdb_out, norm_x, norm_y);

{

n_verts = feature->info.vertices; » This section skips all

ff:lass = feature->info.feature_class; features except the

if (fclass == FC_MICRO_CMP) .
{next = NEXT_MICRO_CMP(n_verts);continue; } buildings

{next=NEXT LINEAR_CMP(n_verts);continue; }
else if (fclass == FC_CANOPY_CMP)

|
\
|

else if (fclass == FC_LINEAR_CMP)

31

{next =NEXT_CANOPY_CMP(n_verts);continue; }
else if (fclass == FC_AGGREGATE_CMP)
{next = NEXT_AGGREGATE_CMP(n_verts);continue; }
else if (fclass == FC_LAID_LINEAR_CMP)
{next = NEXT_LAID_LINEAR(n_verts); continue; }
else if (fclass == FC_VOLUME_CMP)
next = NEXT VOLUME_CMP(n_verts);
if (n_verts)
{
recompile_buildings++;
building.n_verts =n_verts;
for (i=0;i<n_verts;i++)

building.verts[i][X] = ctdb_in->incrD *
XYO_TO_POST(featurefoffset+2*i].xy.x,old_patch_x,
ctdb_in->patch_incrD) + offset_x_meters;

building.verts[i][Y] = ctdb_in->incrD *
XYO_TO_POST(feature[offset+2*i].xy.y,old_patch_y,
ctdb_in->patch_incrD) + offset_y_meters;

building.verts[i][Z] = feature[offset+1+2*i].z; '
Volume features are sets

if (n_verts <3) of polygon vertices in
building.n_verts = 3; three-dimensional space.

building.verts[2][X] = 10.0 + ctdb_in->incrD * For each voulme feature,
XYO_TO_POST(feature[offset].xy.x,old_patch_x, e
ctdb_in->patch_incrD) + offset_x_meters; building stores those
building.verts[2][Y] = ctdb_in->incrD * vertices that intersect the
XYO_TO_POST(feature[offset].xy.y,old_patch_y,
ctdb_in->patch_incrD) + offset _y_ymeters;_p current patch. I there are
building.verts[2][Z] = feature[offset+1].z; fewer than three vertices,

an extra vertex is added to

}
building.type = feature[1].volume.type;
complete the polygon.

building.reference = feature[1].volume.reference;
ctdb_buffer_vol(&building);

}
}
}
}

A.12 Collect_trees
static void collect_trees (new_patch_x,new_patch_y,old_patch_x,old_patch_y)
int32 new_patch_x, new_patch_y,old_patch,old_patch_y;

CTDB_LINEAR tree;

int32 n_verts, i,ix,iy;

CTDB_FEATURE_DATA_CMP *feature, *last;

int32 patch_number = old_patch_x + old_patch_y * ctdb_in->patches_wide;
int32 next, fclass;

int32 my_max_x, my_max_y, my_min_x, my_min_y;

float64 xx,yy,meters_per_patch;

my_min_x = new_patch_x*ctdb_out.patch_incr*ctdb_out.incr;

my_min_y = new_patch_y*ctdb_out.patch_incr*ctdb_out.incr;

my_max_x = (new_patch_x + 1)*ctdb_out.patch_incr*ctdb_out.incr;
my_max_y = (new_patch_y + 1)*ctdb_out.patch_incr*ctdb_out.incr;
meters_per_patch = ctdb_out.incrD * ctdb_out.patch_incrD;

32

feature = ctdb_intern_lookup_patch(ctdb_in, patch_number);

if (feature) :
{
= + > ize: . , .
last = feature + feature->hdr.size; This section skips all
feature++; .
for(; feature < last; feature += next) features except the tree lines
{) . and individual trees.
n_verts = feature->info.vertices;

fclass = feature->info.feature_class;

if (fclass == FC_MICRO_CMP)
{next=NEXT MICRO_CMP(n_verts);continue; }

else if (fclass == FC_VOLUME_CMP)
{next=NEXT_VOLUME_CMP(n_verts);continue; }

else if (fclass == FC_CANOPY_CMP)
{next=NEXT_CANOPY_CMP(n_verts);continue; }

else if (fclass == FC_AGGREGATE_CMP)
{next=NEXT_AGGREGATE_CMP(n_verts);continue;}

else if (fclass == FC_LAID _LINEAR_CMP)
{next=NEXT_LAID LINEAR_CMP(n_verts);continue; }

else if (fclass == FC_LINEAR_CMP)

next = NEXT_LINEAR_CMP(n_verts); Tree lines are linear segments with
if (n_verts) information about foliage height,
{ foliage density, tree spacing, and trunk
recompile_trees++; radius.
tree.n_verts = n_verts;

tree.desc.type = CTDB_FT_TREELINE_CMP;

tree.desc.linear_data.treeline_info.foliage_height =

ctdb_in->incrD*XYO_TO_POST(ctdb_in->linear_models{
feature[1].linear.reference].linear_data.treeline_info.
foliage_height, 0, ctdb_in->patch_incrD);

tree.desc.linear_data.treeline_info.trunk_radius =
ctdb_in->incrD*XYO_TO_POST(ctdb_in->linear_models|
feature[1].linear.reference].linear_data.treeline_info.
trunk_radius, 0, ctdb_in->patch_incrD);

tree.desc.width = ctdb_out.incrD * XYO_TO_POST(
ctdb_in->linear_models[feature[1].linear.reference}.width,
0, ctdb_in->patch_incrD);

tree.desc.linear_data.treeline_info.fullness =
ctdb_in->linear_models[feature[1].linear.reference].
linear_data.treeline_info.fullness /
(float32)(1 << CTDB_FULLNESS_BITS_CMP - 1);
tree.desc.linear_data.treeline_info.total height = 0.0;
for (i=0;i<n_verts;i++)
{
tree.verts[i][X] = ctdb_in->incrD *
XYO_TO_POST(featuref2+2*i].xy.x,old_patch_x,
ctdb_in->patch_incrD) + offset_x_meters;
tree.verts[ij[Y] = ctdb_in->incrD *
XYO_TO_POST(feature[2+2*i].xy.y,old_patch_y,
ctdb_in->patch_incrD) + offset_y_meters;
tree.verts[i][Z] = feature[3+2%*i].z;

}

. Individual trees are stored for the
ctdb_buffer_linear(&tree); . .
if (n_verts =1) first and last tree in a tree line.

33

{

tree.n_verts = 1;

tree.verts[1][X] = tree.verts[0]{X] +20.0;
tree.verts[1][Y] = tree.verts[0][Y];
ctdb_buffer_linear(&tree);

}
if (n_verts > 1) && (feature[1].integer & M_TREE_FIRST_CMP))

ctdb_buffer_linear(&tree);
tree.n_verts = 1;
ctdb_buffer_linear(&tree);

}
if ((n_verts > 1) && (feature[1].integer & M_TREE_LAST_CMP))

{
tree.n_verts = 1;
tree.verts[0][X] = tree.verts[n_verts-1][X] +offset_x_meters;
tree.verts[0][Y] = tree.verts[n_verts-1][Y] +offset y_meters;
tree.verts[0][Z] = tree.verts[n_verts-1][Z];
ctdb_buffer_linear(&tree);

}
}
}
}
}
A.13 Collect_linear

static void collect_linear (new_patch_x,new_patch_y,old_patch_x,old_patch_y)
int32 new_patch_x,new_patch_y,old_patch_x,old_patch_y;

CTDB_LAID_LINEAR line;
float64 verts[CTDB_VERTICES_MAX][2];
float64 width,xx,yy,x1,y1,x2,y2;
float64 xm,ym,xM,yM,del_x, del_y;
int32 soil,n_verts,.k,j;
CTDB_FEATURE_DATA_CMP *feature, *last;
int32 patch_number = old_patch_x + old_patch_y * ctdb_in->patches_wide;
int32 next, fclass;
feature = ctdb_intern_lookup_patch(ctdb_in, patch_number);
if (feature)
{

last = feature + feature->hdr.size;

feature++;

for(; feature < last; feature += next)

{

n_verts = feature->info.vertices;

fclass = feature->info.feature_class; This section skips all features

if (felass = FC_MICRO_CMP) . except the roads, rivers, and
{next = NEXT_MICRO_CMP(n_verts);continue; })
else if (fclass = FC_VOLUME_CMP) other linear features.

{next=NEXT_VOLUME_CMP(n_verts);continue; }
else if (fclass == FC_CANOPY_CMP)

{next = NEXT_CANOPY_CMP(n_verts);continue; }
else if (fclass == FC_AGGREGATE_CMP)

{next = NEXT_AGGREGATE_CMP(n_verts);continue; H
else if (fclass == FC_LINEAR_CMP)

{next = NEXT_LINEAR_CMP(n_verts);continue; }
else if (fclass == FC_LAID_LINEAR_CMP)

34

next = NEXT_LAID_LINEAR CMP(n_verts);
if (n_verts)

{
if (n_verts >= MAX_LAID_LINEAR_VERTS)

printf("MAX_LAID_LINEAR_VERTS (ct_cmplr.h) exceeded. Increase it to %d\n",

n_verts+1);
n_verts = MAX _LAID_LINEAR_VERTS-1;
}
recompile_linears++;
line.n_verts = n_verts;
line.width = ctdb_in->incrD *

Roads and rivers are line segments
having a soil type and a width.

XYO_TO_POST(feature[2].]Jaid_linear.width,0,

ctdb_in->patch_incrD);
line.soil = feature[1].11_soil.poly char_index;
if (line.soil == 1) line.width = 10.0;
else line.width = 20.0;
for (i=0;i<n_verts;i++)
{

xx = ctdb_in->incrD *

XYO_TO_POST(feature[3+i].xy.x,0ld_patch_x,

ctdb_in->patch_incrD) + offset_x_meters;

yy = ctdb_in->incrD *

XYO_TO_POST(feature[3+i].xy.y,old_patch_y,

ctdb_in->patch_incrD) + offset_y_meters;

line.verts[i][X] = xx;
line.verts[i][Y] = yy;

}
ctdb_buffer_laid_linear(&line);
}
3
}
}

A.14 Conopy_triangles
static void canopy_triangle (micro,x0,y0,x1,y1,x2,y2)
float64 x0,y0,x1,y1,x2,y2;
CTDB_MC_POLYGON micro;
{
micro.n_verts = 3;
micro.soil = 720907;
micro.reserved = 0;
micro.verts[0][X] = x0;
micro.verts{0][Y] = y0;
micro.verts[0][Z] = 20.0;
micro.verts[1][X] = x1
micro.verts[1][Y] = y1;
micro.verts[1]1[Z] = 20.0;
micro.verts[2][X] = x2
micro.verts[2][Y] = y2;
micro.verts{2}[Z] = 20.0;
}

A.15 Collect_canopies

static void collect_canopies (new_patch_x,new_patch_y,patch_x,patch_y,

35

n_cpoly, canopy_polys, n_cedge, canopy_edges,cp_limit, ce_limit)

int32 patch_x,patch_y,new_patch_x, new_patch_y;

int32 *n_cpoly;

CTDB_MC_POLYGON canopy_polys[];

int32 *n_cedge;

CTDB_CAN_EDGE canopy_edges[];

int32 cp_limit, ce_limit;

{
int32 patch_number, reference;
CTDB_FEATURE_DATA_CMP *feature, *last, *next;
CTDB_MC_POLYGON micro;
CTDB_CAN_EDGE edge;
int32 verts, fclass;
int ix,iy,ix_start,ix_stop,iy_start,iy_stop,my_flag;
float64 x1,y1,x2,y2,d1,d2,d3;
float64 min_x,min_y,max_x,max_y;
int zero,one,two;
patch_number = patch_x + patch_y * ctdb_in->patches_wide;
feature = ctdb_intern_lookup_patch(ctdb_in, patch_number);
min_x = new_patch_x*ctdb_out.patch_incr*ctdb_out.incr;
min_y = new_patch_y*ctdb_out.patch_incr*ctdb_out.incr;
max_x = (new_patch_x + 1)*ctdb_out.patch_incr*ctdb_out.incr;
max_y = (new_patch_y + 1)*ctdb_out.patch_incr*ctdb_out.incr;
ix_start = min_x/mat_step; iy_start = min_y/mat_step;
ix_stop = max_x/mat_step; iy_stop = max_y/mat_step;
zero = 0; one = 0; two = 0;
verts = 3;
fclass = FC_CANOPY_CMP;
for (iy = ty_start; iy < iy_stop; iy++)

for (ix = ix_start; ix < ix_stop; ix++)
{
if (canopy[ix}[iy] == 0) zero = zero + 1;
if (canopy[ix][iy] == 1) one = one + 1;
if (canopyfix][iy] ==2) two=two + 1,
}

}
if ((zero == 0) && (one == 0))

{
canopy_triangle(µ,min_x,min_y,max_x,min_y,max_x,max_y);
ctdb_buffer_canopy(µ);
canopy_triangle(µ,min_x,min_y,min_x,max_y,max_x,max - V);
ctdb_buffer_canopy(µ);

3
if ((two > 0) && (one > 0))

{
reference = 0;
edge.fullness = DEFAULT_FULLNESS;
edge.start[X] = min_x; edge.start[Y] = min_y;
edge.end[X] = max_x; edge.end[Y] = max_y;
ctdb_buffer_cedge(&edge);
if (canopy[ix_start][iy_stop-1] == 0 && canopy[ix_start][iy_start] == 0

&8& canopy[ix_stop-1][iy_start] == 0 && canopy][ix_stop-1][iy_stop-1]==0)

if (canopy][(ix_stop-1 + ix_start)/2]fiy_start] ==
&& canopy[(ix_stop-1+ ix_start)/2][iy_stop-1] ==

36

&& canopy[ix_start][(iy_stop-1 + iy_start) /2] ==
&& canopy[ix_stop-1]] (iy_stop-1 +iy_start)2] ==0)
{
canopy_triangle(µ,
(max_x + min_x) /4 + (min_x / 2),min_y,
(max_x + min_x) /4 + (min_x/ 2),min_y,
(max_x + min_x) /4 + (min_x / 2),max_y);
ctdb_buffer_canopy(µ);
canopy_triangle(µ,
(max_x + min_x) / 4 + (min_x / 2),max_y,
(max_x + min_x) / 4 + (min_x/ 2),min_y,
(max_x + min_x) / 4 + (min_x / 2),max_y);
ctdb_buffer_canopy(µ);
}

else
{
canopy_triangle(µ,

(max_x + min_x) /2, (max_y + min_y) /2,

min_x, (max_y + min_y) /2,

(max_x + min_x) / 2,max_y);
ctdb_buffer_canopy(µ);
canopy_triangle(µ, _

(max_x + min_x) / 2, (max_y + min_y) /2,

(max_x + min_x) /2, max_y

max_x,(max_y + min_y) / 2);
ctdb_buffer_canopy(µ);
canopy_triangle(µ,

(max_x + min_x) / 2, (max_y + min_y) /2,

(max_x + min_x) /2, min_y

min_x,(max_y + min_y) / 2);
ctdb_buffer_canopy(µ);
canopy_triangle(µ,

(max_x + min_x) /2, (max_y + min_y) /2,

max_x,(max_y + min_y) /2

(max_x + min_x) / 2,min_y);
ctdb_buffer_canopy(µ);

}

} .
else if (canopy[ix_start][iy_stop-1] == 0 && canopy[ix_stop-1][iy_start] ==2)
{

reference = 0;

edge.fullness = DEFAULT_FULLNESS;

edge.start[X] = max_x; edge.start[Y] = min_y;

edge.end[X] = max_x; edge.end[Y] = max_y;

ctdb_buffer_cedge(&edge);

canopy_triangle(µ, min_x, min_y, max_x,min_y, max_x,max_y);
ctdb_buffer_canopy(µ);

if (canopy[ix_start][(iy_stop-1 + iy_start) /2] ==2)
{ .

canopy_triangle(µ, min_x, min_y,
min_x, (max_y + min_y) /2,
(max_x + min_x) / 2, (max_y + min_y) / 2);
ctdb_buffer_canopy(µ);
}
if (canopy[(ix_stop-1 + ix_start)/2 + 1][(iy_stop-1 + iy_start)2 +2]==2)
{

37

canopy_triangle(µ,

(max_x + min_x) /2, max_y,

(max_x + min_x) / 2, (max_y + min_y) /2,

((max_x + min_x) / 4) + (max_x / 2,((max_y + min_y) / 4) + (max_y/ 2));
ctdb_buffer_canopy(µ);

}
if (canopy[((ix_stop-1 + ix_start) / 2) - 1]{ (iy_stop-1 + iy_start)/2 +2] ==2)

canopy_triangle(µ,
(max_x + min_x) /2, (max_y + min_y) /2,
((max_x + min_x) / 4) + (min_x / 2, ((max_y + min_y) / 4) + (max_y / 2),
(max_x + min_x) /2, max_y);
ctdb_buffer_canopy(µ);
}
}
else if (canopy[ix_start][iy_start] == 0 &&canopy[ix_stop-1][iy_stop-1] ==2)
{ ‘

reference = 0;

edge.fullness = DEFAULT_FULLNESS;

edge.start[X] = min_x; edge.start[Y] = min_y;

edge.end[X] = max_x; edge.end[Y] = max_y;

ctdb_buffer_cedge(&edge);

canopy_triangle(µ, max_x, min_y, min_x, max_y, max_x, max_y);
ctdb_buffer_canopy(µ);

if (canopy[ix_start][(iy_stop-1+ iy_start)/2 + 1] ==2)

canopy_triangle(µ, min_x, (max_y +min_y)/2,
(max_x + min_x) / 2, (max_y + min_y) /2,
min_x, max_y);

ctdb_buffer_canopy(µ);

}
if (canopy[ix_stop-1][iy_start+2] ==2)
{

canopy_triangle(µ, (max_x + min_x)/2,min_y;
(max_x + min_x) / 2,(max_y + min_y) /2
max_x, min_y);
ctdb_buffer_canopy(µ);
}
3
else if (canopy[ix_stop-1][iy_start] == 0 &&canopyl[ix_start][iy_stop-1]==2)

{

reference =0;

edge.fullness = DEFAULT_FULLNESS;
edge.start[X] = min_x; edge.start[Y] = min_y;
edge.end[X] = min_x; edge.end[Y] = max_y;
ctdb_buffer_cedge(&edge);
canopy_triangle(µ, min_x, min_y,
min_x, max_y, max_xmax_y);
ctdb_buffer_canopy(µ);

if (canopy[(ix_stop-1 + ix_start)/2 + 1][(iy_stop-1 +iy_start) / 2] ==2)
canopy_triangle(µ, (max_x + min_x) /2, (max_y + min_y)/2,

max_x, (max_y + min_y) / 2, max_Xx, max_y);
ctdb_buffer_canopy(µ);

}

38

}
else if (canopylix_stop-1][iy_stop-1] == 0 && canopyl[ix_start][iy_start] ==2)
{
reference = 0;
edge.fullness = DEFAULT_FULLNESS;
edge.start[X] = min_x; edge.start[Y] = min_y;
edge.end[X] = min_x; edge.end[Y] = max_y;
ctdb_buffer_cedge(&edge);
canopy_triangle(µ, min_x, min_y, min_x, max_y, max_x, min_y);
ctdb_buffer_canopy(µ);
if (canopy[ix_start+1][iy_stop-1} ==2)
{
canopy_triangle(µ, min_x, max_y, (max_x + min_x) / 2, max_y,
(max_x + min_x)/2, (max_y + min_y) / 2);
ctdb_buffer_canopy(µ);

}
if (canopy[ix_stop-1][iy_start + 2] ==2)
{

canopy_triangle(µ, (max_x + min_x) /2,
(max_y + min_y) /2, max_Xx, (max_y + min_y) /2
max_x, min_y);
ctdb_buffer_canopy(µ);
}

else if (canopy[ix_start][iy_stop-1]==0)

edge.start[X] = max_x; edge.start[Y] = min_y;

edge.end[X] = max_x; edge.end[Y] = max_y;

ctdb_buffer_cedge(&edge);

canopy_triangle(µ, min_x, min_y,
max_x, min_y, max_x, max_y);

ctdb_buffer_canopy(µ);

}

else

edge.start[X] = max_x; edge.start[Y] = min_y;
edge.end[X] = max_x; edge.end[Y] = max_y;
ctdb_buffer_cedge(&edge);
canopy_triangle(µ, min_x, min_y, min_x, max_y, max_x,max_y);
ctdb_buffer_canopy(µ);
}
}

A.16 Fit_vrt
static void fit_vrt()

int khills,ix,ly,iix,iiy,icx,icy,number_grid_squares;
float64 my_resi[500][500],x_center,y_center;
float64 max_z,dx,dy,dx1,dyl,degmy_zloc_x,loc_y;
float64 current_max,current_min;

int min_x,min_y,max_x,max_y;

float64 len,len2,abs_z,rwx,rwy;

int isplit,iterations;

39

int npx,npy,Xstart,xstop,ystart,ystop;
int k,number_of_fits;
max_z =-999999.0;
npx = ctdb_in->max_x_post;
npy = ctdb_in->max_y_post;
for (iy = 0; iy < npy; iy++)
{
for (ix = 0; ix < npx; ix++)
{
my_resi[ix][iy] = original[ix][iy] - ctdb_in->min_z;
templ[ix][iy] = 0.0;
abs_z = sqrt(my_resi[ix][iy]*my_resi[ix][iy]);
if (abs_z > max_z)
{
max_z = abs_z;
icx = ix;
icy = iy;
}
}

}
khills = 0;
isplit = 2;
while (isplit < 32)
{
if (isplit < 8) number_of fits =4;
if (isplit >= 8) number_of_fits =2;
number_grid_squares = npx/isplit;
x_center = (float)number_grid_squares*ctdb_in->incrD/2.0;
for (iiy = 0; iiy < isplit; iiy++)

ystart = iiy*number_grid_squares;

ystop = (iiy + 1)*number_grid_squares;

if (ystop > npy) ystop = npy;

for (iix = 0; iix < isplit; iix++)

{

xstart = iix*number_grid_squares;
xstop = (iix + 1)*number_grid_squares;
if (xstop > npx) xstop = npx;
for (k = 0; k < number_of_fits;k++)

{
loc_y = (float)iiy*2.0*x_center + x_center;
loc_x = (float)iix*2.0*x_center + x_center;
hill[khills].hgt = 0.0;
hillfkhills].wgty = 0.4*drand48() + 0.1;
current_min =9999999.0;
current_max = -9999999.0;
for (iy = ystart; iy < ystop;iy++)
{

for (ix = xstart; ix < xstop;ix++)
if (my_resi[ix][iy] < current_min)
current_min = my_resi[ix]{iy];
min_x = ix;

min_y =iy;
}

40

if (my_resi[ix][iy] > current_max)

current_max = my_resi[ix][iy];
max_x = ix;
max_y = iy;
}
}
}
if (current_max*current_max > current_min*current_min)
{
hill[khills].hgt = my_resi[max_x][max_y];
hill{khills].cx = (float)max_x*ctdb_in->incrD;
hill[khills].cy = (float)ymax_y*ctdb_in->incrD;
my_z = current_min;
}

else

hill[khills].hgt = my_resi[min_x][min_y];
hill[khills].cx = (float)min_x*ctdb_in->incrD;
hill[khills].cy = (float)min_y*ctdb_in->incrD;
my_z = current_max;

} :
hill[khills].power = (0.3 + 0.5*drand48());
len = sqrt((float)((max_x - min_x)*(max_x - min_x) +
(max_y - min_y)*(max_y - min_y)));
len = len*ctdb_in->incrD;
hill{khills].wgtx =

((xstop - xstart)*ctdb_in->incrD)*(0.7 + 0.3*drand48());
dx = (float) (max_x - min_x);
dy = (float) (max_y - min_y);
if (dx*dx > 0.001)

hill{khills].angle = 90.0 - atan(dy/dx)*45.0/atan(1.0);
}
else

hill[khills].angle = 0.0;

} .
hill[khills].hgt = hill{khills].hgt + ctdb_in->min_z;
for (iy = 0; iy <npy; iy++)

{
loc_y = iy*ctdb_in->incrD;
for (ix = 0; ix <npx; ix++)
{
loc_x = ix*ctdb_in->incrD; ‘
temp[ix][iy] = temp[ix][iy] + single_hill(loc_x,loc_ykhills);
my_z = temp[ix][iy] + ctdb_in->min_z;
my_resi[ix][iy] = original[ix][iy] - my_z;
}
}
khills = khills +1;
3
}

isplit = isplit*2;

41

for (nhills = khills;nhills < 1000;nhills++)
{
loc_x = icx*ctdb_in->incrD;
loc_y =icy*ctdb_in->incrD;
hill[nhills].cx = loc_x;
hill[nhills].cy = loc_y;
hill[nhills].hgt = my_resi[icx][icy] + ctdb_in->min_z;
printf("hill # %d cx %d cy %d %.31f \n",nhills,icx,icy,my_resi[icx][icy]);
hill[nhilis].angle = 180*drand48();
hill[nhills].power = 0.7*drand48() + 0.1; :
hilllnhills) wgtx = 0.10*drand48()*(ctdb_in->max_x - ctdb_in->min_x)
+0.005*(ctdb_in->max_x - ctdb_in->min_x);
hill[nhills].wgty = 0.8*drand48() + 0.05;
max_z = -999999.0;
for (iy = 0; iy <npy; iy++)
{
loc_y = iy*ctdb_in->incrD;
for (ix = 0; ix < npx; ix++)

{
loc_x = ix*ctdb_in->incrD;
temp[ix][iy] = temp[ix][iy] + single_hill(loc_x,loc_y,nhills);
my_z = temp[ix][iy] + ctdb_in->min_z;
my_resi[ix][iy] = original[ix][iy] - my_z;
abs_z = sqrt(my_resi[ix][iy]*my_resi[ix]{iy]);
if (abs_z > max_z)

{
max_z = abs_z;
icx = ix;
icy = iy;
}
3
3
}
}
A.17 VRT
static double vrt(px,py,khills)
int khills;
double px,py;
{
double my_z,current_term;
int ih;
my_z=0.0;

current_term = 0.0;
for (ih = 0; ih <= khills; ih++)
{
current_term = single_hill(px,py,ih);
my_z =my_z + current_term;

}
my_z=my_z+ ctdb_in->min_z;
return my_z;

}

A.18 Single_hill

static double single_hill(px,py,ih)
int ih;

42

double px,py;
{

/* The function single_hill evaluates the expression:
h(px,py) = hgte-wg?‘x[(X(px,py)-X(cx,cy))z+ngy(Y(px,py)—Y(cx,cy))2

] power
, where

X(x,y) = cos(@)x +sin(®)y , 4 Y(X,¥)=—sin(@)x + cos(Q)y

double my_x,my_y,my_single_hill_z;
double xxx,yyy.xx,yy,maxh,minh,scale_x,scale_y;
double cx,cy,cz,¢,8,xx0,yy0,dxx,dyy,expon,zz;
double aa,bb,my_w,my_sign,computed_wgt;
double current_term,offset_x,offset_y,hgthgtm;
double nd_length_of axis; -
double deg_to_rad = atan(1.0)*4.0/180.0;
double my_max_z,my_min_z;
int32 my_max_x, my_max_y, my_min_x, my_min_y;
my_x = (px - ctdb_in->min_x)/(ctdb_in->max_x - ctdb_in->min_x);
my_y = (py - ctdb_in->min_y)/(ctdb_in->max_y - ctdb_in->min_y);
¢ = cos(deg_to_rad*hill[ih].angle);
s = sin(deg_to_rad*hiil[ih].angle);
cx = (hill[ih].cx - ctdb_in->min_x)/(ctdb_in->max_x - ctdb_in->min_x);
cy = (hill[ih].cy - ctdb_in->min_y)/(ctdb_in->max_y - ctdb_in->min_y);
cz = (hill[ih].hgt - ctdb_in->min_z)/hgt max;
nd_length_of axis =
(hill[ih].wgtx - ctdb_in->min_x)/(ctdb_in->max_x - ctdb_in->min_x);
yy0 = cx*c + cy*s;
xx0 = -cx*s + cy*c;
my_sign = 1.0;
if (hill[ih].hgt < 0.0) my_sign =-1.0;
= log(0.001/sqgrt(cz*cz));
= log(nd_length_of axis*nd_length_of axis)*hill[ih].power;
computed wgt =-1. O*aa/exp(bb)
yy =my_x*c+ my_y*s;
XX =-my_x*s + my_y*c;
dxx = (xx - xx0)*(xx - xx0);
dyy = (yy - yy0)*(yy - yy0);
expon = exp(hill{ih].power*log(dxx + hlll[lh] wgty*dyy));
current_term = sqrt(cz*cz)*exp(-1.0*computed_wgt*expon);
current_term = current_term*hgt_max ;
my_single_hill z=my _sign*current_term;
return my_single_hill_z;

3
A.19 Add_Subcanopies

static void add_subcanopies (patch_water_state)
int32 *patch_water_state;

CTDB_SEARCH_SPACE_PTR_CMP search_space;
int32 i, j,ii,jj;

int32 count;

int32 my_type;

CTDB_ABSTRACT_DATA_CMP *data;

int32 data_size;

43

float32 *my_vert=NULL;
int32 vertex_number = 0;
float64 meters_per_patch;
meters_per_patch = ctdb_out.incrD * ctdb_out.patch_incrD;
for (ii = 0;ii < soil_region;ii++)
{
vertex_number = my_reg[ii].count;
for (jj = 0; jj < vertex_number; jj++)
1 v
my_vert[2*jj] = my_reg[ii].x[jjl;
my_vert[2*j + 1] = my_reg[ii].y[jj];
}
my_type = CTDB_ABSTRACT_SOIL_DEFRAG_CMP;
data size=1;
data->soil_defrag.soil_index = 9;
data->soil_defrag.level = 0;
data_size =1;
ctdb_store_abstract(&ctdb_out, &quad_root, my_type,
vertex_number, my_vert, data_size, (int32 *)data,
min_patch_x * meters_per_patch,
min_patch_y * meters_per_patch,
max_patch_x * meters_per_patch,
max_patch_y * meters_per_patch);
}

if (num_lverts > 0) free(lverts);

}

44

APPENDIX B

A SAMPLE ENTITY PARAMETER FILE

45

INTENTIONALLY LEFT BLANK

46

A SAMPLE ENTITY PARAMETER FILE

This appendix contains the entity parameter file for an experimental UGV. The file resides
in the directory “/modsaf3.0/common/src/ModSAF/entities,” where “/modsaf3.0/” is the root
directory for the ModSAF simulation code. In the following text, a double semi-colon (5;)
indicates a comment in the file. Some formatting and bold print have been added to the file for
clarity. The reader is referred to the ModSAF references (Sagacitech 1997, and Smith 1995) for

more information about entity parameter files.

3sUS_UGV_M_T_A_params.rdr

US_UGV_M_T_A_MODEL_PARAMETERS {

;s 1. ENTITY PARAMENTERS

(SM_Entity

DEFAULT DEAD RECKONING_PARAMETERS

(vehicle_class vehicleClassSimple)

(guises vehicle_US_UGV vehicle_US_HMMWYV)

(send_dis_deactivate true))

33 2. VULNERABILITY MODELS & DAMAGE ASSESMENT

(SM_DFDamage

(SM_IFDamage
(SM_VAssess

(filename "dfdam_TRUCK.rdr")
(damage_threshold 10.0))
(name apcl))

(background on)

(sensors commander-sight)
(weapons)

VASSESS_ADA_GROUND

VASSESS_ADA_THREATS

VASSESS_IFV_OPTIONAL

(no_target_load))

33 3. VEHICLE COMPONENTS

(SM_Components

(SM_EnvAssess
(SM_EnvReason)

;34. PATH PLANNING
(SM_LocalMap
(SM_VMove

(hull SM_TrackedHull SAFCapabilityMobility)
(primary-turret [SM_GenericTurret | 0])
(commander-sight [SM_Visual | 1])
(gunner-sight [SM_Visual | 0])

(radioA [SM_GenRadio | 0])

(radioB [SM_GenRadio | 2]))

(commander_sight "commander-sight"))

PARAMETERS
(skirt_deviation 0.3))
(background on)
(stopped_time 60.0)
(default_speed 10.0)
(default_max_deviation 1000.0)
(default catchup_speed 0.0)
(default_brake_strength 1.0)
(max_backup_distance 1.0)
(planning_horizon 60.0)
(execution_horizon 1.0)

47

(moving_obstacle_horizon 10.0)

(env_sampling_period 6))

33 5. TERRAIN ANALYSIS PARAMETERS

(SM_Vterrain

(entity_period 100)

(avoidance_mask [VTERRAIN_BUILDING |
VTERRAIN_WATER |
VTERRAIN_DITCH])

(avoid_soils SOIL_DEEP_WATER 123)

(background on)

(movement_threshold 1.0)

(map_radius 500.0)
(entity_radius 10.0)

(history_list_spacing 20.0)
(num_history_list_points 50)

(breach_obst_nominal_size 400.0))

33 6. MOBILITY PARAMETERS

(SM_TrackedHull
(soils

(SOIL_DEFAULT (max_speeds 52.0 52.0) SOIL_DEFAULT TRACKED)

(1

(2

(3

(4

(5

(6

(7

(8

(9

(mobility_model 1)

(max_speeds 52.0 52.0)
(max_decel 5.37)
(max_climb 36.0)

(max_speeds 52.0 52.0)
(max_decel 5.37)
(max_climb 36.0)

(max_speeds 52.0 52.0)
(max_decel 5.37)
(max_climb 36.0)

(max_speeds 52.0 52.0)
(max_decel 5.37)
(max_climb 36.0)

(max_speeds 52.0 52.0)
(max_decel 5.37)
(max_climb 36.0)

(max_speeds 52.0 52.0)
(max_decel 5.37)
(max_climb 36.0)

(max_speeds 52.0 52.0)
(max_decel 5.37)
(max_climb 36.0)

(max_speeds 52.0 52.0)
(max_decel 5.37)
(max_climb 36.0)

(max_speeds 8.05 8.05)
(max_decel 5.37)

48

(max_accel 1.32)
(max_turn 47.0)
(dust_speeds 100.0 100.0 100.0))

(max_accel 1.32)
(max_turn 47.0)
(dust_speeds 100.0 100.0 100.0))

(max_accel 1.32)
(max_turn 47.0)
(dust_speeds 100.0 100.0 100.0))

(max_accel 1.32)
(max_turn 47.0)
(dust_speeds 100.0 100.0 100.0))

(max_accel 1.32)
(max_turn 47.0)
(dust_speeds 100.0 100.0 100.0))

(max_accel 1.32)
(max_turn 47.0).
(dust_speeds 100.0 100.0 100.0))

(max_accel 1.32)
(max_turn 47.0)
(dust_speeds 100.0 100.0 100.0))

(max_accel 1.32)
{(max_turn 47.0)
(dust_speeds 100.0 100.0 100.0))

(max_accel 1.32)
(max_turn 47.0)

(10

(11

(13

(14

(15

(16

(max_climb 36.0)

(max_speeds 52.0 52.0)
(max_decel 5.37)
(max_climb 36.0)

{max_speeds 52.0 52.0)
(max_decel 5.37)
(max_climb 36.0)
(max_speeds 52.0 52.0)
(max_decel 5.37)
(max_climb 36.0)

(max_speeds 52.0 52.0)
(max_decel 5.37)

(fmav climh 26 M
~ J

\iaa LUV IV,

(max_speeds 52.0 52.0)
(max_decel 5.37)
(max_climb 36.0)

(max_speeds 52.0 52.0)
(max_decel 5.37)
(max_climb 36.0)

(max_speeds 52.0 52.0)

(max_decel 5.37)
(max_climb 36.0)

(fuel_usage

35 7.- TURRET PARAMETERS
([SM_GenericTurret | 0] (physdb_name "primary-turret")
(rates continuous 0.0 40.0))

53 8. VISUAL SYSTEMS
([SM_Visual | 0]
([SM_Visual | 1]
(SM_SubComp)
(SM_VSpotter

33 9. RADIOS
([SM_GenRadio | 0]

([SM_GenRadio | 2]

(dust_speeds 100.0 100.0 100.0))

(max_accel 1.32)
(max_turn 47.0)
(dust_speeds 100.0 100.0 100.0))

(max_accel 1.32)
(max_turn 47.0)
{(dust_speeds 100.0 100.0 100.0))

(max_accel 1.32)
(max_turn 47.0)
(dust_speeds 100.0 100.0 100.0))

(max_accel 1.32)
(max_turn 47.0)
100.0 100.0 100.0))

{Anet eneade
\UIJJL-DP\'U\JO 1vy

(max_accel 1.32)

(max_turn 47.0)

(dust_speeds 100.0 100.0 100.0))

(max_accel 1.32)
(max_turn 47.0)
(dust_speeds 100.0 100.0 100.0))

(max_accel 1.32)
(max_turn 47.0)
(dust_speeds 100.0 100.0 100.0)))

(0.0 100.0) (0.125 12.0)))

VISUAL_APC_DRIVER DVO_NVO)
VISUAL_LOSAT HIRES IR)

{(background on)

(sensors commander-sight)

VSPOTTER_SPECS)

(net_name "platoon_net")
(aspid ASPID_MODSAF_TEXT)
GENRADIO_BLUE_PARAMS)
(net_name "company_net")
(aspid ASPID_MODSAF_TEXT)
GENRADIO _BLUE_PARAMS)

53 10. VISUAL SEARCH ALGORITHMS

(SM_Vsearch

(search_type ground)

(scan_mode static)
(background on)

49

(turret_scanner "primary-turret" 9.0 5.0)
(gun_scanner "")

(visual_scanners "commander-sight")
(stopped_duty_cycle 1.0)
(moving_duty cycle 0.0)
(restrict2for "none"))

50

NO. OF
COPIES

2

ORGANIZATION

ADMINISTRATOR

DEFENSE TECHNICAL INFO CENTER
ATTN DTIC OCP

8725 JOHN J KINGMAN RD STE 0944
FT BELVOIR VA 22060-6218

DIRECTOR :

US ARMY RESEARCH LABORATORY
ATTN AMSRL CS AL TA REC MGMT
2800 POWDER MILL RD

ADELPHI MD 20783-1197

DIRECTOR

US ARMY RESEARCH LABORATORY
ATTN AMSRL CILL TECHLIB
2800 POWDER MILL RD

ADELPHI MD 207830-1197

DIRECTOR

US ARMY RESEARCH LABORATORY
ATTN AMSRL DD JJ ROCCHIO
2800 POWDER MILL RD

ADELPHI MD 20783-1197

OSD
OUSD(A&T)'ODDDR&E(R)
ATTN R J TREW .

THE PENTAGON
WASHINGTON DC 20301-7100

US ARMY INFO SYS ENGRG CMND
ATTN ASQB OTD F JENIA
FT HUACHUCA AZ 85613-5300

AMCOM MRDEC
ATTN AMSMI RD W C MCCORKLE
REDSTONE ARSENAL AL 35898-5240

US ARMY TANK-AUTOMOTIVE CMD
RD&E CTR :

ATTN AMSTA TA J CHAPIN
WARREN MI 48397-5000

INST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS AT AUSTIN
PO BOX 20797

AUSTIN TX 78720-1714

CECOM

ATTN PM GPS COL S YOUNG
FT MONMOUTH NJ 07703

51

NO. OF

COPIES ORGANIZATION

I

DARPA

ATTN B KASPAR

3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

CECOM

SP & TERRESTRIAL COMMCTN DIV
ATTN AMSEL RD ST MC M H SOICHER
FT MONMOUTH NJ 07703

NAVAL SURFACE WARFARE CTR
CODE B07 J PENNELLA

17320 DAHLGREN RD

BLDG 1470 RM 1101

DALGREN VA 224480-5100

US ARMY NATICK RDEC
ACTING TECHNICAL DIR
ATTN SSCNC T P BRANDLER
NATICK MA 01760-5002

US MILITARY ACADEMY

MATH SCI CTR OF EXCELLENCE
DEPT OF MATHEMAICAL SCI
MAJ MD PHILLIPS

THAYER HALL

WEST POINT NY 10996-1786

US ARMY TRAINING & DOCTRINE CMD
BATTLE INTEGRATION & TECH DIR
ATTIN ACTD B J A KLEVECZ

FT. MONROE VA 23651-5850

COMMANDER
US ARMY TACOM T JACZKOWSKI
WARREN MI 48397-5000

UNIV OF TEXAS

ARL ELECTROMAG GROUP
CAMPUS MAIL CODE F0250
ATTN A TUCKER

AUSTIN TX 78713-8029

DIRECTOR

US ARMY WES R AJLVIN
3909 HALLS FERRY ROAD
VICKSBURG MS 39180-6199

HICKS & ASSOCIATES, INC.
ATTN G SINGLEY III

1710 GOODRICH DR STE 1300
MCLEAN VA 22102

NO. OF NO. OF

COPIES ORGANIZATION COPIES ORGANIZATION
2 NIST
ATTN K MURPHY ABERDEEN PROVING GROUND
100 BUREAU DRIVE
GAITHERSBURG MD 20899 2 DIRECTOR
US ARMY RESEARCH LABORATORY
1 SPECIAL ASST TO THE WING CDR ATTN AMSRL CI LP (TECH LIB)
50SW/CCX CAPT P H BERSTEIN BLDG 305 APG AA
300 O'MALLEY AVE STE 20
FALCON AFB CO 80912-3020 4 US ARMY EDGEWOOD RDEC
ATTN SCBRD TD J VERVIER
2 US ARMY MOUNTED MANEUVER APG MD 21010-5423
BATTLELAB
ATTN MAJ J BURNS 4 CDR USA ATC
BLDG 2021 BLACKHORSE REGIMENT DR ATTN STEAC CO COL ELLIS
FORT KNOX KY 40121 STEAC TD I FASIG
STEAC TE R CUNNINGHAM
1 HQ AFWA/DNX STEAC RM A MOORE
106 PEACEKEEPER DR STE 2N3 BLDG 400

OFFUTT AFB 68113-4039
2 CDR USA ATC

2 NASA JET PROPULSION LAB ATTN STEAC TE F P OXENBERG
ATTN L MATHIES K OWENS STEAC TEF A SCRAMLIN
4800 OAK GROVE DR BLDG 321

PASADENA CA 91109
3 CDR USA TECOM

1 US ARMY RESEARCH OFC ATTN AMSTE CD B SIMMONS
4300 S MIAMI BLVD AMSTE CD R COZBY J HAUG
RESEARCH TRIANGLE PARK NC 27709 RYAN BLDG
I US ARMY SIMULATION TRAIN & 1 DIR USARL
INSTRMNTN CMD ATIN AMSRL WM IMAY
ATTN J STAHL BLDG 4600
12350 RESEARCH PARKWAY
ORLANDO FL 32826-3726 2 DIR USARL
ATTN AMSRL WM B A W HORST JR
1 US ARMY TANK-AUTOMOTIVE & W CIEPIELLA
ARMAMENTS CMD BLDG 4600
ATTN AMSTA AR TD M FISETTE
BLDG 1 1 DIR USARL
PICATINNY ARSENAL NJ 07806-5000 ATTN AMSRL WM BA W D’AMICO
BLDG 4600
1 DPTY CG FOR RDE
US ARMY MATERIEL CMD 1 DIR USARL
ATTN AMCRD MG CALDWELL ATTN AMSRL WM BC P PLOSTINS
5001 EISENHOWER AVE BLDG 390
ALEXANDRIA VA 22333-0001
1 DIR USARL
4 ROBOTICS SYSTEMS TECNOLOGY INC ATTN AMSRL WM BD B FORCH
ATTN S MYERS P CORY BLDG 4600
B BEESON J ROBERTSON
1234 TECH COURT 1 DIR USARL
WESTMINISTER MD 21157 AMSRL WM BE G WREN

BLDG 390

52

NO. OF

COPIES ORGANIZATION

18

DIR USARL

ATTN AMSRL WM BF J LACETERA
R PEARSON P CORCORAN
M FIELDS (15 CYS)

BLDG 120

DIR USARL

ATIN AMSRL WM BB H ROGERS
B HAUG J BORNSTEIN

BLDG 1121

DIR USARL
ATIN AMSRL WM BB G HAAS
BLDG 1120A

DIR USARL .
ATTN AMSRL WM BR C SHOEMAKER
BLDG 1121

ABSTRACT ONLY

DIRECTOR '

US ARMY RESEARCH LABORATORY
ATTN AMSRL CS AL TP TECH PUB BR
2800 POWDER MILL RD

ADELPHIMD 20783-1197

53

INTENTIONALLY LEFT BLANK

54

REPORT DOCUMENTATION PAGE OB N, 07040188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, 1o Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
August 1999 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Modifying ModSAF Tetrain Databases to Support the Evaluation of Small Weapons Platforms
in Tactical Scenarios PR: 1L162618AHR0
6. AUTHOR(S)
Fields, M.A. (ARL)
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
U.S. Army Research Laboratory
Weapons and Materials Research Directorate
Aberdeen Proving Ground, MD 21010-5066
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
U.S. Army Research Laboratory AGENCY REPORT NUMBER
Weapons and Materials Research Directorate ARL-TR-1996
Aberdeen Proving Ground, MD 21010-5066
11. SUPPLEMENTARY NOTES
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

In this report, we describe tools for the creation and modification of modular semi-autonomous forces (ModSAF) terrain databases
to support the evaluation of a small autonomous robot in a tactical scenario. Our work is motivated by the modeling and simulation
needs of the Demo III robotics program which is developing a small tactical rabot called the experimental unmanned vehicle
(XUV). The XUV is a small wheeled robot which must autonomously navigate through its environment. The primary mission of
the XUV will be to augment the scout forces, so it must provide reconnaissance, surveillance, and target acquisition information
(RSTA) to its operators. Modeling the XUV in a simulated environment is challenging since existing terrain databases do not have
sufficient resolution to examine the mobility characteristics of small vehicles.

Our tools increase the resolution and detail of existing terrain databases so that the databases have sufficient detail to challenge the
mobility, chassis dynamics, and RSTA models of a small unmanned platform. To properly model a small vehicle such as the XUV,
the terrain database in ModSAF needs to be modified. The modification is done in two phases. In the first phase, the resolution of
the grid underlying the terrain is increased by placing additional elevation grid posts between the existing posts. Elevations are
assigned to the new grid posts using mathematical terrain models such as the variable resolution terrain Model (Wald & Patterson,
1992). The new, higher resolution terrain directly affects the vehicle dynamics and the line-of-sight algorithms. The new terrain
does not directly affect the ModSAF route-planning algorithms. In the second phase of our terrain database modifications, the
slopes on the new terrain are examined. Regions that are steep or inaccessible to the XUV are marked as obstacles in the database.
The route-planning algorithms use these “obstacles” to avoid planning routes through regions that are too steep for the XUV.

14, SUBJECT TERMS 15. NUMBER OF PAGES
force modeling terrain database 60
simulation 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified
Standard Form 298 (Rev. 2-89
NSN 7540-01-280-5500 55 Prescrbed by ANSI Bev 2o

298-102

