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Abstract

The goal of our research is to develop an effective and efficient clutter rejec-
tor with the use of an eigenspace transformation and a multilayer percep-
tion (MLP) that can be incorporated into an automatice target recognition
(ATR) system. An eigenspace transformation is used for feature extraction
and dimensionality reduction. The transformations considered in this re-
search are principal component analysis (PCA) and the eignespace separa-
tion transform (EST). We fed the result of the eigenspace transformation to
an MLP that predicts the identity of the input, which is either a target or
clutter.

Our proposed clutter rejector was tested on two huge and realistic datasets
of second generation forward-looking infrared (FLIR) imagery for the Co-
manche helicopter. In general, both the PCA and EST methods performed
satisfactorily with minor differences. The EST method performed slightly
better when a smaller amount of transformed data were fed to the MLP, or
when the positive and negative EST eigentargets were used together.
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Executive Summary

The operation of artilliary and other weapons on the battlefield is of-
ten characterized by a series of detection, recognition, tracking, decision-
making, and firing processess. Should a mistake occur during any of these
activities, the results could be tragic and devastating. Although human op-
erators are usually very good at detecting and recognizing different tar-
gets in a range of environments, their performance can be drastically im-
paired by poor visibility and prolonged operation. As a result, friendly and
unintended targets may be accidentally destroyed. Such a tragedy is not
uncommon in a military operation. It occurred during Operation Desert
Storm in 1991 and has allegedly happened recently in the NATO bombing
of Kosovo. Furthermore, certain hostile environments are either inaccessi-
ble or too dangerous for human operators to work in. To compensate for
such human limitations, an accurate and versatile automatic target recog-
nition (ATR) system is needed. Before something is recognized as a hostile
target by an ATR system, its presence and location, which are often over-
shadowed by a host of distracting but unintended objects or clutter, must be
accurately detected. Hence, an effective clutter rejection scheme is needed
to single out the potential hostile target from the confusing clutter nearby.

The goal of our research is to develop an effective and efficient clutter re-
jector with the use of an eigenspace transformation and a multilayer per-
ceptron (MLP). The input to the clutter rejector module is the region of
interest (target chip) that is produced by a target detector module within
the ATR system. An eigenspace transformation is used for feature extrac-
tion and dimensionality reduction. The transformations considered in this
research are principal component analysis (PCA) and the eignespace sep-
aration transform (EST). These transformations differ in their capabilities
to enhance the class separability and to extract compact features from a
given training set. The result of the eigenspace transformation is then fed
to an MLP that predicts the identity of the input, which is either a target or
clutter.

The proposed clutter rejector was tested on two huge and realistic datasets
of second-generation forward-looking infrared (FLIR) imagery for the
Comanche helicopter. These images were collected at different sites (Ft.
Hunter-Ligget, CA; Yuma Proving Ground, AZ; and Camp Grayling, MI),
during different months (January, February, June, and August), and at

1



different times of day (day and night), and for different operational con-
ditions of the target (hot and cold). In the first dataset, the target within
each target chip was manually centered. The dataset consists of 10 mili-
tary targets taken at various sites and viewing aspects. To train our clutter
rejector, we used 10,397 signature (SIG) target chips taken with targets in
the open, as well as 8,349 competitive clutter chips. For testing, we used
3,456 challenging region-of-interest (ROI) target chips that were taken un-
der poor environmental conditions, and 2,782 clutter chips. Choosing a 10
percent false-alarm rate for our clutter rejector, we managed to detect 98.71
and 92.30 percent of the targets in the first training and testing set, respec-
tively. In the second dataset, the chips were automatically extracted from
the ROI scenes by an automatic target detector. Many of these chips con-
tained an off-center target. There were 4,627 target chips and 43,089 clutter
chips in the second training set, while another 2,459 target chips and 18,070
clutter chips were used for testing. The best detection rate acheived for the
second dataset, controlled at a 10 percent false-alarm rate, was 83.27 and
74.74 percent for the training and testing set, respectively.

Based on the experiments on the first dataset, up to 6 percent of deteriora-
tion in detection performance can be attributed to the noisier image quality
of the ROI chips. Considering the coupled effect of unseen surprise of a typ-
ical testing set, the noise factor is not overwhelming in this case. On the
other hand, the effect of the off-center targets in the second dataset poses a
more severe problem. The testing performance dropped from 92.30 to 74.74
percent, mainly because of this factor. Therefore, a better target-centering
algorithm should be developed for the precursory target detector. In gen-
eral, both the PCA and EST methods performed satisfactorily with minor
differences. The EST method performed slightly better when less trans-
formed data were fed to the MLP, or when the positive and negative EST
eigentargets were used together.
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1. Introduction

1.1 Background

Human beings are usually very good at detecting and recognizing differ-
ent targets even in relatively crowded and changing environments. How-
ever, human performance deteriorates drastically in a low-visibility envi-
ronment or after an extended period of surveillance. Furthermore, certain
working environments are either inaccessible or too hazardous for human
beings. To compensate for such human limitations, an accurate and versa-
tile automatic target recognition (ATR) system is needed. For example, an
ATR system in a battlefield might alert graveyard-shift sentries with accu-
rate information about any approaching vehicle, so that they could respond
quickly.

Unfortunately, the development of such systems is hampered by the large
number of target classes and aspects, long viewing ranges, obscured tar-
gets, high-clutter backgrounds, different geographic and weather condi-
tions, sensor noise, and variations caused by the translation, rotation, and
scaling of the targets. The recognition problem is made even more challeng-
ing [1,2] by inconsistencies in the signatures of the targets, similarities be-
tween the signatures of different targets, limited training and testing data,
camouflaged targets, the nonrepeatability of target signatures, and the de-
ficiency in using any contextual information.

The ATR learning environment in which the training data are collected also
exerts a powerful influence on the design and performance of an ATR sys-
tem. Dasarathy [3] described these environments in an increasing order of
difficulty, namely, the supervised, imperfectly supervised, unfamiliar, vi-
cissitudinous, unsupervised, and partially exposed environments. In this
report, we assume that our training data come from an unfamiliar envi-
ronment, where the labels of the training data might be unreliable to a
level that is not a priori. For the experiments presented in this report, the
input images were obtained by a second-generation forward-looking in-
frared (FLIR) sensor. For these sensors, the signatures of the targets within
the scene are severely affected by rain, fog, and foliage [2]. Clark et al [4]
used an information theoretic approach to evaluate the information bound
of FLIR images to estimate the best possible performance of any ATR algo-
rithm that uses the given FLIR images as inputs. On the other hand, some
FLIR enhancement techniques may be used to preprocess the FLIR input
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images. Lo [5] examined six of these techniques and found that a variable
threshold zonal filtering technique performed most satisfactorily.

Because of the high dimensionality of input images and the scarcity of
training data, it is often necessary to reduce the data dimensionality by
transforming the input data into a more compact feature space before the
classification process. For instance, Lampinen and Oja [6] subdivided the
recognition task into the feature extraction and classification stages. Us-
ing a combination of Gabor filters and multilayer self-organizing maps
(MSOMs), they mapped the original images to a feature space of reduced
dimensionality and complexity. A smaller, supervised subspace network
classifier was then used to perform the classification in this feature space.
Besides the Gabor filter, the principal component analysis (PCA) [7] and the
eigenspace separation transformation (EST) [8] are among the other tech-
niques that have been used for dimensionality reduction in a target recog-
nition task.

A complete ATR system may consist of several algorithmic components,
such as preprocessing, detection, segmentation, feature extraction, classi-
fication, prioritization, tracking, and aimpoint selection [1]. Among these
components, we are particularly interested in the detection-classification
modules, which are shown in figure 1. The detection module is certainly
one of the most important components, because the whole ATR system
will not function properly without an excellent detector. Over the years,
a number of detection algorithms have been proposed for ATR systems,
such as the virtual agile retina target acquisition and classification (VAR-
TAC) system proposed by Hecht-Nielsen and Zhou [9], the fusion of mor-
phological wavelet transform (MWT) algorithm and Gabor basis function
(GBF) detection algorithm proposed by Casasent and Neiberg [10], and the
ATR relational template matching (ARTM) algorithm proposed by Kramer
et al [11].

False alarms are a common problem for detection algorithms. As shown in
figure 2, the boxed areas indicate the potential target that was detected by
the ARTM algorithm; however, all but one of these are false alarms. Tech-
niques for reducing false-alarm rates are usually part of the detection algo-
rithm; an example is fusing the output from different detection algorithms,
a technique described by Casasent and Neiberg [10].

Figure 1. Typical
processing steps in an ATR
system.
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Figure 2. An FLIR image
taken in a typical
environment. Boxed areas
indicate potential targets
detected by ARTM
algorithm.

1.2 Research Objectives

In a realistic FLIR scenario, such as the one depicted by figure 2, the sig-
natures of certain confusing types of clutter can be very similar to those of
a real target. If an automatic target detector has to detect most or all the
real targets in the scene, an unacceptable number of false alarms may be
produced at the same time. These false alarms could then bog down the
performance of the subsequent target classifier in an ATR system.

In this report, we propose a clutter rejector (CR) that effectively reduces
the number of false alarms of an automatic target detector operating with
the second-generation FLIR imagery. The inputs of this CR are the poten-
tial target areas or target chips, similar to those identified with boxes in
figure 2. Based on ground-truth information, these chips were labeled as
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either a target or clutter. The schematic diagram in figure 3 shows the two
stages of our clutter rejector: a set of eigenvectors and a multilayer percep-
tron (MLP). The eigenvectors or eigentargets, obtained through two differ-
ent methods, perform feature extraction and dimensionality reduction by
transforming the input image chips. The transformed input is then fed to
the MLP, where the input is determined as either a target or clutter.

In the next section of this report, we discuss the two eigenspace transforma-
tions that we used to construct the eigentargets from the training images.
Section 3 describes the neural clutter rejector, which uses the eigentargets
as feature templates. Experimental results on two separate distributions of
data are presented in section 4. We conclude this report with a brief discus-
sion in section 5.

f

f

f

f

Eigenspace transformation Simple MLP

Input

Output

Figure 3. Proposed clutter rejector.
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2. Eigentargets

In our experiments, we used two methods to obtain the eigentargets from
a given set of training images. Principal component analysis (PCA) is the
most basic method, from which the more complicated eigenspace separa-
tion transform (EST) method is derived.

2.1 Principal Component Analysis

Also referred to as the Hotelling transform or the discrete Karhunen-Loève
transform, PCA is based on statistical properties of vector representations.
PCA is an important tool for image processing because it has several use-
ful properties, such as decorrelation of data and compaction of information
(energy) [12]. We provide here a summary of the basic theory of PCA. As-
sume a population of random vectors of the form

x =


x1

x2
...

xn

 . (1)

The mean vector and the covariance matrix of the vector population x are
defined as

mx = E{x} , and (2)

Cx = E{(x−mx)(x−mx)T } , (3)

where E{arg} is the expected value of the argument, and T indicates vector
transposition. Because x is n-dimensional, Cx is a matrix of order n × n.
Element cii of Cx is the variance of xi (the ith component of the x vectors in
the population), and element cij of Cx is the covariance between elements
xi and xj of these vectors. The matrix Cx is real and symmetric. If elements
xi and xj are uncorrelated, their covariance is zero and, therefore, cij = cji

= 0. For N vector samples from a random population, the mean vector and
covariance matrix can be approximated from the samples by

mx =
1
N

N∑
p=1

xp , and (4)

Cx =
1
N

N∑
p=1

(xpxT
p −mxmT

x ) . (5)
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Because Cx is real and symmetric, we can always find a set of n orthonor-
mal eigenvectors for this covariance matrix.

A simple but foolproof algorithm to find these orthonormal eigenvectors
for all real symmetric matrices is the Jacobi method [13]. The Jacobi algo-
rithm consists of a sequence of orthogonal similarity transformations. Each
transformation is just a plane rotation designed to annihilate one of the off-
diagonal matrix elements. Successive transformations undo previously set
zeros, but the off-diagonal elements get smaller and smaller, until the ma-
trix is effectively diagonal (to the precision of the computer). We obtain the
eigenvectors by accumulating the product of transformations during the
process, while the main diagonal elements of the final diagonal matrix are
the eigenvalues. Alternatively, a more complicated method based on the
QR algorithm for real Hessenberg matrices can be used [13]. This is a more
general method because it can extract eigenvectors from a nonsymmetric
real matrix. Furthermore, it becomes increasingly more efficient than the
Jacobi method as the size of the matrix increases. Given the considerable
increase in efficiency for the size of our covariance matrix, we chose the QR
method for our experiments described in this report. Figure 4 shows the
first 100 (out of the 800 possible in this case) most dominant PCA eigentar-
gets representing the data in the training set. Because they have the largest

Figure 4. The 100 most dominant PCA eigentargets for targets in a training set.
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eigenvalues, these eigentargets capture the greatest variance or energy as
well as the most meaningful features among the training data.

Let ei and λi, i = 1, 2, . . ., n, be the eigenvectors and the corresponding
eigenvalues of Cx, sorted in a descending order so that λj ≥ λj+1 for j = 1,
2, . . ., n−1. Let A be a matrix whose rows are formed from the eigenvectors
of Cx, such that

A =


e1

e2
...

en

 . (6)

This A matrix can be used as a transformation matrix that maps the x’s into
vectors denoted by y’s, as follows:

y = A(x−mx) . (7)

The y vectors resulting from this transformation have a zero mean vector;
that is, my = 0. The covariance matrix of the y’s can be computed from A
and Cx by

Cy = ACxAT . (8)

Furthermore, Cy is a diagonal matrix whose elements along the main di-
agonal are the eigenvalues of Cx; that is,

Cy =



λ1 0

λ2

·
·

0 λn


. (9)

Because the off-diagonal elements of Cy are zero, the elements of the y
vectors are uncorrelated. Since the elements along the main diagonal of a
diagonal matrix are its eigenvalues, Cx and Cy have the same eigenval-
ues and eigenvectors. In fact, the transformation of the Cx into Cy is the
essence of the Jacobi algorithm described above.

Therefore, through the PCA transformation, a new coordinate system is es-
tablished. The origin of this new coordinate system is at the centroid of the
population mx, with new axes in the direction specified by the eigenvec-
tors {e1, e2, . . . , en}. The eigenvalue λi becomes the variance of component
yi along eigenvector ei. With its ability to realign unknown data into a new
coordinate system based on the principal axes of the data, PCA is often
used to achieve rotational invariance in image processing tasks.
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However, we may want to reconstruct vector x from vector y. Because the
rows of A are orthonormal vectors, A−1 = AT . Therefore, any vector x can
be reconstructed from its corresponding y by the relation

x = ATy + mx . (10)

Instead of using all the eigenvectors of Cx, we may pick only k eigenvec-
tors corresponding to the k largest eigenvalues and form a new transfor-
mation matrix Ak of order k×n. In this case, the resulting y vectors would
be k-dimensional, and the reconstruction given in equation (10) would no
longer be exact. The reconstructed vector using Ak is

x̂ = AT
k y + mx . (11)

The mean square error (MSE) between x and x̂ can be computed by the
expression

ε =
n∑

j=1

λj −
k∑

j=1

λj =
n∑

j=k+1

λj . (12)

Because the λj ’s decrease monotonically, equation (12) shows that we can
minimize the error by selecting the k eigenvectors associated with the k
largest eigenvalues. Thus, the PCA transform is optimal in the sense that it
minimizes the MSE between the vectors x and their approximations x̂.

2.2 Eigenspace Separation Transform

The EST has been proposed by Torrieri as a preprocessor to a neural binary
classifier [8]. The goal of the EST is to transform the input patterns into a set
of projection values such that the size of a neural classifier is reduced and
its generalization capability is increased. The size of the neural network is
reduced because the EST projects an input pattern into an orthogonal sub-
space of smaller dimensionality. The EST also tends to produce projections
with different average lengths for different classes of input and, hence, im-
proves the discriminability between the targets. In short, the EST preserves
and enhances the classification information needed by the subsequent clas-
sifier. It has been used in a mine-detection task with some success [14].

The transformation matrix S of the EST can be obtained as follows:

1. Compute the n× n correlation difference matrix

M̂ =
1

N1

N1∑
p=1

x1pxT
1p −

1
N2

N2∑
q=1

x2qxT
2q , (13)

where N1 and x1p are the number of patterns and the pth training
pattern of Class 1, respectively. N2 and x2q are similarly related to
Class 2 (which is the complement of Class 1).

10



2. Calculate the eigenvalues of M̂, {λi | i = 1, 2, ..., n}.
3. Calculate the sum of the positive eigenvalues

E+ =
n∑

i=1

λi if λi > 0 , (14)

and the sum of the absolute values of the negative eigenvalues

E− =
n∑

i=1

|λi| if λi < 0 . (15)

(a) If E+ > E−, then take all the k eigenvectors of M̂ that have
positive eigenvalues and form the n× k matrix S.

(b) If E+ < E−, then take all the k eigenvectors of M̂ that have
negative eigenvalues and form the n× k matrix S.

(c) If E+ = E−, then use either subset of eigenvectors to form the
matrix S, preferably the smaller subset.

Given the S transformation matrix, the projection yp of an input pattern
xp is computed as yp = STxp. The yp, with a smaller dimension (because
k ≤ n) and presumably larger separability between the classes, can then be
sent to a neural classifier. Figure 5 shows the eigenvectors associated with
the positive and negative eigenvalues of the M̂ matrix that were computed
with the target chips as Class 1 and the clutter chips as Class 2. From the
upper part of the figure, the signature of targets can be clearly seen. The
lower part represents all the features of the clutter.

As we can see from figures 4 and 5, only the first few scores of the eigentar-
gets contain relatively consistent and structurally significant information
pertaining to the training data. Yet these eigentargets clearly show a re-
duction in informational content as their associated eigenvalues decrease.
For those less meaningful eigentargets, say from the 50th all the way up
to the 800th, only extremely low-intensity and high-frequency information
may be present. In other words, by choosing k = 50 in equation (12) when
n = 800, the resulting distortion error ε would be very small and negligi-
ble. While the distortion is negligible, there is a 16-fold reduction in input
dimensionality and a similar level of compression in its information con-
tent. This property is the essence of eigenspace transformations, and it is
very critical to the subsequent satisfactory performance of the neural clut-
ter rejector.
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Figure 5. The 100 (out of 800 possible) most dominant EST eigentargets associated with positive (top) and negative
(bottom) eigenvalues for a given training set.
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3. Clutter Rejection

The inputs for our clutter rejection module are the image chips extracted
from bigger scenes, as illustrated in figure 2. The size of these image chips
is fixed to a predefined dimension, which is common to both the targets
and the clutter. To reduce the background information in target chips, we
clip each image chip at a size that equals the dimension of the largest target
in our training set. After the background removal, the input image is scaled
to a preferred size based on a linear interpolation technique. This scaling is
needed to achieve an image size that is efficient for feature extraction via
the eigenspace transformation, while an effective amount of information is
retained in the image.

After normalizing the clipped and scaled training data, we compute the
eigentargets using either PCA or the EST. We treat each image pixel as a
dimension of the data vector in these computations. The resulting eigen-
targets are sorted in descending order based on the norm of their corre-
sponding eigenvalues. Characterized by their eigenvalues, different sub-
sets of these eigentargets may be used as feature extractors in different
experiments. To achieve feature extraction and dimensionality reduction,
we project the preprocessed input image to a chosen set of k eigentargets.
The resulting k projection values are fed to an MLP, where they are nonlin-
early combined.

A typical MLP used in our experiments is shown in figure 6. The MLP
has k + 1 input nodes (with an extra bias input), several layers of hidden
nodes, and one output node. In addition to full connections between con-
secutive layers, there are also shortcut connections directly from one layer
to all other layers, which may speed up the learning process. The MLP is
trained to perform a two-class problem, with training output values of ±1.
Its sole task is to decide whether a given input pattern is a target (indicated
by a high output value of around +1) or clutter (indicated by a low out-
put value of around −1). The MLP is trained in batch mode by a modified
Qprop algorithm [17] for a quick but stable learning course.

If the number of target chips and clutter chips is quite different in the train-
ing set, a trained MLP tends to predict the class that has more training
samples. This negative effect of an imbalanced training set has been studied
by Anand et al [18]. To avoid creating such a biased network, we add a cor-
rective measure in our modified learning algorithm. Because the training is
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Figure 6. A simple MLP
with two layers of weights
and shortcut connections.
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carried out in batch mode [19], the error gradient dE
dw obtained for each net-

work parameter or weight for a given training pattern can be accumulated
separately, depending on the type of intended outputs for that training pat-
tern. At the end of a training epoch, the average value of the error gradient
when the training output is high (low), εh (εl), for a weight i is computed
as

εh
i =

1
Nh

Nh∑
p=1

dEh
p

dwi
and εl

i =
1
Nl

Nl∑
p=1

dEl
p

dwi
, (16)

where Nh and Nl are the number of occurrences of high and low training
outputs, respectively. If εh

i and εl
i have the same sign or direction, then their

average is used to update the corresponding weight i. Otherwise, no up-
date is made to the controversial weight. This corrective scheme allows the
output errors incurred by both high and low target outputs to be reduced
simultaneously.

To maximize the class separation between the targets and clutter, we focus
only on the training patterns that are easily confused or wrongly classified
at a predefined false-alarm rate. Only the errors incurred by these confus-
ing patterns are used to update the MLP weights, so that these patterns may
be classified correctly later. A less confusing pattern may be considered
only during the early stage of training. This technique of focused learning
improves the target recognition rate drastically for a given false-alarm rate.
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4. Experimental Results

To examine the performance of our clutter rejection technique, we imple-
ment a difficult two-class problem. The input images are 10-bit gray-scale
FLIR image chips of both targets and clutter. Similar to the white boxes in
figure 2, these chips were extracted with a size of 40 × 75 pixels from the
original image frames. We use two separate distributions of chips, which
differ in the way they were extracted. The first distribution of chips was
extracted manually based on ground-truth information. The silhouette of a
target or clutter is manually centered in each of these chips in most cases,
hence, they are relatively easier to recognize. On the other hand, the chips
in the second distribution were extracted automatically by a neural auto-
matic target detector (developed at the U.S. Army Research Laboratory
(ARL) by Sandor Der and Christopher Dwan). The detected location, in-
stead of the ground-truth location, of a detected target was used to extract
a target chip. Since the detected target center is not necessarily the ground-
truth center of the target, a lot of target chips in this distribution end up
with an off-center target silhouette inside the chip. Similarly, no manual
adjustment was made in the extraction of clutter chips in this distribution.
Needless to say, these chips are much harder to learn and recognize. Sepa-
rate experiments were conducted with both distributions of chips, and the
results are presented in the following subsections.

4.1 Manually Produced Chips

For the manually produced and silhouette-centered distribution, we have
image chips of 10 targets taken at various sites and viewing aspects. Among
the target chips, we have a training set of 10,397 SIG (signature) image
chips taken with targets in the open. For testing, we use 3,456 challenging
ROI (region-of-interest) image chips that were taken under less favorable
conditions, such as having targets in and around clutter, in different back-
grounds, and under various weather conditions. Typical examples of the
SIG and ROI images are shown in figure 7. We have 8,349 and 2,782 clut-
ter image chips for the training and testing purposes, respectively. These
clutter images were manually extracted from the same scenery where the
SIG and ROI data were obtained. Randomly selected examples of the clut-
ter chips are shown in figure 8. Clearly, some of the clutter images are very
similar to the targets in the ROI dataset.
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Figure 7. Examples of SIG
images (top two rows) and
ROI images (bottom row)

HMMWV BMP T72 M35 ZSU23

M1M3M113M602S1

HMMWV BMP T72 M35 M60

Figure 8. Examples of
clutter images for training
(top row) and testing
(bottom row).

Considering the size of the targets and the computational complexity of
the QR algorithm (which is roughly proportional to the cube of the image
size), we scale the input image to a moderate size of 40 × 20 pixels. Us-
ing the target chips in the training set, we obtained the corresponding PCA
eigentargets as shown in figure 4. Meanwhile, the positive and negative
EST eigentargets shown in figure 5 were generated based on both the tar-
get and the clutter chips in the training set, in which they form the Class
1 and Class 2 data in equation (13), respectively. We plot the sorted eigen-
values associated with the resulting PCA and positive EST eigentargets,
as shown in figure 9. The plots clearly show that the eigenvalues diminish
rapidly for both the PCA and EST methods, while those of the EST decrease
even faster. In other words, the EST may produce a higher compaction in
contextual information. Furthermore, the eigenvalues approach zero after
about the fortieth eigentarget. Therefore, we were interested in the 40 most
dominant eigentargets only, instead of all 800 eigentargets available.

Theoretically, the more eigentargets employed in the transformation, the
larger the amount of information that should be preserved in the trans-
formed data. However, more transformed inputs may quadruple the com-
plexity of the MLP, prolong the training cycle, and increase the chance of
getting stuck in a nonoptimal solution. To find the balance between the
asymptotically increased information content and the likelihood of
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Figure 9. Rapid
attenuation of eigenvalues
in PCA and EST
eigentargets.
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obtaining a timely and pseudo-optimal solution, we tried in turn to use the
1, 5, 10, 20, 30, and 40 most dominant eigentargets of each transformation
to produce the projection values for the MLP. In each attempt, five indepen-
dent training processes were tried with different initial random weights for
the MLP. The runs were performed at a controlled false-alarm rate of 10
percent. The best performance of each run and the average recognition rate
for the five runs are given in tables 1 and 2.

In general, the average recognition rate increases with the number of eigen-
targets used for feature extraction, but approaches saturation at 30 or more
projection values. When fewer projection values are used, significantly
higher performance is achieved by the EST. This improvement can be at-
tributed to the better compaction of information associated with EST. How-
ever, the testing performance of EST dropped at 40 inputs, which suggests
that over-fitted networks may have been created. Furthermore, the slightly
lower recognition rates achieved by EST with 20 or more inputs indicate
that some minor information might have been lost in this transformation.

4.2 Detector-Produced Chips

We also examined the performance of the proposed CR in the situation
where the input chips are both noisy and off-center. In the following exper-
iments, we used the second distribution of image chips, in which the chips
were automatically extracted from the challenging ROI image frames by
the ARL neural target detector developed by Der and Dwan. In addition
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Table 1. Performance of
PCA method on manually
produced chips with
various number of MLP
inputs. The false-alarm
rate was set at 10 percent.

Number Data Hit rates (%) and average for five runs

of inputs type 1 2 3 4 5 Average

1
Train 67.85 67.85 67.85 67.85 67.85 67.85

Test 55.01 55.01 55.01 55.01 55.01 55.01

5
Train 88.61 87.88 85.93 87.75 87.91 87.62

Test 83.42 82.52 80.01 83.62 81.80 82.27

10
Train 96.23 95.96 92.29 93.47 96.33 94.85

Test 90.13 89.67 86.28 86.81 90.39 88.66

20
Train 97.82 98.25 97.34 97.76 97.32 97.70

Test 90.08 92.56 89.58 91.15 91.78 91.03

30
Train 97.97 98.43 97.89 98.67 98.02 98.20

Test 91.09 91.15 90.25 91.90 91.17 91.11

40
Train 99.01 98.72 98.55 98.95 98.32 98.71a

Test 93.40 90.71 92.82 92.33 92.25 92.30a

aBold numbers show discrepency between the performance of the best CR.

Table 2. Performance of
EST method on manually
produced chips with
various number of MLP
inputs. The false-alarm
rate was set at 10 percent.

Number Data Hit rates (%) and average for five runs

of inputs type 1 2 3 4 5 Average

1
Train 74.35 74.35 74.35 74.35 74.35 74.35

Test 65.86 65.86 65.86 65.86 65.86 65.86

5
Train 92.68 91.27 92.21 92.11 92.74 92.20

Test 88.66 87.18 87.99 87.33 88.89 88.01

10
Train 96.19 95.67 96.60 96.55 96.26 96.25a

Test 92.36 91.98 92.51 91.52 92.16 92.11a

20
Train 96.02 96.62 96.14 96.19 94.23 95.84

Test 90.62 90.74 89.29 91.09 87.76 89.90

30
Train 97.16 96.71 95.05 97.86 94.71 96.30

Test 91.72 89.87 88.48 91.12 87.27 89.69

40
Train 94.99 94.98 99.30 97.21 95.84 96.46

Test 86.69 86.89 92.74 90.51 88.02 88.97
aBold numbers show discrepency between the performance of the best CR.

to the noisy nature of these chips, none of them was manually centered
during the extraction process. There were only five target types in the ROI
database, as identified in the bottom row of figure 7. As shown in table 3,
there were 47,716 training image chips in this distribution, in which 4,627
were target chips and 43,089 clutter chips. In the testing set, there were
2,459 target chips and 18,070 clutter chips. The testing set and 29,053 chips
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Table 3. Number of ROI
images in second
distribution of chips.

Data type Data Target Clutter Total

Training huli9306 1,049 28,004 29,053

yuma9202 1,695 10,600 12,295

gray9201 1,883 4,485 6,368

Subtotal 4,627 43,089 47,716

Testing huli9204 2,459 18,070 20,529

of the training set were taken from the same site, but in a different month
and year. Randomly selected examples of the target and clutter chips are
shown in figure 10. Obviously, some target silhouettes are off-center inside
the chip, and the signatures of some clutter chips are very similar to those
of the target chips.

Once again, we scaled the input image to a moderate size of 40 × 20 pixels
and generated the PCA and EST eigentargets with this training set. Fig-
ure 11 shows the first 50 most dominant PCA eigentargets derived from
the target chips (top 5 rows) and clutter (bottom 5 rows) in the detector-
produced training set. Compared to figure 4, the features of targets are far
less obvious in the top 5 rows of figure 11. Undoubtedly, this is due to the
effect of the noisy and off-center target silhouettes in this training set. A
similar effect can be observed in the EST eigentargets as well, as shown in
figure 12.

As with the manually produced chips, we used the 1, 5, 10, 20, 30, and 40
most dominant eigentargets of each transformation to produce the projec-
tion values for the MLP. Similarly, five independent training processes were
tried and the performance reported. These results, which were performed
at a controlled false-alarm rate of 10 percent, are shown in tables 4 and
5 for the PCA and EST methods, respectively. The performance pattern is
quite similar to that expressed in tables 1 and 2, except the detection rates
are significantly lower with the detector-produced data. Clearly, the noisy
and off-center target silhouettes have created a much tougher learning and
recognition task.

Figure 10. Examples of target chips (top row) and clutter chips (bottom row) in detector-produced image chips.
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Figure 11. First 50 most dominant PCA eigentargets for targets (top five rows) and clutter (bottom five rows) in detector-
produced training set.

Figure 12. First 50 most dominant EST eigentargets associated with positive (top five rows) and negative (bottom five
rows) eigenvalues for detector-produced training set.
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Table 4. Performance of
PCA method on the
detector-produced dataset
with various number of
MLP inputs. The
false-alarm rate was set at
10 percent.

Number Data Hit rates (%) and average for five runs

of inputs type 1 2 3 4 5 Average

1
Train 22.24 22.24 22.24 22.24 22.24 22.24

Test 28.10 28.10 28.10 28.10 28.10 28.10

5
Train 38.19 38.60 38.60 38.86 37.28 38.31

Test 45.18 45.47 45.67 45.42 43.07 44.96

10
Train 64.58 63.11 62.05 64.53 63.43 63.54

Test 64.70 63.40 62.95 66.21 65.51 64.56

20
Train 74.43 76.14 78.56 73.48 76.64 75.85

Test 70.60 71.00 71.78 70.84 73.24 71.49

30
Train 78.78 82.08 78.71 80.72 83.60 80.78a

Test 71.94 73.20 71.86 76.01 73.89 73.38a

40
Train 81.63 84.37 79.60 85.20 79.90 82.14

Test 73.69 73.12 69.83 74.79 71.66 72.62
aBold numbers show discripency between the performance of the best CR.

Table 5. Performance of
EST method on the
detector-produced dataset
with various number of
MLP inputs. The
false-alarm rate was set at
10 percent.

Number Data Hit rates (%) and average for five runs

of inputs type 1 2 3 4 5 Average

1
Train 30.56 30.56 30.56 30.56 30.56 30.56

Test 30.83 30.83 30.83 30.83 30.83 30.83

5
Train 49.88 50.96 49.54 49.43 50.44 50.05

Test 52.34 53.64 52.22 52.58 53.31 52.81

10
Train 66.95 65.23 64.69 67.71 66.50 66.22

Test 65.64 63.97 65.23 67.55 64.95 65.47

20
Train 76.90 75.75 76.72 75.15 76.44 76.19

Test 72.92 72.10 74.18 72.67 71.78 72.73

30
Train 79.27 79.77 76.31 77.39 77.31 78.01a

Test 74.14 74.38 73.04 70.80 71.86 72.84a

40
Train 74.69 70.41 79.71 75.92 71.28 74.40

Test 66.25 66.73 72.79 65.72 64.70 67.23
aBold numbers show discripency between the performance of the best CR.

Instead of using only the target PCA and positive EST eigentargets (the top
five rows of figures 11 and 12), we also examined the usefulness of clut-
ter PCA and negative EST eigentargets (the bottom five rows of figures 11
and 12). We formed each MLP input pattern by cascading an equal number
of projection values produced by the target (positive) and clutter (negative)
eigentargets of the PCA (EST). Taking 5 to 30 projections from each side, we
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constructed the corresponding MLPs with 10 to 60 inputs. The runs were
performed at a controlled false-alarm rate of 10 percent. The best perfor-
mance of each run and the average recognition rate for the five runs are
given in tables 6 and 7.

Based on tables 4 and 6, the clutter PCA eigentargets could improve the hit
rates when the number of MLP inputs is small. With 30 or more projections
from the target eigentargets, however, the benefit of clutter eigentargets
has completely vanished. On the other hand, as shown in tables 5 and 7,
the negative EST eigentargets seem to be useful even for the MLPs with
60 inputs. Indeed, the MLPs trained with 30 positive and 30 negative EST
projections have achieved the best average performance for the detector-
produced dataset. It is possible that the orthonormal relationship between
the positive and the negative EST eigentargets has captured more unique
and less redundant information in the training data; hence, it enables the
subsequent MLP to learn and perform more optimally.

Table 6. Performance of
PCA method on the
detector-produced dataset
with equal number of
target and clutter
eigentargets. The
false-alarm rate was set at
10 percent.

Number Data Hit rates (%) and average for five runs

of inputs type 1 2 3 4 5 Average

10
Train 64.58 62.57 63.84 63.97 64.15 63.82

Test 66.90 61.77 63.68 65.39 64.25 64.40

20
Train 73.81 73.50 73.68 74.30 70.74 73.21

Test 73.57 72.55 72.39 72.10 70.64 72.25

30
Train 75.30 76.94 77.65 76.79 70.09 75.35

Test 73.12 73.93 74.26 74.79 68.85 72.99

40
Train 76.08 80.61 80.16 77.91 78.97 78.75

Test 73.65 76.25 74.30 73.57 71.94 73.94

50
Train 76.01 74.13 84.03 83.90 82.65 80.14a

Test 72.75 69.66 76.49 75.15 74.50 73.71a

60
Train 83.66 81.87 82.82 75.36 77.09 80.16

Test 78.00 74.34 74.54 69.46 69.58 73.18
aBold numbers show discripency between the performance of the best CR.
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Table 7. Performance of
EST method on the
detector-produced dataset
with equal number of
positive and negative
eigentargets. The
false-alarm rate was set at
10 percent.

Number Data Hit rates (%) and average for five runs

of inputs type 1 2 3 4 5 Average

10
Train 66.48 69.01 68.64 66.20 69.38 67.94

Test 66.73 70.88 71.61 69.05 69.95 69.64

20
Train 76.59 80.46 77.52 77.89 78.13 78.12

Test 74.14 74.14 72.88 76.62 76.66 74.89

30
Train 79.06 81.72 82.43 81.05 82.84 81.42

Test 74.75 75.03 76.62 75.48 77.35 75.85

40
Train 79.08 86.64 86.28 81.33 81.05 82.88

Test 72.18 77.47 77.63 73.49 71.82 74.52

50
Train 83.99 78.47 84.46 83.99 82.49 82.67

Test 73.44 70.84 74.83 73.44 74.66 73.44

60
Train 80.42 84.50 82.80 85.80 82.82 83.27a

Test 71.13 77.23 75.84 75.68 73.81 74.74a

aBold numbers show discripency between the performance of the best CR.
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5. Conclusions

In this report, we have described a clutter rejection technique that is based
on eigenspace transformation and an MLP classifier. The proposed CR is
tested with a wide range of realistic FLIR images, in which as many as 10
military targets were viewed from 72 different aspects at several proving
grounds and under various meteorological conditions. From the experi-
mental results, a few conclusions can be drawn here.

Based on the performance given in tables 1 and 2, we may say that the effect
of noisy testing data is significant but not overwhelming. Due to the factor
of unseen surprise, the performance of the testing set is usually lower than
that of the training set, even when both the training and testing data were
collected under the same conditions. From tables 1 and 2, the discrepancy
between the training and testing performance of the best CR (which are
highlighted with bold typeface) is about 4 to 6 percent. Therefore, the effect
of noise introduced by the degraded ROI images should be equal or less
than 6 percent, which is not too bad.

The effect of off-center silhouettes, on the other hand, has more severe im-
pacts on the performance of the CR. For instance, the best performance in
table 4 is about 16 to 19 percent lower than the corresponding training and
testing performance achieved in table 1. This difference can be attributed
mainly to the off-center characteristic of the chips, but not to the fact that
the ROI (instead of the SIG) images were used as the training set in the case
of table 4. Because the experimental results documented in our previous
technical report [20] showed that when the manually centered ROI chips
were included in the training set, they were able to improve the recogni-
tion rate of the ROI chips in the testing data from 75.1 to 91.0 percent. In
other words, learning to recognize the ROI testing chips based on an ROI
training set alone should not have incurred the 16 to 19 percent drop in per-
formance here. To address this problem, therefore, we need an automatic
target detector that can detect the target center more accurately.

Despite the small differences, both the PCA and EST methods have per-
formed satisfactorily in our experiments. Although it is simpler than the
EST, the PCA method seems to perform better as a CR when 20 or more
projection values are fed to the corresponding MLP. Nonetheless, the EST
proves to be a better transformation when only a small number of projec-
tion values can be processed, because of speed or memory constraints. Fur-
thermore, the best performance can be achieved when both positive and
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negative EST eigentargets are used simultaneously. Using both the target
and clutter PCA eigentargets at the same time, on the other hand, does not
pose any improvement over having the target PCA eigentargets alone.

Using a dynamically selected active training set to update the MLP weights
has been shown to be an effective scheme. By focusing mainly on the train-
ing patterns around the region of confusion, the MLP has learned the deli-
cate boundary between the target and clutter more successfully. In our ini-
tial experiments, we have noticed an improvement of up to 20 percent in
recognition rate due to this dynamic pattern selection process.
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