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Abstract 

A theoretical approach is used to determine important attributes for moisture protection of 
polymer-matrix composite structures provided by polymeric coatings. Developed solutions are 
used to evaluate a range of coating materials and thicknesses for thin and thick substrates. The 
diffusion constants and the saturation levels for the coating material were obtained from the range 
of available coating materials. The results include typical diffusion patterns for coating materials, 
saturation of the coating layer, development of moisture through time, and effects of the material 
properties for the various substrate thicknesses. Moisture diffusion behavior at the 
substrate-coating interface is also presented. For relatively thick coating layers, the results show 
that the diffusion constant and the saturation level of the coating must both be low to significantly 
affect the diffusion process. The study also shows differences in the behavior of the 
substrate-coating interface. 
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1. Introduction 

While most polymers are considered “water proof,” that is only partially true in the 

context of liquid water flowing through the material. However, it is widely recognized that 

individual water molecules or clusters can be readily absorbed into polymers via diffusion 

mechanisms. There have been many studies and theories that relate to polymer structure and 

moisture diffusion behavior. These works have sought to understand the diffusion process from 

a fundamental level and have provided insight into the mechanisms for moisture diffusion. 

These works have also guided appropriate simplifications of the diffusion processes in polymers 

to enable readily usable models to predict moisture transport. This understanding and predictive 

capability for moisture diffusion in and through polymers is important in a number of materials 

applications including polymer-matrix composites. 

It is understood that combinations of temperature and high humidity cause problems with 

the performance of plastics and fiber-reinforced plastics (Pipes, Vinson and Chou 1976, Shen 

and Springer 1976). Moisture absorption is a significant design consideration for polymer- 

matrix composites. In composites, water causes weight gain, hygrothermal expansion, and 

degradation of material properties (Pipes, Vinson, and Chou 1976; VanLandingham, Eduljee, 

and Gillespie 1995). As moisture diffises into the polymer, it disrupts the local polymer 

structure and impacts the physical and mechanical properties of the material. Low levels of 

water in the polymer can also cause a reduction in the glass transition temperature (Tg) and the 

elastic modulus of the matrix (McCrum, Buckley, and Bucknall 1988). Semi-empirical models 

have related the reduction of Tg to the moisture content of the polymer. The reduction in Tg is 

material dependent but can be a serious consideration in the design of composite structure. 

Hence, the properties at the “wet Tg” are often used to determine upper-use temperatures for a 

given polymer in specific applications and design allowables are frequently derived from 

mechanical characterization of materials that are fully saturated with moisture. Higher levels of 

moisture can cause cracks and delaminations to form in the composite and further degrade the 

performance of the composite structure. 

Moisture absorption in complex composite parts is controlled by material properties, 

geometry, and processing. Material properties and processing affect both the moisture diffusion 
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rate and the amount of moisture that can be absorbed in the structure. The geometry influences 

the distribution through the surface area to volume ratio of different parts of the structure where a 

high surface area to volume will allow saturation to occur at a faster rate. Defects such as voids, 

microcracks, and pinholes affect the rate by providing a transportation mechanism into the part. 

These defects are also sites for water clusters to nucleate and hold water in the associated liquid 

state. These factors must be considered if a predictive capability is to be established for 

quantifying the moisture content in composite structures. 

The theory presented in this paper consists of a method for analyzing moisture diffusion 

in multidomain structures particularly applicable to composites that have been covered with 

organic coatings. While diffusion in polymers and polymeric coatings can be defect driven, this 

paper takes a theoretical approach to characterize the effectiveness of ideal (no cracks or 

pinholes) coatings on composites. This allows the basic material properties of the coating and 

substrates, as well as the coating thickness, to be evaluated analytically to focus experimental 

work on the actual materials and processes. The theoretical work can then be used to extend 

predictions to complicated structures and realistic long-term environments. 

2. Kinetics of Fickian Moisture Diffusion 

In general, polymers can absorb moisture from their environment due to the nature of 

their structure. The degree and rate at which polymers can absorb moisture is very dependent on 

both the chemical and physical structure of the polymer of interest. Certain polymers are more 

hygroscopic than others and naturally absorb more moisture. Moisture transport in polymeric 

materials is related to the solubility of water (in the vapor phase) in the polymer and the moisture 

diffusion rate at a given temperature. The equilibrium of moisture absorption in polymers can be 

related to the relative humidity of the environment thermodynamically through Henry’s law 

(Springer 1988; Marsh et al. 1988). The rate of diffusion is often described by Fick’s second law 

and is strongly temperature dependent. However, in certain cases, non-Fickian diffusion is 

observed and more complicated analysis must be used to describe this behavior. For this work, 

attention is focused on Fickian diffusion mechanisms and state conditions where this assumption 

may be assumed. 

It is convenient to begin moisture diffusion analysis, assuming Fickian diffusion for the 

moisture uptake for a single homogenous material. Also, if the sample thickness is much less 
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than the length and width, the diffusion can be considered to be one-dimensional. In this case, 

Fick’s second law is expressed as 

llC a5 
-D- at- ad' (1) 

For the case of an initially dry coating of thickness 2 I, and a simple constant 

concentration boundary conditions at +Z and -I, there is a well-known solution. This familiar 

series solution is obtained as 

- -~~(2ntl)exp[-D(2~:i)22~t]~s[(2n::)~]. 
CW) = 1 4 - (-1)” 

C, 
(2) 

In this equation, C represents the concentration at a given z and t, C, is the equilibrium 

concentration, and D is the diffusion constant for water in the coating. The assumptions implicit 

in this solution are that (1) the coating is uniform in properties and composition and initially free 

from moisture, (2) the equilibrium moisture concentration at *Z is achieved instantaneously, and 

(3) the temperature of the system remains constant. 

If equation (2) is integrated over z, the total uptake at any time can be obtained. Here, it 

is common to normalize the uptake with its ultimate value (Comyn 1992). The fractional uptake 

is expressed by 

Often, equation (3) is approximated by neglecting the higher order terms in the infinite 

series. Ignoring these terms, equation (3) simplifies substantially and the familiar square root 

relationship between mass uptake vs time is revealed as 

A4 2 Dt I’= -=- - 
[ 1 iki, Ix * 

(4) 
This equation has been widely used to determine diffusion coefficients of permeants in 

polymers. Several excellent studies on moisture uptake of polymers and composites have been 

published previously (Comyn 1992; Fieldson and Barbar 1993) that have revealed the usefulness 

of these techniques. In general, the linear behavior exists up to fractional uptakes of 0.6. Thus, 



by monitoring the mass of samples exposed to moisture, the difision coefficient of water can be 

readily obtained. The effect of temperature on the rate of moisture diffusion can also be 

evaluated by conditioning samples and monitoring weight gain at different temperatures. 

Generally, an Arhenius relationship will describe the temperature dependence of moisture 

diffusivity in polymer and polymer-composite samples. 

The Fickian, model is generally accepted as a reasonable approximation for diffusion of 

moisture in graphite epoxy exposed to humid air (Springer 1988). However, significant 

deviations from Fick’s law can occur at high temperatures, when materials are immersed in 

liquids or when diffusion occurs through cracks or voids in the material (Springer 1988; Cai and 

Weitsman 1994). Immersion of the composite in liquids reduces the activation energy of 

diffusion, causing moisture to be absorbed at a higher rate than predicted by equation (1) (Woo 

and Piggott 1987). Cracks and voids facilitate moisture diffusion by increasing exposed surface 

area and acting as easy paths for moisture transport. Few studies have quantified the effects of 

voids and other high-permeability pathways on the amount and rate of moisture absorption. One 

study (Harper, Staab, and Chen 1987) has indicated that an increase of void-volume fraction 

from 1% to 5% in a graphite-epoxy laminate increased the moisture diffusion rate and saturation 

moisture content significantly for a range of humidity levels. Furthermore, as expected, the 

deviation from Fickian behavior was very large for the 5% void-volume fraction laminate. 

3. Relative Humidity and Moisture Saturation 

Polymer-matrix composites eventually reach maximum moisture content for a given 

surrounding humidity level. The relation between the maximum moisture content and the 

external humidity level is given by 

A4, =a(R.H.)P, (5) 

where M,,, is the maximum moisture content, a and p are material constants, and R.H. is the 

surrounding relative humidity level (Tsai 1988). For most composite materials, the constant p 

has a value close to 1.0. Experimental values of the maximum moisture content for several 

graphite fiber-reinforced composites are shown in Table 1. The uptake values can vary widely, 

even for apparently similar material systems. For epoxy resins used as matrix materials, the 

equilibrium uptake is strongly dependent on the curing agent that is selected for that system. It 
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has been shown that polar curatives, such as diaminodiphenylsulfone (DDS), tend to cause 

higher saturation levels than similar curing agents with hydrophobic side groups (Springer 1988). 

The data on the IM7K3B graphite fiber-reinforced polyimide was included to show the 

sensitivity of the matrix saturation level to the surrounding relative humidity. The saturation 

level of the IM7K3B increases about 13% when the relative humidity is increased from 97% to 

100%. VanLandingham, Eduljee, and Gallespie (1995) have also noted that the saturation level 

of the composites increases with repeated exposure to moisture. If the composites are saturated 

with moisture, then dried out and resaturated, they will have an increased maximum moisture 

content. 

Table 1. Moisture Saturation Levels for Selected Graphite Fiber-Reinforced Composites 

Material System Exposure Saturation 1 Reference 
(% RN.) % Moisture 

T300/1034 Immersed in Water 1.70 Tsai 1988 
AS4/3501-5 Immersed in Water 1.90 Tsai 1988 
T300/5208 Immersed in Water 1.50 Tsai 1988 

T650-35/F584 98 0.62 Smith et al. 1993 
AS4/8553-45 98 0.84 Smith et al. 1993 

T650-3511914-4 98 0.63 Smith et al. 1993 
T650-35/1914-6 98 0.66 Smith et al. 1993 

IM7K3B 89 0.43 VanLandingham, Eduljee, 
and Gallespie (1995) 

IM7K3B 97 0.45 VanLandingham, Eduljee, 
and Gallespie (1995) 

IM7K3B 100 0.51 VanLandingham, Eduljee, 
and Gallesbie (19951 

4. Methodology 

This study investigates theoretical diffusion performance of coated substrates. It is 

intended to help focus experimental work and provide estimates of the “best case” moisture 

protection that can be afforded by coatings. As was mentioned before, many practical issues, 

such as quality of the coating, cracks, processing and application, and defects in the coating and 

substrate, are not addressed here. Figure 1 shows the schematic of the problem. The problem is 

divided into two regions: the substrate and the coating. The substrate is the material that is being 
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protected from moisture intrusion. The purpose of this paper is to investigate some of the 

geometric parameters and material properties that govern moisture diffusion. 

xO =0 J xo=Ls x7= x,=Lc 

L/=0 w=o 7 
Figure 1. Schematic of Problem Description. 

Figure 1 also defines the interface and boundary conditions used for solution. The 

solution is divided into two domains each with its own local coordinate system. The first domain 

extends from x0 = 0 to x0 = L, and the second domain extends from x1 = 0 at the interface to 

X, = L, at the outside boundary. It is assumed that both domains start without any moisture. The 

problem is set up to investigate symmetric one-dimensional loading of the structure. The use of 

symmetry implies that the midplane boundary condition is represented by zero flux. At the right 

side of the domain, equation (5) is used where the “a ” is assumed to be the saturation level of 

the coating material and “p” is assumed to be 1 (Tsai 1988). At the interface a similar condition 

exists (Carslaw and Jaeger, 1959) two conditions must be met. First, the driving potential of the 

two materials must be the same: 

u W Sat 
-=- or ku=w, where k=A 
Sat, Sat, ’ Sat, ’ 

(6) 

6 



The second condition is that the flux at the interface must be continuous: 

au aw 
D’ax,=D’ax,. (7) 

There are two important ratios that are present in this problem. The first, the ratio of the 

saturation levels, is described in equation (6), and the second is the ratio of the diffusion rates of 

the coating material and the substrate: 

The range of values used for a and k in this study were obtained from reviewing the 

moisture literature and data from coating manufacturer. The range of diffusion rates for coating 

materials was from an order of magnitude below the diffusion rate for the substrate (T65QI1914, 

6.6 * 1 0m6 in2/hr) (Bogetti et al. 1997) to an order of magnitude above. The range for the 

saturation level of the ‘coating materials was from 0.25 times to 8 times the saturation level for 

the substrate (T6500914’s saturation level is 0.63 %). This does not imply that there is a coating 

that represents every combination of a and k used in the study. The aim of the study is to find 

the key material attributes, not to look at particular systems. The next step in this work is to 

characterize available coating systems for appropriate use in applications. 

The system is solved using both exact and numerical solutions, although the results 

contained in this paper are from the numerical work. The solution was obtained in the following 

manner. 

Finite difference 

operators. The algebraic 

domain. 

methods (FDMs) change the differential operators to algebraic 

operators are applied over a discretized approximation of the original 

The operators used are implicit Crank-Nickolson algebraic operators. Defining the 

following for convenience (Greenberg, 1978): 

(9) 

and 
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is 

where i = c or s for the coating or substrate layer, respectively. The governing equation 

rk Ui+l,j+l - (2rk - ‘)Ui,j+l +‘kUi-l,j+l = -rk ui+, i , + (2rk - l)ui,j - rkui_,,j . (11) 

The subscript k = s for iE[l,ns-21 and k= c for iE[ns+l,DOF-21, where ns is the 

number of nodes in the substrate and DOF is the number of degrees of freedom in the system. 

Note, for convenience, the primary dependant variable in the coating layer, w, has been renamed 

as u with subscripts from ns + 1 to DOF - 1. Four additional equations are needed to complete 

the system. These equations are the boundary conditions and the interface conditions. The 

boundary conditions are defined in the next two equations: 

'l,j+l -%,j -'O.j+l +'O.j =o 

and 

ULWF-I =a(R.H.)! 

The interface conditions are given in the next two equations: 

kUm,j+l -"n3+l,j+l = k"m-,j -"m+l,j 

and 

(12) 

(13 

(14) 

Ts("ns,j+l -"ns-l,j+l + 7 ) ( 'm+l,j+l -"m+2,j+l )=-5(UN,j -"ns-l,j)-Y,(uns+l,j -"m+2,j)' (15) 

This leaves a fully defined system of the following form, 

AP =BzPM +c, 

which is easily solved and iterated for the appropriate time: 

(16) 

U WW’ = A-lB&d +A-‘C_ (17) 
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5. Typical Results 

Figure 2 and Figure 3 show typical results for coated substrates. 

1.4 , -+Ohr I 

0 0.1 0.2 0.3 0.4 0.5 

Location (in) 

Diffusion Results for a Coated Substrate, k = 2, a = 1, Ls = 0.5 in, and 
Lc = 0.01 in. 

Figure 2. 

0.8 

I 

/ 
04 

0.5 0.504 0.506 

Location (in) 

+lO hr 

*15 hr 

+20 hr 

+25 hr 

+30 hr 

0.508 

Figure 3. Short Time Behavior of the Coating Layer. 

As seen in Figure 2, there are several important features. First, at the interface between 

the coating and substrate, there is a discontinuity. The discontinuity is a function of the 

difference in the saturation levels of the coating and substrate. Although, it is difficult to see in 
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the figure, the flux at the interface is also matched. The development of the solution in the 

substrate is very similar to the solution in a noncoated layer. 

Figure 3 shows that at 30 hr, the coating layer appears to have assumed a quasi-static 

solution and is almost fully saturated. This implies that any additional moisture entering the 

coating layer is being transferred to the substrate. It also implies that the material properties of 

the coating layer should dominate the diffusion process. It is seen in later figures that this is not 

always the case. 

6. Effects of Coating 

The next series of figures investigates the effect of the coating thickness and relative 

materials properties for a thin (Ls = 0.1 in) and thick (Ls = 0.5 in) substrates. In order to look at 

moisture penetration into the substrates, the normalized moisture level at the midplane of the 

substrate was used as a measure. The moisture level was normalized by dividing by the 

saturation level of substrate and is referred to as the diffusion potential. As a comparison, the 

equivalent substrate without a coating is shown to gauge relative difhtsion performance. The 

substrate with a = 1 and k = 1 implies that the coating layer has the same diffusion rate and 

saturation level as the substrate. For each of the analysis, material properties were chosen for the 

substrate, then the coating material properties were varied relative to the substrates. 

Three types of figures are needed in order to assess the diffusion performance of a 

coating, time histories, substrate-coating interface plots, and diffusion potential vs the material 

property ratios’ a and k. The time histories show deviation during the diffusion process and 

ensure that relative comparisons are accomplished at appropriate times. The substrate-coating 

interface plots provide insight into how the coating works, and the diffusion potential vs material 

property ratios help isolate effective ranges for the material attributes. On each of the graphs, the 

diffusion performance for several combinations of the ratios a and k are given to gauge the 

relative diffusion performance. 

Figure 4 shows the general effects of coatings. Since each line in the figure represents a 

different type of coating, the separations between the lines imply the particular coatings effect. 
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Each of the lines should be gauged against the case where a and k are equal to 1, which 

represents the effect of just thickening the substrate without adding a coating. 

1 

0.9 

0.8 

g 0.7 

E 5 0.6 

P 
E 0.5 

*g 0.4 

g 0.3 

0.2 

0.1 

0 

oisture Protection 

3coO 4000 
Time (hr) 

Figure 4. Effect of Coatings shown though the Diffusion Potential at the 
(LS = 0.1 ill, Lc = 0.01 in). 

Midplane 

To assess the effectiveness of a coating, the assessment should be made at a time 

corresponding to the separation near the largest deviation seen in the figure. Figure 5 and Figure 

6 show the diffusion potential performance for three different coating thickness on a relatively 

thin substrate (Ls = 0.1 in). 

----I-.------ 

0 200 400 600 800 

lime (hr) 

. Figure 5. Diffusion Potential at the Midplane for Ls = 0.1 iu and Lc = 0.001 in. 



Lc = 0.002 in Lc = 0.010 in 
1 -_-- 

-a=O.l.k=0.25 -a=O.l.k=l 
-ad,k=0.25 -a=l.k=l 

a=lO.kdJ.25 -a=lO.k=l 

a=O.l.k=8 
-a=l.k=8 
-a=lO.k=8 

Figure 6. Diffusion Potential at the Midplane for LS = 0.1 in and Lc = 0.002 in and 
Lc = 0.01 in, respectively. 

Figure 5 shows relative short time (800 hr - 1 month) performance of the substrate. The 

figure shows that, at 800 hr, the diffusion potential is around 0.66, where a value of 1 represents 

the saturation value. It is very interesting to see that the wide range of material properties does 

not have any appreciable effect on the diffusion. Figure 6 shows the same results for a coating 

thickness that is twice a thick (Lc = 0.002 in) and ten times as thick (Lc = 0.01 in). In this figure, 

some very small differences can be seen around 800 hr. The maximum value remains near 0.66, 

and it is important to note that the coated substrates do not appreciably perform differently than 

the uncoated substrates. In Figure 6, with Lc = 0.01 in, a dramatic difference can be seen in the 

diffusion performance of the different coatings. Even with this relatively thick coating, five of 

the nine combinations of a and k do not cause the coated substrate to behave differently from the 

uncoated substrate. The figure shows, that if the material properties of the coating are chosen 

properly and the coating is applied thick enough, potentially the diffusion can be cut in half. It 

appears from these figures that control of both a and k are necessary to affect diffusion. This is 

not surprising as the total permeability of the coating can be expected to be a product of the 

diffusivity and solution of moisture in the coating. It is also interesting to note that some of the 

time-history lines cross. This implies that the diffusion rate and saturation level have different 

effects for short and long time periods. 
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Figure 7 shows the effects of the same coatings on a thick substrate. The Lc = 0.001 in 

case was omitted since very little diffusion difference is seen in the thicker coatings. As is seen 

in the figures, for thick substrates, the coatings have very little effect on the moisture diffusion. 

Only in the case where the coating is 0.01 in thick is there any difference in performance and the 

performance difference is negligible. 

Lc= 0.002in Lc= O.OlOin 

3 0.3 
r: 

.- 

P 

0.2 Is? 

0.1 

0. 

0 2000 4m 6coO 8000 10000 2000 4000 5COO 8000 loo00 

Time 
(h;) 

pp --a=O.l.k=l 

a=lb.k=0.25 
-a=l.k=l 

a=O.l.k=8 7 
-a=l,k=8 

i -a=lO.k=l -a=lO,k=8 / 

Figure 7. Diffusion Potential at the Midplane for Ls = 0.5 in, and Lc = 0.002 in and 
Lc = 0.01 in, Respectively. 

Figure 8 shows the time history of moisture at the interface between the coating and the 

L 

substrate. The figure shows that, for many of the combinations of coatings, the interface goes to 

the saturation level very quickly. Again, many of the lines cross each other showing that the 

saturation level and the diffusion rate operate on different time scales. Finally, the figure also 

shows that, in order’to affect the diffusion rate in the substrate, the interface should not quickly 

drive to the saturation level of the coating materials. When the saturation level is reached, the 

maximum amount of moisture is diffusing from the coating into the substrate. If a lower 

diffusion potential can be held, allowing a smaller amount of moisture to be transferred. This 

appears to be an effective coating attribute. Later, Figure 9 and Figure 10 directly address 

combinations of a and k, which offer the best protection, 
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-a=l.k=8 adO.kdI.25 -a=lO.k=l -a=iO.k=8 

Figure 8. Diffusion Potential at the Interface Between the Coating and Substrate. 

Looking at the interface performance for Lc = 0.01 in, again there appears to be very little 

difference in the various coatings. In each case, the diffusion potential very quickly goes to the 

saturation level of the materials. When compared to the thin substrate results, one of the main 

differences is that the a and k combinations offering some protection did not saturate quickly and 

that behavior is absence here. Again, some of the lines cross each other, which implies that the 

time scales are different for the diffusion rate and saturation levels. 

It should also be noted that in Figure 8, some of the lines imply that, with the wrong 

combination of coating material, properties, moisture can be absorbed faster in the substrate than 

the substrate without a coating. 

Figure 9 and Figure 10 investigate the relationships between a, k, and the midplane 

diffusion potential for various thicknesses of coatings and substrates. These figures, with the 

exception of Figure 9, show that the coating material properties have very little effect on the 

amount of moisture uptake in the substrate. For the different material properties, the curves 

remain flat with very little difference for the midplane diffusion levels. Only when the diffusion 

rate is very low is the dil%sion behavior changing. Figure 9 shows more divergent behavior. 
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Ls = 0.1 in, Lc = 0.002 in Ls = 0.1 in, Lc = 0.010 in 

1;; ---------_ 

0 2 4 6 8 10 

a 

i-Ck=O.25 4 -k=O.4 _ h 'k=O.66 +C wkzO.7 +K -k=O.65 
:+k=l +k=2.6 - -- 9G4.1 1 - Sk=57 4 -k=7.2 1 

Figure 9. Effect of a and k at t = 800 hr. 
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Figure 10. Effect of a and k at t = 10000 hr. 

15 



Figure 11 shows a portion of Figure 9 for small values of a. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

a 

Figure 11. Effect of a and k for Ls = 0.1 in and Lc = 0.01 in for t = 800 hr for Small a. 

Figure 11 shows significant reduction in moisture uptake for small values of a. This 

translates into a diffusion coefficient for the coating around an order of magnitude smaller than 

the diffusion coefficient for the substrate. It is also clearly shown in this figure that, if the 

saturation value for the coefficient for the coating is relatively much higher than the saturation 

value for the substrate, the coating will facilitate moisture uptake in the substrate. This is seen 

when comparing the curve for a = 1 and k = 1 to the other curves. It is also seen that this effect 

can be counteracted by lowering the diffusion coefficient. 

Figure 12 shows interface results for a thick coatings (Lc = 0.05 in) on a very thin 

substrate (Ls = 0.05 in) and a thick substrate (Ls = 0.5 in). In both cases with the right 

combinations of a and k, the coating are effective. On the thin substrate, similar values to earlier 

cases for a and k are again effective. For the thick substrate, now that the coating thickness is 

approach 1 O%, with the proper values for a and k the coating is protecting the substrate. 
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Figure 12. Effect of a and k for a Very Thick Coatings. 

7. Conclusions 

Polymeric coatings can be used to reduce the moisture absorption in polymer and 

polymer-composite structures. The analytical approach taken in this paper demonstrates that the 

thickness, ditision constant, and saturation level of the coating relative to those of the substrate 

are essential to the coatings effectiveness. The difision rate and the saturation level of the 

coating must both be very small compared to the substrate for the coating to affect the long-term 

diffusion behavior. Even when the material constants are optimized, the coating must be 

relatively thick to affect a substantial reduction of moisture absorption. For the substrates 

studied in this paper, the thickness of the coating needed to be 10% of the thickness of the 

substrate to achieve effective protection. Even with coatings 10% of the substrate thickness, 

many values of a and k are not effective in protecting the structure from moisture ingress. This 

is partially due to the speed that the coating layer achieves a quasi-semi-state distribution. The 

coatings that did not saturate quickly were more effective at protecting moisture diffusion. This 

is not to say that an impermeable coating is the best solution, since it also does not allow 



moisture to exit the substrate and could consequently cumulate moisture. This will be 

investigated in future studies that address temperature effects and fluctuating environmental 

conditions. It is also interesting to note that the saturation level of the coating and the diffusion 

rate of the coating can act on different time scales. The results fi-om this study will be used to 

target the important attributes to allow the selection of appropriate coatings. Experimental 

evaluation of the coating and the manufacturing process are necessary to ensure that the chosen 

system can be implemented effectively in a structure. 

8. Future Work 

Analytical and numerical solutions for moisture performance of coated substrates have 

been developed. These solutions are being used to develop methods for approximating coating 

for large complicated models. In addition, these methods are being compared to different 

coating system to assess the theoretical performance against coatings that are not “perfect” and 

contain voids, cracks, other defects, or processing differences. The theories developed will be 

modified to allow realistic prediction of complicated structures protected by coatings with 

defects. 
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