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Abstract 

In order to effectively port production codes originally written for vector processors to 
reduced instruction set (RISC)-based parallel computers, different paradigms have been tried by 
the parallel computing community. Among the techniques used are message-passing and 
loop-level parallelization using hand-inserted compiler directives or automatic-parallelizing 
compiler flags. The goals of this report are (1) to investigate the performance of 
message-passing and loop-level parallelization techniques, as they were implemented in the 
computational fluid dynamics (CPD) code Overflow, and (2) to validate the sequential and 
parallel results obtained on a demonstration problem of interest to the Army-that is, a generic 
missile-body configuration. The computational simulations were run, and performance data 
were gathered on a Silicon Graphics Incorporated (SGI) Power Challenge Array (PCA) and 
0rigin2000. 
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1. Introduction 

. 
At the U.S. Army Research Laboratory (ARL), scientists have typically run large-scale, 

computationally intensive, computational fluid dynamic (CID) simulations on high-end, 

supercomputing architectures. Until about 5 years ago, this meant that scientists mainly utilized 

conventional vector supercomputers such as those manufactured by Cray Research, Incorporated. 

More recently, the comparable sustained performance-to-price ratio of scalar microprocessor-based 

architectures, relative to vector processors, has resulted in their purchase by the Department of 

Defense (DOD) community and the subsequent implementation of Cm> codes on these modern 

reduced instruction set computer (RISC)-based parallel computers. 

As part of the DOD High-Performance Computing Modernization Program, ARL is currently 

a Major Shared Resource Center (MSRC). Two of the modern RISC-based parallel supercomputing 

resources available through ARL MSRC and used extensively in this study are Silicon Graphics 

Incorporated’s (SGI) Power Challenge Array (PCA) and Grigin2000. 

The ARL MSRC PCA consists of eight shared-memory multiprocessor (SMP) power challenge 

XL supercomputing nodes. Each PCA node is populated with 12 75-MHz R8000 RISC processors 

and 2 GB of shared memory and supports a multitasking, multiuser environment. In each PCA node, 

the 12 processors and memory boards plug into a common bus. Each processor within a PCA node 

has direct access to all the memory within the node. Thus, on a per-node basis, the PCA is a uniform 

memory access (UMA) architecture. Efficient multitasking use of a single PCA node by a single 

user can be achieved by using loop-level parallelization directives. 

In the loop-level parallelization paradigm, the user or compiler tries to identify loops that can be 

run in parallel by distributing the iterations of each loop among threads of execution (usually one per 

processor). It is then the job of the compiler, operating system, hardware, and memory consistency 

protocol to ensure that the threads of execution receive the correct values for variables being shared 

by multiple threads. 



The eight PCA nodes are interconnected through an 800 MB/s high-performance parallel 

interface (HIPPI) and a 155MB/s asynchronous transfer mode (ATM) network. Thus, while each 

PCA node can be thought of as a shared memory processor, the entire array of nodes can be thought 

of as a distributed memory system and can be utilized by programming in a message-passing style. 

For a processor to have access to the local memory of a processor on a remote node, a copy of the 

desired data must be sent from the remote node to the other. This data communication is usually 

accomplished by using a message-passing library like message-passing interface (MPI) or parallel 

virtual machine (PVM) (see Gropp, Lusk, and Skjellum 1994; Snir et al. 1994; Gast et al. 1995). 

While this allows a single user to access more than the 12 processors available within a single 

PCA node, going across nodes brings a new set of challenges; that is, rewriting code in a message- 

passing style and hiding the substantial latency of the communications. 

The Origin2000 at ARL MSRC, is configured with 32 195MHz processors and 12 GB of 

memory. Each origin node consists of two RlOOOO processors (4 GB of memory) and connects to 

a portion of the input/output (IO) subsystem. The origin nodes are connected together by a scalable 

interconnection network. The memory associated with each node is physically distinct; however, 

the directory-based cache coherence protocol adds a layer of abstraction that allows the user to see 

the memory across nodes as one logical memory space. The directory-based cache coherence 

protocol maintains the familiar shared memory programming model of a PCA node. Gone, however, 

are the PCA node’s uniform memory access times. Thus, data placement will be an issue for parallel 

programs that are memory intensive and are not cache friendly on the Origin2000. Codes for use 

on the Origin2000 can be programmed using message-passing and/or loop-level parallelization 

techniques. 

In order to effectively port production codes originally written for vector processors to 

RISC-based parallel computers, different paradigms have been tried by the parallel-computing 

community. Among the techniques used are message-passing and loop-level parallelization using 

hand-inserted compiler directives or automatic-parallelizing compiler flags. The goals of this report 

are (1) to investigate the performance of these two parallel paradigms as they were implemented in 

the CFD code Overflow (Burring et al. 1995), and (2) to validate the sequential and parallel results 
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obtained by Overflow on a demonstration problem of interest to the Army; that is, a generic missile 

body configuration. All computational simulations are run and performance data are gathered on the 

SGI PCA and the Grigin2000. 

2. KTA Missile Configuration 

In order to validate and test new computational methodologies, a demonstration geometry must 

be selected that has been previously studied and is well documented in terms of experimental results. 

One geometry of interest to the aerodynamics community at ARL is an ogive-cylinder missile body 

configuration for transonic and supersonic velocities. The Defence Research Agency, UK, provided 

high-quality experimental data for this configuration that included surface pressure, flow-field pitot 

pressures, and force measurements. Under the auspices of The Technical Cooperation Program 

(TTCP) with participants from the United States, United Kingdom, and Canada, a number of Navier- 

Stokes solvers were applied to the missile geometry to compare predictive capabilities (Sturek et al. 

1997). The experimentalgeometry, test conditions, and available experimental data locations as given 

to the participants in the study are shown in Figure 1, Table 1, and Table 2, respectively. Figure 1 

shows that the configuration is a 3-Cal. ogive with a lo-cal. cylindrical afterbody. Table 1 indicates 

that the missile body was tested at Mach conditions ranging from Mach = 0.7 to Mach = 3.5 and at 

angle of attacks (AOA) of either 8” or 14”. 

3. Computational Grids 

Three, structured, single grids were used to solve the six cases. All grids (Figure 2) were 

121 x 91 x 89 (axial, circumferential, normal) with a y+ value of approximately 1. The flow about 

the missile was considered to be symmetric about the vertical plane. Two planes in the 

circumferential direction were added by reflected symmetry. These were needed by the flow solver 

to enforce symmetry about the vertical axis. The flow field downstream of the missile was not 

considered. The significant difference between the three grids is that the outer boundaries have been 

moved farther away from the missile for case nos. 1,2, and 6. 
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17.2” 

iII d =3.7i.n 

- 3d- 10d 

r(x)/d = -0.002615(x/d)3 - 0.03986(x/d)* + 0.30984(x/d) 

Figure 1. KTA Geometry. 

Table 1. Test Conditions 

Table 2. Available Experimental Data Locations 

Case No. Forces I Surface Pressures I Pitot Pressures 
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Figure 2. Symmetry Plane of Computational Grids Used in This Study: (a) Case Nos. 1 and 
2, (b) Case Nos. 3-5, and (c) Case No. 6. 

4. Overflow Flow Solver and Convergence Criteria 

Overflow originated at the National Aeronautics and Space Administration (NASA) Ames 

Research Center in the sequential F’3DKXimera CFD code developed by Joseph Steger. Over the 

years, a number of people have made significant contributions that have taken the Chimera- 

overlapped grid capability from a research stage to a production-code status. The Overflow 

documentation written by Burring (1995) identifies these individuals and their contributions. 

Overflow has been tuned for optimizing memory accesses on a single-processor, RISC-based 

system. In addition, Overflow has both loop-level parallelization coding and message-passing coding 

to take advantage of computer systems that utilize multiple processors. These two parallel 

paradigms, as implemented in Overflow, are discussed in section 5. 

Overflow is a thin-layer, Reynolds-averaged, Navier-Stokes solver that utilizes a finite-volume, 

implicit, factored diagonal scheme. In this study, code options were selected that produce second- 

order spatial accuracy, first-order temporal accuracy, local time-stepping, central differencing in all 

directions, and Baldwin-Lomax turbulence modeling (Baldwin and Lomax 1978) plus Degani-Schiff 
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cutoff criteria. The turbulence model has been modified to limit the value of F_ and y_. This is 

done by comparing the value of F_ for the current circumferential location with that from the 

windward side. If there is a significant difference between the two, the value of F_ and y_ from 

the current circumferential location is replaced by F_ and y_ from the previous circumferential 

location (Degani and Schiff 1983). The modifications were optimized using case no. 3 and then 

applied to the remaining cases. 

A combination of criteria was used to determine when a solution had converged. The right-hand 

side L-2 norm dropped two orders of magnitude, while the L-2 norm of A Q dropped by four orders 

of magnitude after 4,000 iterations (Figure 3). Also, the minimum pressure and density values had 

become converged, as well as the integrated forces. Finally, surface pressure plots from successive 

runs were compared, with no difference indicating a converged solution. 

Figure 3. Convergence Criteria: (a) Right-Hand Side L-2 Norm, (b) A Q L-2 Norm, and 
(c) Minimum Pressure and Density History. 
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5. Computational Results and Discussion: KTA Case No. 3 

Plots for case no. 3 are presented in the following section. Plots for case nos. 1,2, and 4-6 can 

be found in the appendix. 

5.1 Sequential Code Validation and Performance. The sequential flow solver was run to 

convergence as described in section 4 on an SGI PCA utilizing one processor. Memory requirements 

approximately 16 MB, which could be broken into the following categories: were 

flow field array w 3 Mb, 

grid arrays (X, Y, Z, metrics, etc.) m 8 MB, and 

temporary arrays m 5 MB. 

The SGI PCA does not utilize a queuing system; therefore, run time was greatly dependent upon 

system utilization. When the load factor of the system was low to moderate, the code ran at 

approximately 3.4 x lo-’ s per grid point per iteration. During times of heavier usage, performance 

dropped to 5.2 x lo-’ s per grid point per iteration. On the Origin2000, the code ran at 1.83 x lo-’ s 

per grid point per iteration during periods of low to moderate load factors. The factor of 2 decrease 

on the Origin2000 can be attributed to its 195-MIIz (RSOOO) processor in contrast to the PCA’s 

75MHz (RlOOOO) processor. Table 3 summarizes the various sequential runs made. 

Surface pressure plots are provided in Figure 4 and Figures A- l-A-5. The plots show Cp vs. @ 

for X/D locations of 2.4,3.5,4.5,5.5,6.5,7.5,9.5, and 11.5 for laminar and turbulent computations, 

as well as experimental data. As can be expected, the laminar computations did not adequately 

predict flow separation. 
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Table 3. Sequential Run Summary 

Code Computer Case No. Grid Turbulence Remarks 

1 121 x91 x89 BL+DS Unstable laminar run 
after 2,000 iterations 

2 121 x91 x89 BL+DS Unstable laminar run 
after 2,000 iterations 

2 121 x91 x89 BL+DS Time-accurate 
Overflow SGI PCA computation 

3 121 x91 x89 BL - 

3 121 x91 x 89 BL+DS - 

4 121 x91 x89 BL+DS - 

5 121 x91 x 89 BL+DS - 

6 121 x91 x89 BL+DS - 

l Expertmental 

- AllPtsTutb 

-- 30Pts.Turb 

0.1 

l Experimental 

0.05 - All Pts.Turb 

XD - 9.5 

l Ezqwimental 
- AllPts.Turb 

-- 30Pts.Turb 

.-.- 15Pts.Turb 

x/D- 11.5 
O.l- 

l Ezqwimental 

- AllPts.Turb 

-- 30Pts.Turb 

'-.- 15Pls.Turb 

-0.15 . 
0 30 90 Phi;eg, 120 150 180 

-0.15, & & 
Phi&J, 120 150 190 

F’igure 4. Surface Pressure Plots for Case No. 3: Mach = 2.5, AOA = 14”, and Re = 1,123,OOO. 
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Pitot pressure calculations are determined for the locations as shown in Table 4. The results of 

pitot pressure calculations are shown in Figure 5 and Figures A-6-A-9, where computational results 

are shown on the right and experimental data are on the left. In Figure 5 and Figures A-6-A-8, there 

are 15 contours evenly spaced between 0 and 0.925, while, in Figure A-9, there are 30 contours 

spaced evenly between 0.1 and 0.915. 

Table 4. Pitot Pressure Data Locations 

Case No. 

1 

2 

Locations 

Wd) 

8.5 and 11.5 

5.5,8.5, and 11.5 

The vortex core is evaluated by determining the pitot pressure in a horizontal line from the vortex 

core to the symmetry plane. The center of the vortex core for the experimental data is used as the 

starting point. Figure 6 and Figures A- 1 l-A- 15 show the comparison between experimental and 

computational predictions of the strength of the vortex core. Excellent agreement can be seen in case 

nos. 3-5, while in case nos. 1,2, and 6, the strength of the vortex core becomes washed out. 

A force and balance is used to measure the experimental, axial, and normal force coeffkients, 

as well as the pitching-moment coefficient. The pressure and viscous contributions from the 

computational results are integrated to calculate the same coefficients. The results are shown in 

Table 5. 
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(4 00 

(cl Cd) 

Figure 5. Pitot Pressure Contours for Case No. 3: (a) x/d = 5.5, Laminar Computation; 

(b) x/d = 5.5, Turbulent Computation; (c) x/d = 11.5, Laminar Computation; and 
(d) x/d = 11.5, Turbulent Computation. 

Additionally, experimental and computational surface pressures are integrated to compare the 

pressure contribution of the axial, normal, and pitching coeffkients as a function of axial location. 

The results of this integration can be seen in Figure 7 and Figures A-16-A-17. 

. . 
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i * 
l Experimental 

- Turbulent 
- - Laminar 

Figure 6. Vortex Core Evaluation for Case No. 3: x/d = 11.5. 

Table 5. Force and Moment Coefficients 

Case Axial Force Normal Force Pitching-Moment 
No. Computation Coefficient Coefficient Coefficient 

(CX) CC,) w 

Experimental 0.1957 1.9100 10.2417 
3 .Laminar 0.1160 2.0006 11.3061 

Turbulent 0.1486 1.8779 10.1600 

Experimental 0.1694 0.7606 3.4735 
4 Laminar 0.0972 0.8228 4.2570 

Turbulent 0.1196 0.7507 3.5854 

Experimental 0.1833 1.9195 11.1132 
5 ,Laminar 0.1129 1.9554 11.4540 

Turbulent 0.1407 1.9214 11.2106 
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. Expslmmd Data 
- cmpmd - 1wbuletl1 
- - - Compmd - laminar 

(a) 

0.18 

0.16 

a14 
/ 

Figure 7. 

l !3palmmW Dam 

- CmpGied - TUtibnl 

.-‘-. Cmputsd - Llmlnar 

0.12 - 

- O.l- 

! .Ezqedmenhlm 

-CoConpuMd-Tububnl 

--- Conpu(ed-hminar 

i 

Force and Moment Coeffkient vs. Axial Location for Case No. 3: (a) Axial Force, 
(b) Normal Force, and (c) Pitching Moment. 

In case no. 2, computational results underpredict the strength of the vortex core. A time-accurate 

run was made with lowering amounts of dissipation with the hope that this would prevent the vortex 

from being washed out. As could be expected, the time-accurate solution was computationally much 

more expensive. Additionally, it required a lower initial time step (0.0001 as opposed to 0.01) and 

became unstable after 5,650 iterations. At the point it became unstable, the solution was nearly 

converged. Unfortunately, the time-accurate computation did not improve the prediction of the 
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strength of the vortex core. As the solution converged, the strength of the vortex core became 

washed out, as happened with the local time-stepping calculations (Figure 8). 

l Experimental 
. -. - Local Time Stepping 
- Time Accurate 

(5650 Iterations) 
- - - Time Accurate 

(4500 Iterations) 

0.3’ C 
0.27 0.5 1 1.5 2 

y/d 

00 

. -. - Local Time Stepping 
- Time Accurate 

(5650 Iterations) 
- - - Time Accurate 

(4500 Iterations) 

n 

0.3 
0 0.5 1 1.5 2 

W 

cb) 

l Experimental 
. -. - Local Time Stepping 
- Time Accurate 

(5650 Iterations) 
- - - Time Accurate 

(4500 Iterations) 

(c) 

Figure 8. Vortex Core Evaluation for Time-Accurate Computation: (a) x/d = 5.5, 
(b) x/d = 8.5, and (c) x/d = 11.5. 
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Computations were begun using the standard Baldwin-Lomax turbulence model that uses the F,, 

and ymax length scales in determining the turbulent eddy viscosity, pt. Fmax is found to be searching 

in the direction normal to the missile surface for the maximum value of F(y), and ymax is the location 

of F,,,,. In the vicinity of flow separation, a distinct F,, and ymax cannot be determined until the far 

field is reached. Attempts were made at limiting the region in which the search for F,, took place. 

Runs were made in which only the first 30 and 15 points in the normal direction were computed as 

turbulent flow. Figure 9 shows the results of these attempts. Clearly, limiting the number of 

turbulent points normal to the missile surface had a significant effect, but the number of points to 

limit the search region changes as a function of the axial location. 

A full implementation of Degani-Schiff modifications to the BaldwinLomax turbulence model 

was then added. The original Degani-Schiff modifications restricted the search for F,,,, based upon 

the value of ymax of the previous ray using 

If a maximum F(y) is not found before ycUtoE is reached, the values of F_ and y,, from the previous 

ray are used. For case no. 3, this method did not limit Fmax as desired. 

The Degani-Schiff criteria is simply a method of limiting F,,; therefore, the turbulence model 

was altered so that F,, was used as the cutoff criteria rather than y_. In this method, the current 

value of F,, is compared with that of the windward side. If there is a significant difference between 

the two, the current values of Fmax and ymax are replaced with those from the previous ray. After some 

testing, the following criteria was settled upon. 

0 < 110” 

F,, < 2.75 Fmaxo, 

@ > 110” 

F,, < 1.4 Fmaxo, 
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Figure 9. Effect of Limiting Turbulent Region on Surface Pressure Calculations for Case 
No. 3. 
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where FmaxO is the value of F,, from the windward side. For @ less than 1 lo”, Fmax must be 

sufficiently large to prevent separation from occurring too soon. Above 1 lo”, a smaller cutoff is 

used to prevent the flow solver from adding excessive turbulence that does not really exist. As seen 

in Figure 10, this criteria significantly alters the calculation of F,,. As seen in Figure 11, the 

modified turbulence model more accurately predicts flow separation. 

X/d - 4.0 X/d - 5.5 

0 0 
0 30 60 90 120 150 180 0 30 60 90 120 150 180 

phi phi 

Figure 10. Effect of Degani-Schiff Modifications on Calculation of F, for Case No. 3: Solid 
Line Without Degani-Schiff, Dots With Degani-Schiff. 

5.2 Parallel PVM Code. One approach to achieving parallel speedup in Ovefflow is by 

splitting the computational work into coarse-grained tasks that communicate using message passing. 

There are two options for accomplishing task parallelism within Ovefflow using PVM. One option 

invokes a manager-to-worker paradigm, wherein one processor takes on the role of manager and all 

communication between the other processes (the workers) must go through the manager. The other 

option uses worker-to-worker communication. In this option, the manager becomes a worker and, 

instead of having all data communication (i.e., message passing) go via the manager, communication 

occurs from peer to peer. The worker-to-worker paradigm reduces the total amount of 

communication but involves the use of PvmDataInPlace encoding of the messages being passed. 

Unfortunately, this encoding is not supported in SGI’s implementation of PVM on either the PCA 

or the 0rigin2000. Thus, only the manager-to-worker paradigm could be tested in this study. 
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Figure 11. Effect of Degani-Schiff Modifications on Surface Pressure Calculations for Case 
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The strategy of the manager-worker paradigm requires a spatial domain that has been 

decomposed into multiple subdomains or zones, which are then distributed over the specified number 

of central processing units (CPU). The decomposition of the spatial domain into multiple subdomains 

for the purpose of parallel computing is a topic worthy of discussion itself. However, for the purpose 

of this report, it is assumed that the decomposition has already been done and the required 

subdomains are available. It is up to the user to distribute the zones such that static load balancing 

is achieved. 

The tasks of the manager code are to (1) enroll in PVM; (2) read the parallel name list that 

contains the number of machines, machine names, and executable program names and locations; 

(3) read the global name list that contains parameters normally initialized in the sequential run; (e.g., 

number of time steps, Mach no., boundary conditions, etc.); (4) allocate storage for the largest of the 

zones and for the Chimera interpolation data; (5) start worker processes; arrange to be notified if any 

worker quits; read input parameters, grid, and restart information for each zone; and send all of a 

zone’s information to a worker; (6) monitor workers, saving checkpoint files, Chimera information, 

and dependent variables; if any worker dies, stop everything; (7) save final dependent state; and 

(8) exit PVM, halt. 

The tasks of the worker code are to (1) enroll in PVM, (2) get task id of the manager and arrange 

to be notified if the manager dies, (3) receive global parameters and grid dimensions from the 

manager and allocate storage for the grid and dependent variables, (4) receive from manager other 

input parameters and restart information needed to performcomputation, and (5) start working, (i.e., 

advance the solution of the Navier-Stokes equations, abort run if metrics, density, or pressure goes 

negative and tell manager; otherwise, send dependent variables and residual norms to manager as 

needed). 

5.3 Parallel Loop Optimization Code. Another approach to obtaining parallel speedup is by 

exploiting loop-level parallelism in the code. Loop-level parallelism can take the form of data 

parallelism and/or task parallelism, wherein the iterations of a loop are distributed among the 

user-specified number of processors. Data parallelism involves loops with only computational 

manipulations, while task parallelism involves loops with subroutine calls. Either is accomplished by 

18 



by the addition of doacross SGI compiler directives before loops with significant work and no data 

dependencies. 

An example of task parallelism from the Ovefflow code itself is shown as follows. 

C$DOACROSS SHARE (JPER, KS,KE,LS,LE,Q,VGAMMA,S,XX,XY,XZ,XT, 

cw 
C$& 

& 

100 

JD,KD,LD,TMI’2,NTMP2) 

LOCAL (L,ITMP2) 

DO 100 L = LS,LE 

CALL GETARX (NTMP2, TMI’2,lTMP2) 

CALL RECJ2 (JPER, KS,LE,L,Q,VGAMMA,S,XX,XY,XZ,XT, 

TMP2 (ITMP2,l ,l), JD,KD,LD) 

CALL FREARX (NTMP2, TMP2, ITMl’2) 

CONTINUE 

In Overflow, a select set of subroutines that should benefit from parallel execution is compiled 

with the -pfa option. The -pfa option to the FORTRAN compiler attempts to find and implement data 

parallelism automatically. It does not attempt to find task parallelism automatically. To assist the 

compiler, Ovefflow contains some user-inserted doacross directives within the select set of 

subroutines. The doacross directives essentially let the compiler know that the loop iterations do not 

carry data dependencies and it is “safe” to distribute the iterations of the loop among the processors. 

One advantage of loop-level parallelization is that it can be done incrementally, with checking for 

correctness and performance increases. 

Experimentation with the automatic parallelizing -pfa option and the user-inserted compiler 

directives led to the results in Table 6. Recall that the sequential version of the code completes 50 

iterations in 1507. The second column shows what happens when -pfa is used on all of the 

subroutines in Overflow; that is, the executable generated gets into an infinite loop. The third 

column shows the timings generated when -pfa is used on the select subset of files thought to benefit 
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Table 6. Automatic Parallelizing Compiler Performance Results 

16 126:20+ 13:43 412 2:Ol 

31 - 13:45 358 1:35 

most from parallel execution, but with the user-inserted compiler directives commented out. Parallel 

speedup is practically nil, and there is no noticeable scalability. The fourth column uses an option 

to the FORTRAN compiler (-mp) that only produces parallel code for the loops preceded by 

user-inserted compiler directives. No automatic parallelism is attempted by the compiler. The 

timings show some speedup and scalability. The final column presents the timings that are obtained 

when the -pfa option is used on the select subset of subroutines and the user-inserted compiler 

directives are left on. This column produces a reasonable level of speedup and scalability. The table 

clearly indicates that the indiscriminate use of the -pfa option on a large scientific code like Ovefflow 

can lead to incorrect executable code and that even more thoughtful use of -pfa must be 

supplemented by user-inserted compiler directives for reasonable results to be obtained. 

5.4 Performance of Parallel Codes. Table 7 presents Overflow performance timings from the 

sequential version of the code followed by timings using loop-level parallelization and, finally, using 

PVM message passing. All timings are based on 50 iteration runs that use -mips4 and -03 options 

to the ftn77 compiler. Also, the PVM runs on the PCA were executed using CPUs within a single 

node. All timings were obtained while in dedicated mode. During times of normal usage, the system 

load fluctuates and it is very hard to get repeatable run times. In general, the run times for a heavily 

loaded node can increase by as much as 30-40%. 
-. 
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Table 7. Performance Timings 

Code Version 

Sequential 

Loop-level 
parallelization, 
compiler directives, 
and -pfa 

PVM message 
passing 

No. of PCA 
Processors (wall clock time)” 

1 33:Ol 

1 33:09 
4 8:24 
8 5:29 
16 - 
31 - 

4 9:31 
8 7:58 
16 - 

origin2ooo 
(wall clock time)” 

15:07 

15:20 
4~42 
2:47 
2:Ol 
1:35 

5:35 
3:ll 
1:57 

a Timing obtained while in time-sharing mode. 

While the loop-level parallelization paradigm appears to produce better scalability in the range 

of l-8 processors, scalability falls off in the range of 9-31 processors, and, in fact, the message- 

passing paradigm appears to be producing a slightly better timing (1:57) than the timing (2:Ol) 

produced by the current loop-level parallel implementation of the code for the case of 16 processors 

on the Origin2000. 

Figure 12 plots the speedup vs. the number of processors on the Origin2000 for the loop-level 

parallel code. Above six processors, the scalability of the code falls significantly short of ideal. 

However, given the code is not embarrassing parallel, a better comparison to make is to Amdahl’s 

law: Speedup = l/((p/n) + (1 -p)), where n equals number of processors and p equals fraction of 

the program’s code that has been made parallel. 

The speedup predicted by Amdahl’s law and plotted in Figure .12 is obtained by measuring the 

execution times T(1) and T(2) for a one-processor and two-processor case, respectively. Then, 

Speedup(2) = T(l)/T(2). Further, Amdahl’s law is rearranged to yield the fraction (p) of the 

program’s code that can be made parallel: p = 2 * (Speedup(2) - l)/(Speedup(2)), This fraction can 
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Figure 12. Scalability of Loop-Level Parallel Code Implementation. 

then be used to extrapolate the speedup for cases where the number of processors is greater than two. 

However, Amdahl’s law assumes that all CPUs are equal and that the units of work assigned to each 

CPU are also equal. Thus, it is important to check the two-processor case to make sure that indeed 

each processor is doing the same amount of work. In this study, 50 iterations did not produce good 

load balancing, while 1,000 iterations did for the two-processor case. The timings for the 

1 ,OOO-iteration case produced a Speedup(2) = 1.89 and a parallel fraction p = 0.939. 

In Figure 12, the actual speedup is slightly lower than Amdahl’s law predicts. There can be many 

reasons why the actual speedup is less than predicted. Contributors can be discovered by looking 

at performance data. Performance data were collected on the Origin2000 using the profiling tools 

perfex and speedshop. 

The RlOOOO design in the Origin2000 provides hardware support for counting various types of 

events, such as cache misses, memory coherence operations, and graduated (completed) floating- 

point operations. These counters are useful for gaining insight into where and how time is spent in 

an application and for discovering performance bottlenecks. The counters were designed by SGI to 

extract information without affecting the behavior of the program being monitored and to not 

degrade the performance of other hardware. 
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Several sources of poor scaling that can be examined by looking at event counts are load 

imbalance, excessive synchronization costs, and false sharing. Load imbalance can be checked by 

determining whether all threads issue a similar number of graduated floating-point operations. 

Excessive synchronization costs are determined by examining whether the counts of store 

conditionals are high. Finally, if false sharing is a problem, then the counts of store exclusive to 

shared blocks should be high. False sharing is a potential problem in any cache-based, SMP system. 

False sharing occurs when two or more processors access different variables that happen to be 

colocated on the same cache block, with at least one of the accesses being a write. Once the write 

occurs, the entire cache line is invalidated to other processors. Thus, any attempt by the other 

processors to use another data item in the cache line will require the entire cache line to be updated 

first. 

Figure 13 presents the event counts obtained for floating-point operations, synchronization, and 

false sharing. It is evident from the bar graph that the majority of the run-time cost is being spent 

on floating-point operations followed by false sharing and, fmally, synchronization. The 

countervalues multiplied by the typical event times did not change the relative magnitude and 

ordering of the counters. In addition, note that the last processor is always performing more work 

than the others, signifying load imbalance. To increase the overall scalability of the code past eight 

processors requires more effort in the parallelization effort of the remaining sequential code. Then, 

the next step to improving the comparison to Amdahl’s law should probably involve trying to 

improve load balance. 

6. Conclusions/Future Work 

The validation part of this study clearly illustrates that a laminar solution is not adequate for 

flows with moderate amounts of separation. By making simple modifications to the Baldwin-Iomax 

turbulence model, significantly more accurate surface pressure predictions can be made. In some 

cases (case nos. 1,2, and 6) the strength of the vortex core becomes washed out. 
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The flow solver was found to be straightforward and easy to use. The manual (Buning 1995), 

though, could be significantly improved. As stated in the manual, it is intended for users familiar 

with the flow solver F3D. The manual mostly describes differences between Overflow and F3D, 

input and output files, and name list specifications. There is a small section on experiences with 

Overflow. Many little helpful hints, such as the need to add two planes by reflected symmetry to 

enforce symmetry about the vertical axis, are not mentioned in the manual. 

On the SGI PCA, performance utilizing a single processor was just adequate, as 2,000 iterations 

could be completed in less than a 24&r wall clock time. On the Origin2000, the same run could be 

completed in less than a 12-hr wall clock time. Significant improvements in wall clock time could 

be obtained by using a parallel version of the code. The loop-level parallel version of Ovefflow 

performed the best on both the Origin2000 and the PCA in the range of two to eight processors. 

However, ideal scalability significantly fell off above eight processors on the Origin2000. As 

’ confirmed by an analysis using Amdahl’s law, the scalability above eight processors is severely 

limited by the fraction of the code being run sequentially. The actual speedup is even less than 

Amdahl’s law predicts due mainly to load imbalance. Even with the scalability limitations just 

described, the loop-level parallel version of the code achieves a speedup of approximately 7.5 and 

10 using 16 and 3 1 processors of the Grigin2000, respectively. The message-passing version of the 

code performed similarly. Thus, both loop-level parallelization and message passing are viable 

paradigms for a shared memory or distributed shared memory architecture. The shared memory 

paradigm has the advantage of being easier to program, but has the distinct disadvantage of being 

less portable in an efficient manner than a message-passing implementation for distributed memory 

architectures. However, research into compile-time and run-time software distributed shared 

memory systems (Dwarkadas, Cox, and Zwaenepoel1996) may eventually make shared memory as 

efficient as message passing, even on distributed memory architectures. 

Future work will focus on additional loop-level parallelization of the remaining sequential 

fraction of Overflow’s program. Also, a larger grid size will be used to determine if the sequential 

code increases, decreases, or stays the same with increasing grid size. If the sequential fraction of 

code decreases, the scalability should improve. Additional comparisons to the message-passing 
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paradigm will be continued for a larger numbers of processors. However, setting up runs for 

message-passing runs becomes very tedious above 16 subdomains; therefore, automatic-domain 

decomposition tools will be studied as well. Finally, preliminary performance profiling and analyses 

are presented in this report. Future work will further investigate the costs associated with sequential 

vs. parallel code and the costs due to memory hierarchy accesses. 

. . 

26 



7. References 

Baldwin, B. S., and H. Lomax. “Thin Layer Approximation and Algebraic Model for Separated 
Turbulent Plow.” AIAA Paper 78-257, January 1978.’ 

Buning, P., et al. OVERFLOW User’s Manual. NASA-Ames Research Center, June 1995. 

Degani, D., and L. B. Schiff. “Computation of Supersonic Viscous Plows Around Pointed Bodies 
at Large Incidence.” AIAA Paper 83-0034, January 1983. 

Dwarkadas, S., A. Cox, and W. Zwaenepoel. “An Integrated Compile-Time/Run-Time Software 
Distributed Shared Memory System.” White Paper, Department of Computer Science, Rice 
University, 1996. 

Geist, A., A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PUM3 User’s Guide 
and Reference Manual. ORNL-TM- 12 187, May 1993. 

Gropp, W., E. Lusk, and A. Skjellum. “Using MPI Portable Parallel Prograrnming With the 
Message-Passing Interface.” MIT Press, Cambridge, MA, 1994. 

Snir, M., S. Otto, S. Huss-Lederman, and D. Walker. “MPL the Complete Reference.” MIT Press, 
Cambridge, MA, 1994. 

Sturek, W., et al. “The Application of CID to the Prediction of Missile Body Vortices.” AIAA 
Paper 97-0637, January 1997. 

27 



INTENTIONALLY LEFT BLANK. 

28 



1 

Appendix: 

Plots for KTA Case Nos. 1,2, and 4-6 

29 



bU73TIONALLY LEFT BLANK. 

. . 

30 



X/D - 2.4 X/D I 3.5 
0.1 r 

I Y 

I ’ 

l Experimental 
- Turbulent 
-- Laminar 

-0.25. 

0 30 60 120 150 180 

WD I 4.5 X/D - 5.5 
0.1 - 

-0.25. 

-0.3' 120 150 160 
-0.25' 

0 30 60 Phi:@ 0 30 60 90 120 150 160 
Phi (deg) 

WD - 6.5 X/D -7.5 
0.1 r O.l- 

l Experimental 
- Turbulent 
- - Laminar 

-020WW 
Phi (deg) 

-0% 30 60 
Phi;e@ 

120 150 160 

Figure A-l. 

WD -9.5 

l Experimental 
- Turbulent 
- - Laminar 

x/D- 11.5 
0.1. 

-0.15 0 30 60 90 120 150 160 -"'150 30 60 90 120 150 160 
Phi(deg) Phi (deg) 

Surface Pressure Plots for Case No. 1: Mach = 1.45, AOA = 14”, and 
Re = 667,000. 

31 



WD I 2.4 

l Experimental 
- Turbulent 
- - -. Laminar 

X/D - 4.5 
0.1 _ 

l Experimental 
- Turbulent 

% 

-0.25 
0 30 60 120 150 160 

WD -6.5 

l Experimental 
- Turbulent 
- - -. Laminar 

0" 

\I 0. 

-".250 30 60 120 150 160 

l Experimental 
- Turbulent 
---. Lamlnar 

-0.25' 
0 30 60 120 150 180 

x/D - 5.5 

l Experimental 

-0.25 
0 30 60 120 150 160 

O.lr 

0.05 l Experimental 
- Tuttwlent 

0 ---. Lamlnar 

-0.2' 
0 30 60 120 150 160 

X/D - 9.5 x/D-11.5 
0.1 - O.l- 

0 l *. 

l ExperImental l Eq_wrimental 
- Turbulent - Turbulent 
- --. Lamlnar - - -. Lamlnar 

4 % 

-0.15 
0 30 60 120 150 160 

-0.15 
0 30 60 120 150 160 

. . 

Figure A-2. Surface Pressure Plots for Case No. 2: Mach = 1.8, AOA = 14”, and 
Re = 667,000. 

32 



X/D I 2.4 X/D I 3.5 

0.125r 0.05 I 

. 

.a 

l Experimental 
- Turbulent 
---. Laminar 

% 
-0.025. 

l Experimental 
- Turbulent 
---. Laminar 

-0.05 
-0.025 

I -0.050 30 60 
Ph&9, 

120 150 180 
-0.075; i. & 

Phig9, 
120 150 180 

0.05 - 

9 
-0.025 

-0.05 

-“*0750 

X/D - 4.5 x/D - 5.5 
0.05 - 

l Experimental l Experimental 
- Turbulent - Turbulent 
- - - Laminar ---. Laminar 

% 
-0.025. 

-0.05. 

60 
PhigPde9) 

120 150 180 -o.0750 i. & 
Ph&g, 

120 150 160 

X/D -6.5 x/D - 7.5 
0.05 

I 
0.05 

I 

l Expedmental l Experimental 
- Turbulent - Turbulent 
---. Laminar ---. Lamlnar 

0” % 

-0.05. 

-“.0750 30 60 90 120 150 160 -0.075 0 30 60 120 150 160 
Phi (deg) Phi$eg) 

Figure A-3. 

X/D - 9.5 

l Expertmental 
- Turbulent 
- - - . Laminar 

x/D- 11.5 
0.05 - 

l Experimental 
- Turbulent 
---. Laminar 

4 

-0.05. -0.05 

-0.075. 
0 

i. g, 
Phl:eg, 120 150 160 

-0.075 
0 30 60 Ph;sg, 120 150 160 

Surface Pressure Plots for Case No. 4: Mach = 3.5, AOA = 8”, and 
Re = 1,123,OOO. 

33 



X/D - 2.4 

. Experimental 
- Turbulent 
- - Lamlnar 

WD - 3.5 

. Ex$wimenlal 

- Turbulent 

- - Lamlnar 

-0.05. 
-0.05 

-0.1 . -0.1 

0 30 60 Phis(kg) 120 150 160 0 30 60 PhiFeg) 120 150 160 

Figure A-4. 

x/D - 4.5 

l Experimental 
- Turbulent 

- - Laminar 

x0 - 5.5 

l Experimental 

- Turbulent 

- - Lamlnar 

-0.05 -0.05 

-0.1 . -0.1 

0 30 60 Phl$eg, 120 150 160 0 30 60 PhlEfkg, 120 150 160 

XJD - 6.5 xm - 7.5 

l Experimental 
- Turbulent 
- - Lamlnar 

l Experimental 
- Turbulent 
- - Laminar 

-0.1; 30 60 120 150 160 -0.1’ 0 30 60 
Ph&g, 

120 150 160 

X/D - 9.5 xm-11.5 
0.1 0.1 

l Experimental l ExperImental 
0.05 

0 n 

- Tuttwlent 0.05 - Turbulent 
- - Laminar 

4 % 0 h - - Laminar 

Phi (deg) Phi (deg) 

. . 

Surface Pressure Plots for Case No. 5: Mach = 3.5, AOA = 14”, and 
Re = 1,123,OOO. 

34 



X/D - 2.4 X/D - 3.5 
0.05 r l Experimental 

l Experimental 
- Turbulent 
- - Lamlnar 

-0.3 . 
0 30 60 90 120 150 160 

Phi (deg) 

- Turbulent 
- - Laminar 

-0.2. 

0 30 60 Phi(l:eg, 120 150 160 

WD -4.5 

l Experimental 
- Turbulent 
- - Laminar 

X/D. 5.5 

l Experimental 
- Turbulent 
-- Laminar 

% 

-0.15. 

-0.20 30 60 120 
Phi;eg, 

150 160 

X/D - 6.5 

l Experimental 
- Turbulent 
- - Laminar 

WD - 7.5 

l Experimental 
- Turbulent 
- - Laminar 

XID - 9.5 

l Experimental 
- Turbulent 
- - Lamlnar 

x/D-11.5 
0.1 - 

l Experimental 
- Turbulent 
- - Laminar 

4 

-0.15. -0.15. 

0 30 60 Phi:eg) 120 150 160 0 30 60 Phi& 120 150 160 

Figure A-5. Surface Pressure Plots for Case No. 6: Mach = 0.7, AOA ‘= 14”, and 
Re = 667,000. 
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(a) 

Cc) W 

Figure A-6. Pitot Pressure Contours for Case No. 1: (a) x/d = 8.5, Laminar Computation; 
(b) x/d = 8.5, Turbulent Computation; (c) x/d = 11.5, Laminar Computation; and 
(d) x/d = 11.5, Turbulent Computation. 
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60 (W 

Figure A-7. 

(d (0 

Pitot Pressure Contours for Case No. 2: (a) x/d = 5.5, Laminar Computation; 
(b) x/d = 5.5, Turbulent Computation; (c) x/d = 8.5, Laminar Computation; 
(d) x/d = 8.5, Turbulent Computation; (e) x/d = 11.5, Laminar Computation; and 
(f) x/d = 11.5, Turbulent Computation. 
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(a) (b) 

Figure A-8. Pitot Pressure Contours for Case No. 4: (a) x/d = 11.5, Laminar Computation; 
and (b) x/d = 11.5, Turbulent Computation. 
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(a) (b) 

Figure A-9. 

(c) Cd) 

Pitot Pressure Contours for Case No. 5: (a) x/d = 5.5, Laminar Computation; 
(b) x/d = 5.5, Turbulent Computation; (c) x/d = 11.5, Laminar Computation; and 
(d) x/d = 11.5, Turbulent Computation. 
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Figure A-10. 

(4 00 

Pitot Pressure Contours for Case No. 6: (a) x/d = 8.5, Laminar Computation; 
(b) x/d = 8.5, Turbulent Computation; (c) x/d = 11.5, Laminar Computation; 
and (d) x/d = 11.5, Turbulent Computation. 
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Figure A-11. Vortex Core Evaluation for Case No. 1: (a) x/d = 8.5, and (b) x/d = 11.5. 
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Figure A-12. Vortex Core Evaluation for Case No. 2: (a) x/d = 5.5, (b) x/d = 8.5, and 
(c) x/d = 11.5. . 
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Figure A-15. Vortex Core Evaluation for Case No. 6: (a) x/d = 8.5, and (b) x/d = 11.5. 
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Figure A-16. Force and Moment Coeffkient vs. Axial Location for Case No. 4: (a) Axial 
Force, (b) Normal Force, and (c) Pitching Moment. 
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Figure A-17. Force and Moment Coefficient vs. Axial Location for Case No. 5: (a) Axial 
Force, (b) Normal Force, and (c) Pitching Moment, 
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List of Abbreviations and Symbols 

angle of attack 
U.S. Army Research Laboratory 
Baldwin-Lomax 
computational fluid dynamics 
pitching-moment coefficient 
normal force coefficient 
coefficient of pressure 
axial force coefficient 
Department of Defense 
Degani-Schiff 
maximum of function F(y) 

gigabyte(s) 
mercury 
Kelvin 
key technical area: the application of computational fluid dynamics (CID) to the 
prediction of missile-body vortices 
megabyte(s) 
megahertz 
message-passing interface, a message-passing library 
major shared resource center 
density 
Power Challenge Array 
stagnation pressure 
parallel virtual machine, a message-passing library 
vector of dependent variables 
Reynolds number 
reduced instruction set computer 
Silicon Graphics Incorporated 
shared-memory multiprocessor 
stagnation temperature 
uniform memory access 
fiction velocity, m 
law-of-the-wall coordinate, pa u, y/p0 
value of y at which F(y) is maximum 
first coefficient or molecular coefficient of viscosity 
eddy viscosity coefficient 
viscous stress 
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