
Performance of a Sequential and Parallel
Computational Fluid Dynamic (CFD)

Solver on a Missile Body Configuration

by Dixie Hisley
and Duane Frist

ARL-m-2032 August 1999

19990921 064 1

Approved for public release; distribution is unlimited.

4

The fmdings in this report are not to be construed as an official
Department of the Army position unless so designated by other
authorized documents.

Citation of manufacturer’s or trade names does not constitute an
official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return
it to the originator.

.
.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

Al&-TR-2032 August 1999

Performance of a Sequential and Parallel
Computational Fluid Dynamic (CFD)
Solver on a Missile Body Configuration

Dixie Hisley and Duane Frist
Corporate Information and Computing Center, ARL

Approved for public release; distribution is unlimited.

Abstract

In order to effectively port production codes originally written for vector processors to
reduced instruction set (RISC)-based parallel computers, different paradigms have been tried by
the parallel computing community. Among the techniques used are message-passing and
loop-level parallelization using hand-inserted compiler directives or automatic-parallelizing
compiler flags. The goals of this report are (1) to investigate the performance of
message-passing and loop-level parallelization techniques, as they were implemented in the
computational fluid dynamics (CPD) code Overflow, and (2) to validate the sequential and
parallel results obtained on a demonstration problem of interest to the Army-that is, a generic
missile-body configuration. The computational simulations were run, and performance data
were gathered on a Silicon Graphics Incorporated (SGI) Power Challenge Array (PCA) and
0rigin2000.

ii

Table of Contents

1. Introduction . 1

2. KTA Missile Configuration . 3

3. Computational Grids .

4. Overflow Plow Solver and Convergence Criteria . 5

5. Computational Results and Discussion: KTA Case No. 3

5.1 Sequential Code Validation and Performance 7

5.2 Parallel PVM Code .. 16

5.3 Parallel Loop Optimization Code 18
5.4 Performance of Parallel Codes 20

6. Conclusions/Future Work . 23

7. References . 27

List of Figures,,,...........,,.........,...................

List of Tables .

Appendix: PlotsforKTACaseNos.1,2,and4-6.. 29

List of Abbreviations and Symbols . 47

Distribution List,,,,,.,,..,............................ 49

Report Documentation Page ,...................................... 51

.-

. . .
111

l

hTENTIONALLY LEFT BLANK.

.

iv

List of Figures

Figure

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

A-l.

KTA Geometry ..

Symmetry Plane of Computational Grids Used in This Study: (a) Case
Nos. 1 and 2, (b) Case Nos. 3-5, and(c) Case No. 6

Convergence Criteria: (a) Right-Hand Side L-2 Norm, (b) A Q L-2 Norm,
and (c) Minimum Pressure and Density History

Surface Pressure Plots for Case No. 3: Mach = 2.5, AOA = 14”, and
Re = 1,123,OOO ..

Pitot Pressure Contours for Case No. 3: (a) x/d = 5.5, Laminar Computation;
(b) x/d = 5.5, Turbulent Computation; (c) x/d = 11.5, Laminar Computation;
and (d) x/d = 11.5, Turbulent Computation

Vortex Core Evaluation for Case No. 3: x/d =‘11.5

Force and Moment Coefficient vs. Axial Location for Case No. 3: (a) Axial
Force, (b) Normal Force, and (c) Pitching Moment

Vortex Core Evaluation for Time-Accurate Computation: (a) x/d = 5.5,
(b) x/d = 8.5, and (c) x/d = 11.5

Effect of Limiting Turbulent Region on Surface Pressure Calculations for
Case No. 3

Effect of Degani-Schiff Modifications on Calculation of F_ for Case No. 3:
Solid Line Without Degani-Schiff, Dots With Degani-Schiff

Effect of Degani-Schiff Modifications on Surface Pressure Calculations for
Case No. 3

Scalability of Loop-Level Parallel Code Implementation

Floating-Point Operations, Synchronization Cost, and False Sharing Event
Counts

Surface Pressure Plots for Case No. 1: Mach = 1.45, AOA = 14”, and
Re = 667,000.

V

Page

4

5

6

8

10

11

12

13

15

16

17

22

24

31

Finure

A-2.

A-3.

A-4.

A-S.

A-6.

A-7.

A-8.

A-9.

A-10.

A-11.

A-12.

A-13.

A-14.

A-15.

Surface Pressure Plots for Case No. 2: Mach = 1.8, AOA = 14”, and
Re = 667,000 .

Surface Pressure Plots for Case No. 4: Mach = 3.5, AOA = 8”, and
Re = 1,123,OOO. ..,....................,.....*.

Surface Pressure Plots for Case No. 5: Mach = 3.5, AOA = 14”, and
Re = 1,123,OOO .

Surface Pressure Plots for Case No. 6: Mach = 0.7, AOA = 14”, and
Re = 667,000*....

Pitot Pressure Contours for Case No. 1: (a) x/d = 8.5, Laminar Computation;
(b) x/d = 8.5, Turbulent Computation; (c) x/d = 11.5, Laminar Computation;
and (d) x/d = 11.5, Turbulent Computation .,..,........................

Pitot Pressure Contours for Case No. 2: (a) x/d = 5.5, Laminar Computation;
(b) x/d = 5.5, Turbulent Computation; (c) x/d = 8.5, Laminar Computation;
(d) x/d = 8.5, Turbulent Computation; (e) x/d = 11.5, Laminar Computation;
and (I) x/d = 11.5, Turbulent Computation .

Pitot Pressure Contours for Case No. 4: (a) x/d = 11.5, Laminar Computation;
and (b) x/d = 11.5, Turbulent Computation ..,..................,.......

Pitot Pressure Contours for Case No. 5: (a) x/d = 5.5, Laminar Computation;
(b) x/d = 5.5, Turbulent Computation; (c) x/d = 11.5, Laminar Computation;
and (d) x/d = 11.5, Turbulent Computation .

Pitot Pressure Contours for Case No. 6: (a) x/d = 8.5, Laminar Computation;
(b) x/d = 8.5, Turbulent Computation; (c) x/d = 11.5, Laminar Computation;
and (d) x/d = 11.5, Turbulent Computation .

Vortex Core Evaluation for Case No. 1: (a) x/d = 8.5, and (b) x/d = 11.5

Vortex Core Evaluation for Case No. 2: (a) x/d = 5.5, (b) x/d = 8.5, and
(c)x/d = 11.5 .

VortexCoreEvaluationforCaseNo.4: x/d = 11.5..

Vortex Core Evaluation for Case No. 5: x/d = 11.5 ,

Vortex Core Evaluation for Case No. 6: (a) x/d = 8.5, and (b) x/d = 11.5

vi

32 I

33 .

34

35

36

37.

38

39

40

41

42

43 s

43
-I

44

Figure

.

.

A-16. Force and Moment Coefficient vs. Axial Location for Case No. 4: (a) Axial
Force, (b) Normal Force, and (c) Pitching Moment ,...,....,,............ 45

A-17. Force and Moment Coefficient vs. Axial Location for Case No. 5: (a) Axial
Force, (b) Normal Force, and (c) Pitching Moment .,.,................... 46

Vii

.

~NTIONALLY LEFT BLANK.

. . .
Vlll

List of Tables

Table Page

1. Test Conditions .. 4

2. Available Experimental Data Locations 4

3. SequentialRunSummary ... 8

4. Pitot Pressure Data Locations 9

5. Force and Moment Coefficients 11

6. Automatic Parallelizing Compiler Performance Results 20

7. Performance Timings .. 21

ix

.

bTENTIONALLY LEFT BLANK.

. .

X

1. Introduction

.
At the U.S. Army Research Laboratory (ARL), scientists have typically run large-scale,

computationally intensive, computational fluid dynamic (CID) simulations on high-end,

supercomputing architectures. Until about 5 years ago, this meant that scientists mainly utilized

conventional vector supercomputers such as those manufactured by Cray Research, Incorporated.

More recently, the comparable sustained performance-to-price ratio of scalar microprocessor-based

architectures, relative to vector processors, has resulted in their purchase by the Department of

Defense (DOD) community and the subsequent implementation of Cm> codes on these modern

reduced instruction set computer (RISC)-based parallel computers.

As part of the DOD High-Performance Computing Modernization Program, ARL is currently

a Major Shared Resource Center (MSRC). Two of the modern RISC-based parallel supercomputing

resources available through ARL MSRC and used extensively in this study are Silicon Graphics

Incorporated’s (SGI) Power Challenge Array (PCA) and Grigin2000.

The ARL MSRC PCA consists of eight shared-memory multiprocessor (SMP) power challenge

XL supercomputing nodes. Each PCA node is populated with 12 75-MHz R8000 RISC processors

and 2 GB of shared memory and supports a multitasking, multiuser environment. In each PCA node,

the 12 processors and memory boards plug into a common bus. Each processor within a PCA node

has direct access to all the memory within the node. Thus, on a per-node basis, the PCA is a uniform

memory access (UMA) architecture. Efficient multitasking use of a single PCA node by a single

user can be achieved by using loop-level parallelization directives.

In the loop-level parallelization paradigm, the user or compiler tries to identify loops that can be

run in parallel by distributing the iterations of each loop among threads of execution (usually one per

processor). It is then the job of the compiler, operating system, hardware, and memory consistency

protocol to ensure that the threads of execution receive the correct values for variables being shared

by multiple threads.

The eight PCA nodes are interconnected through an 800 MB/s high-performance parallel

interface (HIPPI) and a 155MB/s asynchronous transfer mode (ATM) network. Thus, while each

PCA node can be thought of as a shared memory processor, the entire array of nodes can be thought

of as a distributed memory system and can be utilized by programming in a message-passing style.

For a processor to have access to the local memory of a processor on a remote node, a copy of the

desired data must be sent from the remote node to the other. This data communication is usually

accomplished by using a message-passing library like message-passing interface (MPI) or parallel

virtual machine (PVM) (see Gropp, Lusk, and Skjellum 1994; Snir et al. 1994; Gast et al. 1995).

While this allows a single user to access more than the 12 processors available within a single

PCA node, going across nodes brings a new set of challenges; that is, rewriting code in a message-

passing style and hiding the substantial latency of the communications.

The Origin2000 at ARL MSRC, is configured with 32 195MHz processors and 12 GB of

memory. Each origin node consists of two RlOOOO processors (4 GB of memory) and connects to

a portion of the input/output (IO) subsystem. The origin nodes are connected together by a scalable

interconnection network. The memory associated with each node is physically distinct; however,

the directory-based cache coherence protocol adds a layer of abstraction that allows the user to see

the memory across nodes as one logical memory space. The directory-based cache coherence

protocol maintains the familiar shared memory programming model of a PCA node. Gone, however,

are the PCA node’s uniform memory access times. Thus, data placement will be an issue for parallel

programs that are memory intensive and are not cache friendly on the Origin2000. Codes for use

on the Origin2000 can be programmed using message-passing and/or loop-level parallelization

techniques.

In order to effectively port production codes originally written for vector processors to

RISC-based parallel computers, different paradigms have been tried by the parallel-computing

community. Among the techniques used are message-passing and loop-level parallelization using

hand-inserted compiler directives or automatic-parallelizing compiler flags. The goals of this report

are (1) to investigate the performance of these two parallel paradigms as they were implemented in

the CFD code Overflow (Burring et al. 1995), and (2) to validate the sequential and parallel results

2

obtained by Overflow on a demonstration problem of interest to the Army; that is, a generic missile

body configuration. All computational simulations are run and performance data are gathered on the

SGI PCA and the Grigin2000.

2. KTA Missile Configuration

In order to validate and test new computational methodologies, a demonstration geometry must

be selected that has been previously studied and is well documented in terms of experimental results.

One geometry of interest to the aerodynamics community at ARL is an ogive-cylinder missile body

configuration for transonic and supersonic velocities. The Defence Research Agency, UK, provided

high-quality experimental data for this configuration that included surface pressure, flow-field pitot

pressures, and force measurements. Under the auspices of The Technical Cooperation Program

(TTCP) with participants from the United States, United Kingdom, and Canada, a number of Navier-

Stokes solvers were applied to the missile geometry to compare predictive capabilities (Sturek et al.

1997). The experimentalgeometry, test conditions, and available experimental data locations as given

to the participants in the study are shown in Figure 1, Table 1, and Table 2, respectively. Figure 1

shows that the configuration is a 3-Cal. ogive with a lo-cal. cylindrical afterbody. Table 1 indicates

that the missile body was tested at Mach conditions ranging from Mach = 0.7 to Mach = 3.5 and at

angle of attacks (AOA) of either 8” or 14”.

3. Computational Grids

Three, structured, single grids were used to solve the six cases. All grids (Figure 2) were

121 x 91 x 89 (axial, circumferential, normal) with a y+ value of approximately 1. The flow about

the missile was considered to be symmetric about the vertical plane. Two planes in the

circumferential direction were added by reflected symmetry. These were needed by the flow solver

to enforce symmetry about the vertical axis. The flow field downstream of the missile was not

considered. The significant difference between the three grids is that the outer boundaries have been

moved farther away from the missile for case nos. 1,2, and 6.

3

17.2”

iII d =3.7i.n

- 3d- 10d

r(x)/d = -0.002615(x/d)3 - 0.03986(x/d)* + 0.30984(x/d)

Figure 1. KTA Geometry.

Table 1. Test Conditions

Table 2. Available Experimental Data Locations

Case No. Forces I Surface Pressures I Pitot Pressures

4

Figure 2. Symmetry Plane of Computational Grids Used in This Study: (a) Case Nos. 1 and
2, (b) Case Nos. 3-5, and (c) Case No. 6.

4. Overflow Flow Solver and Convergence Criteria

Overflow originated at the National Aeronautics and Space Administration (NASA) Ames

Research Center in the sequential F’3DKXimera CFD code developed by Joseph Steger. Over the

years, a number of people have made significant contributions that have taken the Chimera-

overlapped grid capability from a research stage to a production-code status. The Overflow

documentation written by Burring (1995) identifies these individuals and their contributions.

Overflow has been tuned for optimizing memory accesses on a single-processor, RISC-based

system. In addition, Overflow has both loop-level parallelization coding and message-passing coding

to take advantage of computer systems that utilize multiple processors. These two parallel

paradigms, as implemented in Overflow, are discussed in section 5.

Overflow is a thin-layer, Reynolds-averaged, Navier-Stokes solver that utilizes a finite-volume,

implicit, factored diagonal scheme. In this study, code options were selected that produce second-

order spatial accuracy, first-order temporal accuracy, local time-stepping, central differencing in all

directions, and Baldwin-Lomax turbulence modeling (Baldwin and Lomax 1978) plus Degani-Schiff

5

cutoff criteria. The turbulence model has been modified to limit the value of F_ and y_. This is

done by comparing the value of F_ for the current circumferential location with that from the

windward side. If there is a significant difference between the two, the value of F_ and y_ from

the current circumferential location is replaced by F_ and y_ from the previous circumferential

location (Degani and Schiff 1983). The modifications were optimized using case no. 3 and then

applied to the remaining cases.

A combination of criteria was used to determine when a solution had converged. The right-hand

side L-2 norm dropped two orders of magnitude, while the L-2 norm of A Q dropped by four orders

of magnitude after 4,000 iterations (Figure 3). Also, the minimum pressure and density values had

become converged, as well as the integrated forces. Finally, surface pressure plots from successive

runs were compared, with no difference indicating a converged solution.

Figure 3. Convergence Criteria: (a) Right-Hand Side L-2 Norm, (b) A Q L-2 Norm, and
(c) Minimum Pressure and Density History.

6

5. Computational Results and Discussion: KTA Case No. 3

Plots for case no. 3 are presented in the following section. Plots for case nos. 1,2, and 4-6 can

be found in the appendix.

5.1 Sequential Code Validation and Performance. The sequential flow solver was run to

convergence as described in section 4 on an SGI PCA utilizing one processor. Memory requirements

approximately 16 MB, which could be broken into the following categories: were

flow field array w 3 Mb,

grid arrays (X, Y, Z, metrics, etc.) m 8 MB, and

temporary arrays m 5 MB.

The SGI PCA does not utilize a queuing system; therefore, run time was greatly dependent upon

system utilization. When the load factor of the system was low to moderate, the code ran at

approximately 3.4 x lo-’ s per grid point per iteration. During times of heavier usage, performance

dropped to 5.2 x lo-’ s per grid point per iteration. On the Origin2000, the code ran at 1.83 x lo-’ s

per grid point per iteration during periods of low to moderate load factors. The factor of 2 decrease

on the Origin2000 can be attributed to its 195-MIIz (RSOOO) processor in contrast to the PCA’s

75MHz (RlOOOO) processor. Table 3 summarizes the various sequential runs made.

Surface pressure plots are provided in Figure 4 and Figures A- l-A-5. The plots show Cp vs. @

for X/D locations of 2.4,3.5,4.5,5.5,6.5,7.5,9.5, and 11.5 for laminar and turbulent computations,

as well as experimental data. As can be expected, the laminar computations did not adequately

predict flow separation.

7

Table 3. Sequential Run Summary

Code Computer Case No. Grid Turbulence Remarks

1 121 x91 x89 BL+DS Unstable laminar run
after 2,000 iterations

2 121 x91 x89 BL+DS Unstable laminar run
after 2,000 iterations

2 121 x91 x89 BL+DS Time-accurate
Overflow SGI PCA computation

3 121 x91 x89 BL -

3 121 x91 x 89 BL+DS -

4 121 x91 x89 BL+DS -

5 121 x91 x 89 BL+DS -

6 121 x91 x89 BL+DS -

l Expertmental

- AllPtsTutb

-- 30Pts.Turb

0.1

l Experimental

0.05 - All Pts.Turb

XD - 9.5

l Ezqwimental
- AllPts.Turb

-- 30Pts.Turb

.-.- 15Pts.Turb

x/D- 11.5
O.l-

l Ezqwimental

- AllPts.Turb

-- 30Pts.Turb

'-.- 15Pls.Turb

-0.15 .
0 30 90 Phi;eg, 120 150 180

-0.15, & &
Phi&J, 120 150 190

F’igure 4. Surface Pressure Plots for Case No. 3: Mach = 2.5, AOA = 14”, and Re = 1,123,OOO.

8

Pitot pressure calculations are determined for the locations as shown in Table 4. The results of

pitot pressure calculations are shown in Figure 5 and Figures A-6-A-9, where computational results

are shown on the right and experimental data are on the left. In Figure 5 and Figures A-6-A-8, there

are 15 contours evenly spaced between 0 and 0.925, while, in Figure A-9, there are 30 contours

spaced evenly between 0.1 and 0.915.

Table 4. Pitot Pressure Data Locations

Case No.

1

2

Locations

Wd)

8.5 and 11.5

5.5,8.5, and 11.5

The vortex core is evaluated by determining the pitot pressure in a horizontal line from the vortex

core to the symmetry plane. The center of the vortex core for the experimental data is used as the

starting point. Figure 6 and Figures A- 1 l-A- 15 show the comparison between experimental and

computational predictions of the strength of the vortex core. Excellent agreement can be seen in case

nos. 3-5, while in case nos. 1,2, and 6, the strength of the vortex core becomes washed out.

A force and balance is used to measure the experimental, axial, and normal force coeffkients,

as well as the pitching-moment coefficient. The pressure and viscous contributions from the

computational results are integrated to calculate the same coefficients. The results are shown in

Table 5.

9

(4 00

(cl Cd)

Figure 5. Pitot Pressure Contours for Case No. 3: (a) x/d = 5.5, Laminar Computation;

(b) x/d = 5.5, Turbulent Computation; (c) x/d = 11.5, Laminar Computation; and
(d) x/d = 11.5, Turbulent Computation.

Additionally, experimental and computational surface pressures are integrated to compare the

pressure contribution of the axial, normal, and pitching coeffkients as a function of axial location.

The results of this integration can be seen in Figure 7 and Figures A-16-A-17.

. .

10

i *
l Experimental

- Turbulent
- - Laminar

Figure 6. Vortex Core Evaluation for Case No. 3: x/d = 11.5.

Table 5. Force and Moment Coefficients

Case Axial Force Normal Force Pitching-Moment
No. Computation Coefficient Coefficient Coefficient

(CX) CC,) w

Experimental 0.1957 1.9100 10.2417
3 .Laminar 0.1160 2.0006 11.3061

Turbulent 0.1486 1.8779 10.1600

Experimental 0.1694 0.7606 3.4735
4 Laminar 0.0972 0.8228 4.2570

Turbulent 0.1196 0.7507 3.5854

Experimental 0.1833 1.9195 11.1132
5 ,Laminar 0.1129 1.9554 11.4540

Turbulent 0.1407 1.9214 11.2106

11

. Expslmmd Data
- cmpmd - 1wbuletl1
- - - Compmd - laminar

(a)

0.18

0.16

a14
/

Figure 7.

l !3palmmW Dam

- CmpGied - TUtibnl

.-‘-. Cmputsd - Llmlnar

0.12 -

- O.l-

! .Ezqedmenhlm

-CoConpuMd-Tububnl

--- Conpu(ed-hminar

i

Force and Moment Coeffkient vs. Axial Location for Case No. 3: (a) Axial Force,
(b) Normal Force, and (c) Pitching Moment.

In case no. 2, computational results underpredict the strength of the vortex core. A time-accurate

run was made with lowering amounts of dissipation with the hope that this would prevent the vortex

from being washed out. As could be expected, the time-accurate solution was computationally much

more expensive. Additionally, it required a lower initial time step (0.0001 as opposed to 0.01) and

became unstable after 5,650 iterations. At the point it became unstable, the solution was nearly

converged. Unfortunately, the time-accurate computation did not improve the prediction of the

12

I L

strength of the vortex core. As the solution converged, the strength of the vortex core became

washed out, as happened with the local time-stepping calculations (Figure 8).

l Experimental
. -. - Local Time Stepping
- Time Accurate

(5650 Iterations)
- - - Time Accurate

(4500 Iterations)

0.3’ C
0.27 0.5 1 1.5 2

y/d

00

. -. - Local Time Stepping
- Time Accurate

(5650 Iterations)
- - - Time Accurate

(4500 Iterations)

n

0.3
0 0.5 1 1.5 2

W

cb)

l Experimental
. -. - Local Time Stepping
- Time Accurate

(5650 Iterations)
- - - Time Accurate

(4500 Iterations)

(c)

Figure 8. Vortex Core Evaluation for Time-Accurate Computation: (a) x/d = 5.5,
(b) x/d = 8.5, and (c) x/d = 11.5.

3

Computations were begun using the standard Baldwin-Lomax turbulence model that uses the F,,

and ymax length scales in determining the turbulent eddy viscosity, pt. Fmax is found to be searching

in the direction normal to the missile surface for the maximum value of F(y), and ymax is the location

of F,,,,. In the vicinity of flow separation, a distinct F,, and ymax cannot be determined until the far

field is reached. Attempts were made at limiting the region in which the search for F,, took place.

Runs were made in which only the first 30 and 15 points in the normal direction were computed as

turbulent flow. Figure 9 shows the results of these attempts. Clearly, limiting the number of

turbulent points normal to the missile surface had a significant effect, but the number of points to

limit the search region changes as a function of the axial location.

A full implementation of Degani-Schiff modifications to the BaldwinLomax turbulence model

was then added. The original Degani-Schiff modifications restricted the search for F,,,, based upon

the value of ymax of the previous ray using

If a maximum F(y) is not found before ycUtoE is reached, the values of F_ and y,, from the previous

ray are used. For case no. 3, this method did not limit Fmax as desired.

The Degani-Schiff criteria is simply a method of limiting F,,; therefore, the turbulence model

was altered so that F,, was used as the cutoff criteria rather than y_. In this method, the current

value of F,, is compared with that of the windward side. If there is a significant difference between

the two, the current values of Fmax and ymax are replaced with those from the previous ray. After some

testing, the following criteria was settled upon.

0 < 110”

F,, < 2.75 Fmaxo,

@ > 110”

F,, < 1.4 Fmaxo,

14

X/D = 2.4
0.25r

0 Expertmental
- AllPts.Turb
- - 30 Pk. Tutb

.-.- 15 Pts. Turb

-0.05.

-0.1 .
-0.15.

0 30 50 120 150 130

xm - 3.5
0.15.

l Experimental

- All Pts.Turb

-- 30Pk.Turb

.-.- 15 Pts. Tutb

-0.1 .

-0.15.

-O.zo 30 50 120 150 130

x/D - 4.5
0.15-

0 ExperImental

- All Pts.Turb

-- 3OPbTurb

‘-.- 15 Pts. Turb

-0.1 .

-0.15.

-0.2
0 30 60 120 150 130

x/D - 6.5

l Expedmental
- AllPtsTurb

-- 3OPts.Turb

5.j .M
’ 0 30 60

Phl!eg)
120 150 180

X0-9.5

l Experimental

- AllPts.Turb
-- 3OPkTurb

4e150--. 180
Phi (dee)

xm - 5.5

l Experimental

- AllPts.Turb

-- 3OPts.Turb

.-.- 15Pts.Turb

-0.1 .

-0.15.

-0.2
0 3060 Phlepdeg) 120 150 130

xm - 7.5

l Experimental
- All Pts.Turb
-- 3OPts.Turb
.-.- 15 Pb. Turb

-0.1.

x/D-11.5

l Experimental

- AllPkTurb
-- 30Fts.Turb

.-.- 15 Pts. Turb

-o*150---. 130
Phl (deg)

Figure 9. Effect of Limiting Turbulent Region on Surface Pressure Calculations for Case
No. 3.

15

where FmaxO is the value of F,, from the windward side. For @ less than 1 lo”, Fmax must be

sufficiently large to prevent separation from occurring too soon. Above 1 lo”, a smaller cutoff is

used to prevent the flow solver from adding excessive turbulence that does not really exist. As seen

in Figure 10, this criteria significantly alters the calculation of F,,. As seen in Figure 11, the

modified turbulence model more accurately predicts flow separation.

X/d - 4.0 X/d - 5.5

0 0
0 30 60 90 120 150 180 0 30 60 90 120 150 180

phi phi

Figure 10. Effect of Degani-Schiff Modifications on Calculation of F, for Case No. 3: Solid
Line Without Degani-Schiff, Dots With Degani-Schiff.

5.2 Parallel PVM Code. One approach to achieving parallel speedup in Ovefflow is by

splitting the computational work into coarse-grained tasks that communicate using message passing.

There are two options for accomplishing task parallelism within Ovefflow using PVM. One option

invokes a manager-to-worker paradigm, wherein one processor takes on the role of manager and all

communication between the other processes (the workers) must go through the manager. The other

option uses worker-to-worker communication. In this option, the manager becomes a worker and,

instead of having all data communication (i.e., message passing) go via the manager, communication

occurs from peer to peer. The worker-to-worker paradigm reduces the total amount of

communication but involves the use of PvmDataInPlace encoding of the messages being passed.

Unfortunately, this encoding is not supported in SGI’s implementation of PVM on either the PCA

or the 0rigin2000. Thus, only the manager-to-worker paradigm could be tested in this study.

16

0.25-
X0 I 2.4

l Experimental

xm - 4.5

l Experimental
- Rough (3rd
.-.-.- Smooth Grd

-0.1 .

-0.15.

-0.2 0 30 60 Ph&g) 120 150 160

XID -6.5

l Experimental
- Rough Grd
.-.-.- Smooth Grd

-0.15’
0 30 60 Phl:eg, 120 150 160

WD I 9.5
0.1’

0 Experimental
- Rough Grd
.-.-.- Smooth Grd

4

-0.15
0 30 60 Phi: 120 150 160

eg,

xm - 3.5

l Experimental
- RoughGrd
.-.-.- SmoothGrd

30 60
PhIyiag)

120 150 160

x/D - 5.5

l Experimental
- Rough Grd
.-.-.- Smooth Grd

-0.2’
0 30 60 Phi~k!g) 120 150 160

x/D I 7.5

0 Experimental
- Rough Grd
.-.-.- Smooth (3rd

I
-0.150 30 60

Php;Ileq,
120 150 160

X/D= 11.5
0.1 ’

l Experimental
- RoughGrd
.-.-.- Smooth Grd

4

-0.15
0 30 60 Ph&g, 120 150 160

Figure 11. Effect of Degani-Schiff Modifications on Surface Pressure Calculations for Case
No. 3.

17

The strategy of the manager-worker paradigm requires a spatial domain that has been

decomposed into multiple subdomains or zones, which are then distributed over the specified number

of central processing units (CPU). The decomposition of the spatial domain into multiple subdomains

for the purpose of parallel computing is a topic worthy of discussion itself. However, for the purpose

of this report, it is assumed that the decomposition has already been done and the required

subdomains are available. It is up to the user to distribute the zones such that static load balancing

is achieved.

The tasks of the manager code are to (1) enroll in PVM; (2) read the parallel name list that

contains the number of machines, machine names, and executable program names and locations;

(3) read the global name list that contains parameters normally initialized in the sequential run; (e.g.,

number of time steps, Mach no., boundary conditions, etc.); (4) allocate storage for the largest of the

zones and for the Chimera interpolation data; (5) start worker processes; arrange to be notified if any

worker quits; read input parameters, grid, and restart information for each zone; and send all of a

zone’s information to a worker; (6) monitor workers, saving checkpoint files, Chimera information,

and dependent variables; if any worker dies, stop everything; (7) save final dependent state; and

(8) exit PVM, halt.

The tasks of the worker code are to (1) enroll in PVM, (2) get task id of the manager and arrange

to be notified if the manager dies, (3) receive global parameters and grid dimensions from the

manager and allocate storage for the grid and dependent variables, (4) receive from manager other

input parameters and restart information needed to performcomputation, and (5) start working, (i.e.,

advance the solution of the Navier-Stokes equations, abort run if metrics, density, or pressure goes

negative and tell manager; otherwise, send dependent variables and residual norms to manager as

needed).

5.3 Parallel Loop Optimization Code. Another approach to obtaining parallel speedup is by

exploiting loop-level parallelism in the code. Loop-level parallelism can take the form of data

parallelism and/or task parallelism, wherein the iterations of a loop are distributed among the

user-specified number of processors. Data parallelism involves loops with only computational

manipulations, while task parallelism involves loops with subroutine calls. Either is accomplished by

18

by the addition of doacross SGI compiler directives before loops with significant work and no data

dependencies.

An example of task parallelism from the Ovefflow code itself is shown as follows.

C$DOACROSS SHARE (JPER, KS,KE,LS,LE,Q,VGAMMA,S,XX,XY,XZ,XT,

cw
C$&

&

100

JD,KD,LD,TMI’2,NTMP2)

LOCAL (L,ITMP2)

DO 100 L = LS,LE

CALL GETARX (NTMP2, TMI’2,lTMP2)

CALL RECJ2 (JPER, KS,LE,L,Q,VGAMMA,S,XX,XY,XZ,XT,

TMP2 (ITMP2,l ,l), JD,KD,LD)

CALL FREARX (NTMP2, TMP2, ITMl’2)

CONTINUE

In Overflow, a select set of subroutines that should benefit from parallel execution is compiled

with the -pfa option. The -pfa option to the FORTRAN compiler attempts to find and implement data

parallelism automatically. It does not attempt to find task parallelism automatically. To assist the

compiler, Ovefflow contains some user-inserted doacross directives within the select set of

subroutines. The doacross directives essentially let the compiler know that the loop iterations do not

carry data dependencies and it is “safe” to distribute the iterations of the loop among the processors.

One advantage of loop-level parallelization is that it can be done incrementally, with checking for

correctness and performance increases.

Experimentation with the automatic parallelizing -pfa option and the user-inserted compiler

directives led to the results in Table 6. Recall that the sequential version of the code completes 50

iterations in 1507. The second column shows what happens when -pfa is used on all of the

subroutines in Overflow; that is, the executable generated gets into an infinite loop. The third

column shows the timings generated when -pfa is used on the select subset of files thought to benefit

19

Table 6. Automatic Parallelizing Compiler Performance Results

16 126:20+ 13:43 412 2:Ol

31 - 13:45 358 1:35

most from parallel execution, but with the user-inserted compiler directives commented out. Parallel

speedup is practically nil, and there is no noticeable scalability. The fourth column uses an option

to the FORTRAN compiler (-mp) that only produces parallel code for the loops preceded by

user-inserted compiler directives. No automatic parallelism is attempted by the compiler. The

timings show some speedup and scalability. The final column presents the timings that are obtained

when the -pfa option is used on the select subset of subroutines and the user-inserted compiler

directives are left on. This column produces a reasonable level of speedup and scalability. The table

clearly indicates that the indiscriminate use of the -pfa option on a large scientific code like Ovefflow

can lead to incorrect executable code and that even more thoughtful use of -pfa must be

supplemented by user-inserted compiler directives for reasonable results to be obtained.

5.4 Performance of Parallel Codes. Table 7 presents Overflow performance timings from the

sequential version of the code followed by timings using loop-level parallelization and, finally, using

PVM message passing. All timings are based on 50 iteration runs that use -mips4 and -03 options

to the ftn77 compiler. Also, the PVM runs on the PCA were executed using CPUs within a single

node. All timings were obtained while in dedicated mode. During times of normal usage, the system

load fluctuates and it is very hard to get repeatable run times. In general, the run times for a heavily

loaded node can increase by as much as 30-40%.
-.

20

Table 7. Performance Timings

Code Version

Sequential

Loop-level
parallelization,
compiler directives,
and -pfa

PVM message
passing

No. of PCA
Processors (wall clock time)”

1 33:Ol

1 33:09
4 8:24
8 5:29
16 -
31 -

4 9:31
8 7:58
16 -

origin2ooo
(wall clock time)”

15:07

15:20
4~42
2:47
2:Ol
1:35

5:35
3:ll
1:57

a Timing obtained while in time-sharing mode.

While the loop-level parallelization paradigm appears to produce better scalability in the range

of l-8 processors, scalability falls off in the range of 9-31 processors, and, in fact, the message-

passing paradigm appears to be producing a slightly better timing (1:57) than the timing (2:Ol)

produced by the current loop-level parallel implementation of the code for the case of 16 processors

on the Origin2000.

Figure 12 plots the speedup vs. the number of processors on the Origin2000 for the loop-level

parallel code. Above six processors, the scalability of the code falls significantly short of ideal.

However, given the code is not embarrassing parallel, a better comparison to make is to Amdahl’s

law: Speedup = l/((p/n) + (1 -p)), where n equals number of processors and p equals fraction of

the program’s code that has been made parallel.

The speedup predicted by Amdahl’s law and plotted in Figure .12 is obtained by measuring the

execution times T(1) and T(2) for a one-processor and two-processor case, respectively. Then,

Speedup(2) = T(l)/T(2). Further, Amdahl’s law is rearranged to yield the fraction (p) of the

program’s code that can be made parallel: p = 2 * (Speedup(2) - l)/(Speedup(2)), This fraction can

21

25

920

3 Pi5
tn

10

5

0

1 2 4 8 10 31
no. processors

- ideal

_ _ - - Amdahl’s Law

- . loop level parallelism

Figure 12. Scalability of Loop-Level Parallel Code Implementation.

then be used to extrapolate the speedup for cases where the number of processors is greater than two.

However, Amdahl’s law assumes that all CPUs are equal and that the units of work assigned to each

CPU are also equal. Thus, it is important to check the two-processor case to make sure that indeed

each processor is doing the same amount of work. In this study, 50 iterations did not produce good

load balancing, while 1,000 iterations did for the two-processor case. The timings for the

1 ,OOO-iteration case produced a Speedup(2) = 1.89 and a parallel fraction p = 0.939.

In Figure 12, the actual speedup is slightly lower than Amdahl’s law predicts. There can be many

reasons why the actual speedup is less than predicted. Contributors can be discovered by looking

at performance data. Performance data were collected on the Origin2000 using the profiling tools

perfex and speedshop.

The RlOOOO design in the Origin2000 provides hardware support for counting various types of

events, such as cache misses, memory coherence operations, and graduated (completed) floating-

point operations. These counters are useful for gaining insight into where and how time is spent in

an application and for discovering performance bottlenecks. The counters were designed by SGI to

extract information without affecting the behavior of the program being monitored and to not

degrade the performance of other hardware.

22

Several sources of poor scaling that can be examined by looking at event counts are load

imbalance, excessive synchronization costs, and false sharing. Load imbalance can be checked by

determining whether all threads issue a similar number of graduated floating-point operations.

Excessive synchronization costs are determined by examining whether the counts of store

conditionals are high. Finally, if false sharing is a problem, then the counts of store exclusive to

shared blocks should be high. False sharing is a potential problem in any cache-based, SMP system.

False sharing occurs when two or more processors access different variables that happen to be

colocated on the same cache block, with at least one of the accesses being a write. Once the write

occurs, the entire cache line is invalidated to other processors. Thus, any attempt by the other

processors to use another data item in the cache line will require the entire cache line to be updated

first.

Figure 13 presents the event counts obtained for floating-point operations, synchronization, and

false sharing. It is evident from the bar graph that the majority of the run-time cost is being spent

on floating-point operations followed by false sharing and, fmally, synchronization. The

countervalues multiplied by the typical event times did not change the relative magnitude and

ordering of the counters. In addition, note that the last processor is always performing more work

than the others, signifying load imbalance. To increase the overall scalability of the code past eight

processors requires more effort in the parallelization effort of the remaining sequential code. Then,

the next step to improving the comparison to Amdahl’s law should probably involve trying to

improve load balance.

6. Conclusions/Future Work

The validation part of this study clearly illustrates that a laminar solution is not adequate for

flows with moderate amounts of separation. By making simple modifications to the Baldwin-Iomax

turbulence model, significantly more accurate surface pressure predictions can be made. In some

cases (case nos. 1,2, and 6) the strength of the vortex core becomes washed out.

23

Event Counts for 2 CPUs Event Counts for 4 CPUs

1 .OOE+l 0

l.OOE+OQ

1 .OOE+O8

I .OOE+O7

I .OOEW8

1 .OOE+OS

1 .OOE+O4

1 .oOE+lO -

1 .OOE+Og -

1 .OOE+O8 -

1 DOE+07 -

1 .OOE+O8 -

1 .OOE+O5 -

1 .OOE+O4 -

Event Counts for 8 CPUs

1.aoE+lo

l.OOE+fN

l.OOE+O8

l.oOE+QT

l.OOE+W

1 .OOE+o5

l.OOE+O4

I synch-t I
Fkating pt ops False sharlng

Event Counts for 16 CPUs

1 .OOE+OQ
1 .ooE+08
1 .OOE+07
I .OOE+O8
1 .OOE+O5
1 .OOE+W
1 .OOE+03

q pl
m P2 rnP3 mpr

P5 q P8 m P7 m P8
m PQ m PI0 w Pll m PI2
fz$j PI3 m PI4 n PI5 m ~18

Figure 13. Floating-Point Operations, Synchronitition Cost, and False Sharing Event Counts.

. .

The flow solver was found to be straightforward and easy to use. The manual (Buning 1995),

though, could be significantly improved. As stated in the manual, it is intended for users familiar

with the flow solver F3D. The manual mostly describes differences between Overflow and F3D,

input and output files, and name list specifications. There is a small section on experiences with

Overflow. Many little helpful hints, such as the need to add two planes by reflected symmetry to

enforce symmetry about the vertical axis, are not mentioned in the manual.

On the SGI PCA, performance utilizing a single processor was just adequate, as 2,000 iterations

could be completed in less than a 24&r wall clock time. On the Origin2000, the same run could be

completed in less than a 12-hr wall clock time. Significant improvements in wall clock time could

be obtained by using a parallel version of the code. The loop-level parallel version of Ovefflow

performed the best on both the Origin2000 and the PCA in the range of two to eight processors.

However, ideal scalability significantly fell off above eight processors on the Origin2000. As

’ confirmed by an analysis using Amdahl’s law, the scalability above eight processors is severely

limited by the fraction of the code being run sequentially. The actual speedup is even less than

Amdahl’s law predicts due mainly to load imbalance. Even with the scalability limitations just

described, the loop-level parallel version of the code achieves a speedup of approximately 7.5 and

10 using 16 and 3 1 processors of the Grigin2000, respectively. The message-passing version of the

code performed similarly. Thus, both loop-level parallelization and message passing are viable

paradigms for a shared memory or distributed shared memory architecture. The shared memory

paradigm has the advantage of being easier to program, but has the distinct disadvantage of being

less portable in an efficient manner than a message-passing implementation for distributed memory

architectures. However, research into compile-time and run-time software distributed shared

memory systems (Dwarkadas, Cox, and Zwaenepoel1996) may eventually make shared memory as

efficient as message passing, even on distributed memory architectures.

Future work will focus on additional loop-level parallelization of the remaining sequential

fraction of Overflow’s program. Also, a larger grid size will be used to determine if the sequential

code increases, decreases, or stays the same with increasing grid size. If the sequential fraction of

code decreases, the scalability should improve. Additional comparisons to the message-passing

25

paradigm will be continued for a larger numbers of processors. However, setting up runs for

message-passing runs becomes very tedious above 16 subdomains; therefore, automatic-domain

decomposition tools will be studied as well. Finally, preliminary performance profiling and analyses

are presented in this report. Future work will further investigate the costs associated with sequential

vs. parallel code and the costs due to memory hierarchy accesses.

. .

26

7. References

Baldwin, B. S., and H. Lomax. “Thin Layer Approximation and Algebraic Model for Separated
Turbulent Plow.” AIAA Paper 78-257, January 1978.’

Buning, P., et al. OVERFLOW User’s Manual. NASA-Ames Research Center, June 1995.

Degani, D., and L. B. Schiff. “Computation of Supersonic Viscous Plows Around Pointed Bodies
at Large Incidence.” AIAA Paper 83-0034, January 1983.

Dwarkadas, S., A. Cox, and W. Zwaenepoel. “An Integrated Compile-Time/Run-Time Software
Distributed Shared Memory System.” White Paper, Department of Computer Science, Rice
University, 1996.

Geist, A., A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PUM3 User’s Guide
and Reference Manual. ORNL-TM- 12 187, May 1993.

Gropp, W., E. Lusk, and A. Skjellum. “Using MPI Portable Parallel Prograrnming With the
Message-Passing Interface.” MIT Press, Cambridge, MA, 1994.

Snir, M., S. Otto, S. Huss-Lederman, and D. Walker. “MPL the Complete Reference.” MIT Press,
Cambridge, MA, 1994.

Sturek, W., et al. “The Application of CID to the Prediction of Missile Body Vortices.” AIAA
Paper 97-0637, January 1997.

27

INTENTIONALLY LEFT BLANK.

28

1

Appendix:

Plots for KTA Case Nos. 1,2, and 4-6

29

bU73TIONALLY LEFT BLANK.

. .

30

X/D - 2.4 X/D I 3.5
0.1 r

I Y

I ’

l Experimental
- Turbulent
-- Laminar

-0.25.

0 30 60 120 150 180

WD I 4.5 X/D - 5.5
0.1 -

-0.25.

-0.3' 120 150 160
-0.25'

0 30 60 Phi:@ 0 30 60 90 120 150 160
Phi (deg)

WD - 6.5 X/D -7.5
0.1 r O.l-

l Experimental
- Turbulent
- - Laminar

-020WW
Phi (deg)

-0% 30 60
Phi;e@

120 150 160

Figure A-l.

WD -9.5

l Experimental
- Turbulent
- - Laminar

x/D- 11.5
0.1.

-0.15 0 30 60 90 120 150 160 -"'150 30 60 90 120 150 160
Phi(deg) Phi (deg)

Surface Pressure Plots for Case No. 1: Mach = 1.45, AOA = 14”, and
Re = 667,000.

31

WD I 2.4

l Experimental
- Turbulent
- - -. Laminar

X/D - 4.5
0.1 _

l Experimental
- Turbulent

%

-0.25
0 30 60 120 150 160

WD -6.5

l Experimental
- Turbulent
- - -. Laminar

0"

\I 0.

-".250 30 60 120 150 160

l Experimental
- Turbulent
---. Lamlnar

-0.25'
0 30 60 120 150 180

x/D - 5.5

l Experimental

-0.25
0 30 60 120 150 160

O.lr

0.05 l Experimental
- Tuttwlent

0 ---. Lamlnar

-0.2'
0 30 60 120 150 160

X/D - 9.5 x/D-11.5
0.1 - O.l-

0 l *.

l ExperImental l Eq_wrimental
- Turbulent - Turbulent
- --. Lamlnar - - -. Lamlnar

4 %

-0.15
0 30 60 120 150 160

-0.15
0 30 60 120 150 160

. .

Figure A-2. Surface Pressure Plots for Case No. 2: Mach = 1.8, AOA = 14”, and
Re = 667,000.

32

X/D I 2.4 X/D I 3.5

0.125r 0.05 I

.

.a

l Experimental
- Turbulent
---. Laminar

%
-0.025.

l Experimental
- Turbulent
---. Laminar

-0.05
-0.025

I -0.050 30 60
Ph&9,

120 150 180
-0.075; i. &

Phig9,
120 150 180

0.05 -

9
-0.025

-0.05

-“*0750

X/D - 4.5 x/D - 5.5
0.05 -

l Experimental l Experimental
- Turbulent - Turbulent
- - - Laminar ---. Laminar

%
-0.025.

-0.05.

60
PhigPde9)

120 150 180 -o.0750 i. &
Ph&g,

120 150 160

X/D -6.5 x/D - 7.5
0.05

I
0.05

I

l Expedmental l Experimental
- Turbulent - Turbulent
---. Laminar ---. Lamlnar

0” %

-0.05.

-“.0750 30 60 90 120 150 160 -0.075 0 30 60 120 150 160
Phi (deg) Phi$eg)

Figure A-3.

X/D - 9.5

l Expertmental
- Turbulent
- - - . Laminar

x/D- 11.5
0.05 -

l Experimental
- Turbulent
---. Laminar

4

-0.05. -0.05

-0.075.
0

i. g,
Phl:eg, 120 150 160

-0.075
0 30 60 Ph;sg, 120 150 160

Surface Pressure Plots for Case No. 4: Mach = 3.5, AOA = 8”, and
Re = 1,123,OOO.

33

X/D - 2.4

. Experimental
- Turbulent
- - Lamlnar

WD - 3.5

. Ex$wimenlal

- Turbulent

- - Lamlnar

-0.05.
-0.05

-0.1 . -0.1

0 30 60 Phis(kg) 120 150 160 0 30 60 PhiFeg) 120 150 160

Figure A-4.

x/D - 4.5

l Experimental
- Turbulent

- - Laminar

x0 - 5.5

l Experimental

- Turbulent

- - Lamlnar

-0.05 -0.05

-0.1 . -0.1

0 30 60 Phl$eg, 120 150 160 0 30 60 PhlEfkg, 120 150 160

XJD - 6.5 xm - 7.5

l Experimental
- Turbulent
- - Lamlnar

l Experimental
- Turbulent
- - Laminar

-0.1; 30 60 120 150 160 -0.1’ 0 30 60
Ph&g,

120 150 160

X/D - 9.5 xm-11.5
0.1 0.1

l Experimental l ExperImental
0.05

0 n

- Tuttwlent 0.05 - Turbulent
- - Laminar

4 % 0 h - - Laminar

Phi (deg) Phi (deg)

. .

Surface Pressure Plots for Case No. 5: Mach = 3.5, AOA = 14”, and
Re = 1,123,OOO.

34

X/D - 2.4 X/D - 3.5
0.05 r l Experimental

l Experimental
- Turbulent
- - Lamlnar

-0.3 .
0 30 60 90 120 150 160

Phi (deg)

- Turbulent
- - Laminar

-0.2.

0 30 60 Phi(l:eg, 120 150 160

WD -4.5

l Experimental
- Turbulent
- - Laminar

X/D. 5.5

l Experimental
- Turbulent
-- Laminar

%

-0.15.

-0.20 30 60 120
Phi;eg,

150 160

X/D - 6.5

l Experimental
- Turbulent
- - Laminar

WD - 7.5

l Experimental
- Turbulent
- - Laminar

XID - 9.5

l Experimental
- Turbulent
- - Lamlnar

x/D-11.5
0.1 -

l Experimental
- Turbulent
- - Laminar

4

-0.15. -0.15.

0 30 60 Phi:eg) 120 150 160 0 30 60 Phi& 120 150 160

Figure A-5. Surface Pressure Plots for Case No. 6: Mach = 0.7, AOA ‘= 14”, and
Re = 667,000.

35

(a)

Cc) W

Figure A-6. Pitot Pressure Contours for Case No. 1: (a) x/d = 8.5, Laminar Computation;
(b) x/d = 8.5, Turbulent Computation; (c) x/d = 11.5, Laminar Computation; and
(d) x/d = 11.5, Turbulent Computation.

36

60 (W

Figure A-7.

(d (0

Pitot Pressure Contours for Case No. 2: (a) x/d = 5.5, Laminar Computation;
(b) x/d = 5.5, Turbulent Computation; (c) x/d = 8.5, Laminar Computation;
(d) x/d = 8.5, Turbulent Computation; (e) x/d = 11.5, Laminar Computation; and
(f) x/d = 11.5, Turbulent Computation.

37

(a) (b)

Figure A-8. Pitot Pressure Contours for Case No. 4: (a) x/d = 11.5, Laminar Computation;
and (b) x/d = 11.5, Turbulent Computation.

38

(a) (b)

Figure A-9.

(c) Cd)

Pitot Pressure Contours for Case No. 5: (a) x/d = 5.5, Laminar Computation;
(b) x/d = 5.5, Turbulent Computation; (c) x/d = 11.5, Laminar Computation; and
(d) x/d = 11.5, Turbulent Computation.

39

Figure A-10.

(4 00

Pitot Pressure Contours for Case No. 6: (a) x/d = 8.5, Laminar Computation;
(b) x/d = 8.5, Turbulent Computation; (c) x/d = 11.5, Laminar Computation;
and (d) x/d = 11.5, Turbulent Computation.

.

40

l Experimental

- Turbulent

- - - Laminar

0.4’ ,
0 0.32 0.5 1 1.5 2

l Experimental

7 Turbulent

- - - Laminar

‘j 0.6 .Z ‘, :
a

t

0.
*

0.5' I

0 0.26 0.5 1 1.5 2
y/d

Figure A-11. Vortex Core Evaluation for Case No. 1: (a) x/d = 8.5, and (b) x/d = 11.5.

41

lr

(a)
l Experimental

- Turbulent
- - - Laminar

0.3’ ’
0.27 0.5 1 1.5 2

l Experimental
- Turbulent
- - - Laminar

0.3 I I
0 0.5 1 1.5 2

y/d

* Experimental
- Turbulent
- - - Laminar

P
0.3 ’ 0

0 0.3io.5 1 1.5 2
y/d

Figure A-12. Vortex Core Evaluation for Case No. 2: (a) x/d = 5.5, (b) x/d = 8.5, and
(c) x/d = 11.5. .

42

I.
1 ‘\

l \
.’

i \

\
. \

.95 l ’
l \
l \

l Experimental
- Turbulent
--- Laminar

0.85t 2
I I

0 0.23 0.5 1 1.5
y/d

(a)

l Experimental
- Turbulent
- - - Laminar

E . l

-5 . l

.e
a 2

0.85 -
I I

0 0.21 0.5 1 1.5 2
Y/d

.

Figure A-15. Vortex Core Evaluation for Case No. 6: (a) x/d = 8.5, and (b) x/d = 11.5.

44

0.014 .'

0.012

0.01

~o.U15

0.008

h

. EtQwlmullal D&n

- computed - Tulbubnl

- - - CbmpuM - Lamlnar

r::4
0 2 4 6 5 10

xl0

04

. UpalmntalData

- Computed-Turbulent
--- Computsd-Lsrnlnar

OY i
. ExperlmmltalDala

- conpulad - Turbubnl
- - - compui.3d - Lamllw

0.01

Ov.
0 2 4 6 8 10 12 14

x/o

Figure A-16. Force and Moment Coeffkient vs. Axial Location for Case No. 4: (a) Axial
Force, (b) Normal Force, and (c) Pitching Moment.

45

. Expaimemml Dam

- CiYmputed - TUrbu!ull

- - - Gmputed - Lamlnar

02r

0.15 -

I
l Expclrlfmnlal Dal4

- Conpuled-Turbubnl

--- conpuld-minr

xm

Figure A-17. Force and Moment Coefficient vs. Axial Location for Case No. 5: (a) Axial
Force, (b) Normal Force, and (c) Pitching Moment,

46

AOA

BL
CFD

Cnl
s cn

CP
cx
DOD
DS
F
G:

Hg
K
KTA

MPI
MSRC

:CA

PlJ
PVM

Q
Re
RISC
SGI
SMP

Tll

u,
Y’
Y max

P

Pt

z

List of Abbreviations and Symbols

angle of attack
U.S. Army Research Laboratory
Baldwin-Lomax
computational fluid dynamics
pitching-moment coefficient
normal force coefficient
coefficient of pressure
axial force coefficient
Department of Defense
Degani-Schiff
maximum of function F(y)

gigabyte(s)
mercury
Kelvin
key technical area: the application of computational fluid dynamics (CID) to the
prediction of missile-body vortices
megabyte(s)
megahertz
message-passing interface, a message-passing library
major shared resource center
density
Power Challenge Array
stagnation pressure
parallel virtual machine, a message-passing library
vector of dependent variables
Reynolds number
reduced instruction set computer
Silicon Graphics Incorporated
shared-memory multiprocessor
stagnation temperature
uniform memory access
fiction velocity, m
law-of-the-wall coordinate, pa u, y/p0
value of y at which F(y) is maximum
first coefficient or molecular coefficient of viscosity
eddy viscosity coefficient
viscous stress

47

hTE%TIONALLY LEFl’BLANK.

i

48

,

I

NO. OF
COPIES

2 DEFENSE TECHNICAL
LNFORMATION CENTER
DTIC DDA
8725 JOHN J KINGMAN RD
STE 0944
ET BELVOIR VA 22060-6218

HQDA
DAMOFDQ
D SCHMIDT
400 ARMY PENTAGON
WASHINGTON DC 203 lo-0460

OSD
OUSD(A&T)/ODDDR&E(R)
RJTREW
THE PENTAGON
WASHINGTON DC 20301-7100

DPTY CG FOR RDE HQ
US ARMY MATERIEL CMD
AMCRD
MG CALDWELL
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

INST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS AT AUSTIN
PO BOX 202797
AUSTIN TX 78720-2797

DARPA
B KASPAR
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

NAVAL SURFACE WARFARE CTR
CODE B07 J PENNELLA
17320 DAHLGREN RD
BLDG 1470 RM 1101
DAHLGREN VA 22448-5 100

US MILITARY ACADEMY
MATH SC1 CTR OF EXCELLENCE
DEPT OF MATHEMATICAL SC1
MAJ M D PHILLJPS
THAYERHALL
WEST POINT NY 10996-1786

?

*

49

L

NO. OF
COPIES ORGANIZATION

DIRECTOR
US ARMY RESEARCH LAB
AMSRL DD
J J ROCCHIO
2800 POWDER MILL RD
ADELPHI MD 20783-l 145

DIRECTOR
US ARMY RESEARCH LAB
AMSRL CS AS (RECORDS MGMT)
2800 POWDER MILL RD
ADELPHI MD 20783-l 145

DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI LL
2800 POWDER MILL RD
ADELPHI MD 20783-l 145

ABERDEEN PROVING GROUND

DIR USARL
AMSRL CI LP (305)

NO. OF
ORGANIZATION COPIES

14 AMSRL CI c NIETuB1cz
AMSIU CI HA W STUREK
AMSRL CI HC

D PRESSEL
D HISLEY
C ZOLTANI
J GROSH
A PRESSLEY
P DYKSTRA

AMSRL SC S A MARK
AMSRLWMB

JSAHU
K HEAVEY
H EDGE
P WEINACHT

AMSRL WM BE M NUSCA

50

f a Sequential and Parallel Computational Fluid Dynamic -(CFD>

423612.000 MS4B

Xxie Hisley and Duane Frist

J.S. Army Research Laboratory
4TTN: AMSRL-CI-HC
4berdeen Proving Ground, MD 210055067

Il. SUPPLEMENTARY NOTES

12a. DlSTRlBUTlON/AVAlLABlLlTY STATEMENT

Approved for public release; distribution is unlimited.

1

(

t

2

I

(

I
i

(

1

f

3. ABSTRACT(hlaximum 200 words)

In order to effectively port production codes originally written for vector processors to reduced instruction set
‘RISC)-based parallel computers, different paradigms have been tried by the parallel computing community. Among the
echniques used are message-passing and loop-level parallelization using hand-inserted compiler directives or

mtomatic-parallelizing compiler flags. The goals of this report are (1) to investigate the performance of
nessage-passing and loop-level parallelization techniques, as they were implemented in the computational fluid
lynamics (CFD) code overflow, and (2) to validate the sequential and parallel results obtained on a demonstration
lroblem of interest to the Army-that is, a generic missile-body configuration. The computational simulations were run,
md performance data were gathered on a Silicon Graphics Incorporated (SGI) Power Challenge Array (PCA) and

3rigin2000.

14. SUBJECT TERMS 15. NUMBER OF PAGES

loop-level parallelization, message-passing parallelization, computational fluid dynamics, 54
computer simulations, SGI Power Challenge Array, SGI Origin2000 16. PRICE CODE

ARL-TR-2032

AGENCY REPORT NUMBER

12b. DISTRIBUTION CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSlflCATlON 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSlFlED UL
hlEhl ,r”n_n,_,a”_**nn Stan&-l en*,.. 0011 IPa,, Q-Qfl\

51
..,“~.I” I “llll &CT” \,,.a”. ,G-xl.Tl,
Prescribed by ANSI Std. 239-18 298-l 02

INTENTIONALLY LEFI’BLANK.

52

J

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers
to the items/questions below will aid us in our efforts.

1. ARL Report Number/Author ARL-TR-2032 (Hislev) Date of Report August 1999

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will

be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs

avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization,

technical content, format, etc.)

CURRENT
ADDRESS

Organization

Name E-mail Name

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old

or Incorrect address below.

OLD
ADDRESS

Organization

Name

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

