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Abstract

Future systems performance requirements haveled to aheightened avareness of theerosonissue
and to the development of eroson investigations in the U.S. Army and Navy. These investigations
involve experimenta and modding efforts to understand the therma, chemica, and mechanica
contributions to eroson/wear. A description of the mechanistic eroson representation followsin this
report. The caculation procedure is illustrated, including details of the mass trangport scheme,
gas surface interface, surface melt wipe modd with dynamic gridding, and the equilibrium kinetics
model, which utilizesthe NASA Lewisthermochemcid library.

Thefollowing cartridgesareinvestigated: the M829A2 APFSDS in the M 256 120-mm tank cannon
and the M791-APDS-T and 616W-APFS (the “origind” M919), both in the 25-mm Bushmaster
cannon. The resulting mass lost per round for these systems compares well quditatively with the
experimenta data, providing some support to the assumptionsin the code. The primary conclusionis
that carburization leading to iron carbide formation is an important contributing factor for much of the
materid lost from the stedl barrel once it is exposed through cracks or chipsin the surface coating.
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1. Introduction

System performance demands are forcing changes in gun tubesin the areas of pressure limits, length,
firing rate, and eroson resstance. Thishas created aresurgence of theinterest in gun tube erosion and the
associated mechanisms. Higtoricdly, the propellant adiabatic flame temperature was used as an indicator
of the erogvity of apropellant. Unfortunately, flame temperature is not the only factor [1, 2] influencing
the erosion process, which includes mechanica aorasion, pyrolysis, mdting, and spdling. Also, oncethe
erosionrate was predicted using the flame temperature correlations, understanding what could be doneto
mitigate the eroson was left a mystery with the exception of the obvious solution of applying surface

coatings or ablatives.

The effectiveness of surface coatings depends upon the ability of the coating to block the thermd and
chemical attack of the propellant combustion productswith the gun bore surface. Permanent tube coatings,
such as chromium, have been successfully implemented in both artillery and direct-fire systems. One
concern for the use of chromium as a coding is that the hexavdent date used in dectroplating is
environmentaly undesirable to the level that one day it may be eiminated as adesign option. Many other
coatings, such asfunctiondly gradient coatings and ceramic coatings, athough unsuccessful inthepas, are
continuoudy being examined as possible candidates[3]. Also being examined are refractory metals, such
as rhenium, molybdenum, niobium, and tantalum, of which tantalum appearsto be the optimal choice [4].
Much effort is being placed in coating process technology for these materias by various eements of the
Army and Navy. Successful implementation of propelling charge additives, such as tac, TiO,, waxes,
greases, and combinations thereof, that deposit on the tube or in the boundary layer and act as coatings
are usudly Edisonian in nature and without knowledge of the mechanisms of how or why one additive

works better than another.

Attemptsto modd eroson using firgt principleshave been and are currently being made[5-8], dthough
it isbelieved that Sgnificant additiona work istill required to understand the fundamenta physicsinvolved.
In this report the possible mechanisms will be elaborated upon and then gpplied to specific systems.



2. Mechanistic Description

A modular treatment of the contributing factorsto erosion consigting of three fully coupled portions, to
indude therma ablation with an iterative solution for the surface regresson; independent heat and
multicomponent species mass transport to the surface; and full equilibrium thermochemistry was utilized.
The contributions due to mechanica wear and abrasion, however, are not included. A surface control
volume trestment ensures conservation of mass. The gas-phase propertiesin the core flow of the gun tube
from the XKTC [9] or NGEN [10] interior balistic codes are used in the calculations, aswell as species
datafrom IBBLAKE [11-13] or NGEN. Thethermochemistry calculation incorporatesthe NASA Lewis
[14] thermochemica database.

Primary featuresinclude:

Variable surface thermo-physica properties. specific heat C, and conductivity k.

» Surface materid phase change from base-centered cubic (BCC) to face-centered cubic (FCC). The
materia replenishment section recognizes the surface temperature and the correct phase. There are
no phase change hysteresis nor are there two-phase (BCC+FCC) regions.

* A user-defined “freeze-out” temperature to enable the surface chemistry portion.

* A user seection for two-phase control volumetemperature: (1) Surface temperature and (2) amixture

control volume temperature with both gas- and solid-phase contributions.

»  User-defined surface materials, both reactant and product species.

» A user-defined surface coating - if any.



* No hardwired inputs. All primary inputs are user defined.

The following assumptions are in the modd:

One-dimensiona (1-D) heat conduction.

»  Subsurface 1-D diffusion only of carbon.

» All surface liquids and gas products are removed.

* No feaedback to the interior ballistics cdculation in the core flow.

* Released chemicd energy treated as a source term.

*  Species are chemicdly frozen from core flow to the wall.

The description, shown conceptudly in Figure 1, enables the surface to heat convectively until the
user-defined freeze-out temperatureisovercome. At thispoint, thecontrol volumeat the surfaceisdefined
and supplied with speciesfrom the masstransport routines. Surface reactions are then permitted to occur,
which release additiond energy into the system as a surface source term and produce various gas, solid,
or liquid products. The reaction products can be ether unvaried, as some solid materias, or be removed
fromthe areaasliquids or gases. Thelatter caseresultsin pyrolysisor ablation. Asthe surface regresses,

the solids are refreshed accordingly with fresh stedl.

Preliminary cdculations must be made using interior balistic codes to provide the core flow state
variables of temperature and pressure aswell asthevelocity and the species concentrations. These outputs

are then used as input aong with a user-defined input file to the caculation.
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Figure1l. Conceptual Erosion Description.

3. Ablation-Conduction Model and Computational
Approach

The in-depth temperature response, T(r), of the unablated (solid) materia is modded using the 1-D

heat conduction equation as follows:

pc M« L M[ g MT} )
PMt (S Mr Mr

By seting$ " 0or$ * 1, the planar or axisymmetric form of the governing equation can be obtained. In
thisform of the equation, the relevant materid propertiesare density, D, specific heet, C,,, and conductivity,
k. The conductivity and specific heat may vary but must remain continuous.



The surface (heet) energy baance, while gross melting is not occurring, includes the convective heet
input to the surface dong with the possible contribution due to the surface reaction, shown in equation 2.
This source term is balanced with the energy conducted through the materidl.

) MT

- !kM=- & source 2

h( Toe ' Toan r

gas

However, when the system is melting, the energy baance aso includes the fixed-surface temperature
condition and the unknown surface location. The surface temperature cannot rise beyond the specified
mdting va ue because any additiond energy isapplied to the latent heat of formation of the molten materid,

as shown in equations 3 and 4, where S, ; is the surface location:
Toar ~ Trat 3

Mssurf - MT
DLM_t h( Te& Toa ) % kW & Source. (4)
To provideclosurefor thein-depth temperature response of the gun tube, aconvective boundary condition
is applied to the outer surface of the gun tube.

MT

hamb( Touter&wdl& T, } . &kW 5)

The governing equations and boundary conditions are solved using a Crank-Nicholson finite-difference
technique. Prior to the onset of mdting, the governing equations and boundary conditions are linear and
solutions are obtained in adirect (noniterative) fashion. During the melting process, the equations become
nonlinear since the dimensions of the computational domain are coupled with the regresson rate. An

iterative agpproach is utilized during melting to appropriately address the nonlinesrity.

Because the boundary of the computationad domain moves during the erosion event, a transformed
verson of the governing equation is employed. This dlows the equations to be solved in a fixed
computationa space even though the physical boundary ismoving. A generdized transformation between



the computational coordinate, >, and the physica coordinate, r, isutilized. The transformed equations are

shown below.
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In this form, the nonlinear nature of the governing equation produced by the moving boundary is evident
because the metric terms, >, and >, are not constant and are dependent on the eroson ratewhen the grid

ismoving.
This methodology compares very well to the semiandytica solutions of Landau [15] in test cases[7].

4. Heat Transport to Surface

The heat flux to the surface is provided through convective heat transport and energy release as shown
[16, 17].

- Ll( (°8 C
Q, " 0.037--Re .C=f.cp(Tg&TW), ()

C . : .
where Tf. is the compressible skin friction ratio, Re is the compressible Reynolds number, | isthe
f.

viscogty, P is a pressure normaized length scale from the entrance region, C; isthe specific heet of the

gases, and Ty and T,, are the gas temperature and wall temperature, respectively.



This heat flux reduces to the following boundary condition imposed upon the inner wall:

MT .
! kW hconV(Tg & TW) % source. (8)

This boundary condition hasbeen modified for erosion sudieswith theincorporation of surface defects
primarily in coated gun tubes. This has been done by using the ratio of the Stanton numbers
(Nussdt/Reynolds/Prandtl) for smooth and rough tubes, defined by the depth of the pit. The frictiona
factor may be computed by solving Colbrook’s function [18], as shown in equation 9.

412 = 12]0g

e/D % 251 ’ 9)
37 ﬁReD

with e the depth of the defect, D the bore diameter, and Re,, the Reynolds number. The computation of
the Stanton number for rough and smooth surfaces can be performed through the following set of equations
and indructionsin the Handbook of Sngle-Phase Heat Transfer [19].

Be" * |2 % 25 28} % 375, (10)
: D

wheref isthe friction factor and €' is defined as

e " Crel|f (12)
D 2

The following transcendentd correlation provides the Stanton number.
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which when reduced resultsin the following reaionship:

1% J2(ge")Pr" 1 Be")

Theratio of the smooth Stanton number to thet of the current * rough” Stanton number using theeroson
depth as the dimension of the defect “€” provides some measure to the augmentation due to the flow

disturbances of a sand grain type roughness.
5. Multicomponent Diffusion and Mass Transport Scheme

Mass trangport to the surfaceis provided through a concentration potentia N ; refion ¥ Niwai fOr €ch
species i and amasstrangport coefficient, h,,, derived from Sherwood number correlationsintegrated over
gpace and time [8], as shown in equation 14:

Ma$' ) mmhm( Nicore&flow ! Niwail )dAdt (14)

Currently, species are assumed not to penetrate the surface, with the exception of carbon; however, the
diffuson module is genera enough to readily incorporate this possibility in the future,

Inorder to derivethe masstransport coefficient, h,,,, for aspecific speciesfrom the Sherwood number,
Sh/ h,L/D,g, WhereL isalength parameter, the diffusion coefficient, D,,, of species 1 into species 2 must
be determined. The Lennard-Jones 6-12 modd is used to mode the binary diffuson [20].
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whereM;, M, are the molecular weights of the binary species, T isthe temperature, P isthe pressure, F1,
is the collision diameter, and S;,™? is the collisona cross section integral obtained through table
interpolation.

The binary diffuson provides the bass for the multicomponent diffuson coefficient. Each binary
diffusion possbility for speciesi, j, is used and weighted vs. dl other possibilities in the following mixture
coefficient combinatory methodology of Wilkein Anderson [21].

18X,

im
X,

D.
i

, (16)
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] j
thus enabling the caculation of the diffusion coefficient for a particular specie into a mixture of many

Species.

Utilizing the collisond cross sections and diameters for viscosity as well as the molecular weight, the
following rel ationship derived from kinetic theory [ 20] isutilized to determine the viscosity and subsequently
the mixture viscogty usng Wilke' srulein Anderson [21].

" 26693 x 10!52_\"\’IT (17)
FlZSlZH

The Schmidt number, Sc * WDD,g, Where D is the dengty and | is the mixture viscosity, is used to
determine which regime of masstrangport isgpplicable. At moderate Schmidt numbers (10 < Sc < 1000),



the thickness of the boundary layer is much greater than the thickness of the viscous sublayer; utilizing the
momentum integral method, Ruckengtein [22] derived the following Sherwood number:

N~

9
0.0097 Re 10 ¢

= 1L
(1.10% 0.44Sc 3 1 0.70 Sc 6)

)

Sh * (18)

1 0.70Sc

NI
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For higher Schmidt numbers (Sc > 1000), the thickness of the boundary layer becomes the order of
meagnitude of the thin wall-layer and the following rdationship is applicable [23]:

w|r

9
Sh " 0.0102Re 9Sc (19)
These expressions for the Sherwood number have been compared [23] with much experimentd dataand
agree well within the Schmidt number regions specified.

6. Equilibrium Kinetics

Equilibrium chemica processesare congdered to dominate whenever the characterigtic timefor afluid
eement to traverse the flow field of interest is much longer than the characteristic time for chemica
reactions to approach equilibrium. As the pressure and temperature increase, the molecular collison
frequency and energy per collison increases, which leads to smaler characteristic chemicd times, and
chemica processes approach equilibrium.

The condition for chemica equilibrium may be stated as the minimization of the Gibbs Free Energy.

For amixture of N species (e.g., atoms or molecules), where the number of moles of species, i, isdenoted

n, the Gibbs Free Energy per mole of mixture is given in terms of the Gibbs Free Energy of theindividua

10



species, g, theinternd energy, e, the temperature, T, the entropy, s, thetota pressure, p, and the specific
volume, V.

G'i_;lqg'e!Ts%pv (20
The equilibrium method employed in the present study is based on the fact that at equilibrium the total
Gibbs energy of the system attains a minimum value. The problem isto find the set of n’ s that minimizes
G for a specified energy and specific volume (g, V), subject to the condtraints of materid baances. The
standard solution to this type of problem is based on the method of Lagrange' s undetermined mulltipliers.
Firs we must recognize that the tota number of atoms of each eement in the system is congtant. A
particular atomic speciesis denoted by the subscript k, and A, isthe total number of atomic masses of the
k-th dement in the system, as determined by the initid congtitutionof the sysem. Denoting the number of
atoms of the k-th dement present in each molecule of chemica speciesi by g, then the materia balance
on each ement k may be written (M used here is the number of dements),

M N
kjlskgijl(niqkmk)) "0 (k" 12..,M) (21)

after introducing Lagrange multipliers, 8, for each dement. Then anew function, F, isformed by addition
of thelast equationto G. Thefunction, F, isidentica to G snhcethesummationtermiszero. However, %
and -h';]A=G- are different since F incorporates the congraints of the materia balances. The minimum of both

F and G occurs when these partia derivatives are zero.

M N
F*"G% g 8 = 1 A 22
°_]_1 k{i_! n a k} (22)

11



MG % % 8a "0 (foF.)(i* LN 23
T * § S« (for ) (i N) (23)
eV, n

This equation can be rewritten using the definition of chemica potentid **;, for species i, where R, is the
universal gas congant.

x (.mé.} " G° % RTINCY) (i * 1,N) (24)
ni eV,ni
Therefore, from equation 23
M
* % 3 8a, "0 (" 12.,N). (25)
kK™ 1

The standard Gibbs Free Energy change of formation for speciesi is denoted G;°, which is equa to zero
for dementsin their sandard states. The activity for speciesi in solutionisgivenby *; defined in terms of
the equilibrium congtant, K, as,

(26)

where the activities of the components are raised to the corresponding stoichiometric coefficients, <;. For
anided gas mixture (O;N; * 1), where N; isthe void fraction,

TR T XNp T op, (27)

wheref; isthe fugacity and X; is the mole fraction for the i-th species. For liquid and solid phases [24],

12



In(*) " In(1 ! 1/p), (29)

which is gpproximately zero for large pressure, therefore, *; *  G,° from equation 24.

There are N equilibrium equations (equation 25), one for each species, and there are M
materia-baance equations (equation 21), one for each element, atotal of N % M eguations. The
unknownsin these equations are the n’s, of which there are N, and the8,’ s, of which thereare M, atota
of N % M. Thus, the number of equationsis sufficient for the determination of al unknowns. Numerica
experiments were performed with well-known gas-phase systems of which the results matched those of
the NASA Lewis equilibrium code [14].

7. Surface Description

The full equilibrium control volume approach results in many product mass fractions, which are
physcdly impossible due to the condraints of diffuson into the solid phase. Mainly, the carbon in the
control volume, which results from CO and/or CO, breakdown, will react with as much iron as possble
to form Fe;C if permitted. To treat this deficiency, the carbon content in the sted resulting from the
diffuson over the current time step has been integrated. This represents the total amount of carbon that
may possibly react with the sted while the extra carbon released into the control volume isleft as carbon
graphite C(GR).

A surface exposed to acarbon concentration G per unit surface areafor aspecified length of timet has
a carbon concentration C(x) at a specified depth of x given by the following reationship [25]:

1x2
G 7ot

e, (29)
/Bt

Cc) -

where D isthe diffuson coefficient provided over the ** and ( phases (BCC and FCC lattice structure,
respectively). The diffuson of carbon into ** iron (T < 1118° C) is given by the following function in
Smithells Metals Reference Handbook [25], where R, is the universd gas congant.

13



119.8(callmol) 4, , 5 *29.3(callmo) {cmz}

D " 0.008e (30)
" R,T S
while the diffuson of carboninto (iron ( T < 1300° C) is provided by
2
D = 0.3se0(Ca/mO) § cm”h (31)
R,T S

To find the total amount of carbon that has diffused in timet, the concentration function can be integrated,

having an error function solution as

X X 1x2
Codx * =S ey " G(erf(x). (32)
m BDt T

Integrating the concentration profile to the maximum depth to which materid can diffuse in time Sep t,
/ (Dt), providesthe carbon diffused into the materia over thetime period. Usudly this depth ranges from
20 to 80 lattice parameters. To treat the reactant product from the full equilibrium caculation, a subset
reaction is created condisting of the carbon, iron (**) and iron ((), and iron carbide. The total carbon
avalable for reaction is equd to the diffused carbon plus the origind carbon in the sted as well as the
possible carbon on surface, dso in the form of iron carbide as shown on theleft-hand side of the following
equation:

C(GR) % Fe,C % Fe(") % Fe(() 6 C(GR) % Fe,C % Fe(") % Fe((), (33)

where Fe(**) or Fe(() are supplied as fresh material, as needed, depending upon the control volume
temperature. Thereisassumed no carbon dissolved in Fe(**) or Fe((). The product carbon C(GR), in
the lattice, and Fe;C from the previous time step are retained as residuals and reintroduced as reactants
inthe next time step. Carbon graphite is permitted to form or be smply transferred from areactant to a

14



product unchanged on the right-hand sde if there is excess carbon from the equilibrium caculaion in
comparison to what is possibly available to react with the existing iron. The amount of Fe,C that is
possible, dueto diffuson limitations, isformed and carried over to the next time step if the control volume
is below the mdting temperature of theiron carbide. On the other hand, if thereis no excess carbon, then
Fe(*") or Fe((), depending on the temperature, isformed or carried over to the next time step. Oncethis
post equilibrium caculation is made, the find energy change in the control volume is recomputed and the

amount attributable to the resdua solidsis accounted for as the surface source term.

8. Application to Point Studies

Three systems are presented in this report including the M829A2 cartridge in an M256 tank cannon
and both the 616W-APFSDS original cartridge, which had a propellant adiabatic flame temperature near
3,650 K, and the M791-APDS-T training round in the 25-mm Bushmaster cannon.

The cdculations for the M829A2 cartridge assume an initia chrome defect or chip. Two caculations
were then performed for this region using exposed stedl. The first involved norma or standard heat
transfer, and the second applied the previoudy described surface irregularity augmentation to the heet
transport due to the actual depth of the defect. The calculations were performed over aregion from the
forcing cone to about 800 mm down-bore.

Surface temperatures of the first calculation, without the surface roughness factor, are presented in
Figure 2. As shown, dl three locations reach the user-prescribed melting temperature of 1,723 K.

Figure 3 shows the amount of materia lost over the investigated region in comparison to experimenta
data[26, 27] for threegun tubes. The experimenta defect data show widely varying erosion once adefect
is formed, with the average presented as a sraight line. The tube higtory is provided as the number of
roundsfired to the commencement of the series of M829A 2 cartridges, the number of M829A2 cartridges
fired, and the serial number of the tube.

15
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Figure 4 shows the effect of added surface roughness to the caculation in lengthening the duration of
the mdting of the surface. Correspondingly, in Figure 5, the amount of erosion is shown to aso increase.
The resultant amount of erosion appears to be much closer to the average amount from the experimenta

“pit-tracking” dataiin Figure 5 with the augmentation than without it in Figure 3.

a

g
—

E

Suzface Teuparatuza (K)

I

Figure4. GunTubeSurfaceTemperaturesat ThreeAxial Locationsandfor aSingleFiringof
an M829A2 Cartridge in an M 256 Tank Cannon With Surface Roughness

Augmentation to the Heat Transport.

Thetotal erosion in these calculations is due to the sum of the gross melting and the melting of iron
carbide created near the surface due to the carbon diffuson. This effect can be seen in Figure 6 without,
and in Figure 7 with, the surface roughness augmentation to the heet transport. Figure 6 showsthe surface
temperature, which doesnot riseto the melt temperature of the sted substrate. Materia, however, isbeing
removed at the surface due to the local surface material mdlt temperature of 1,423 K. The same figure
presents how the change in phase from ** to ( dtersthe diffusion rate due to different interdiitia atomic

mohilities.
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Figure5. AverageErosion Depthper Round at theBottom of aChromeChip for an M 256
CannonFiringan M 829A2 CartridgeWith SurfaceRoughnessAugmentationtothe
Heat Transport.
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Figure6. SurfaceTemperatureand Carbon Diffusion Depth at theBottom of aChromeChipin
anM 256 Tank Cannon Firingan M829A2 Cartridge, Presented at 1,778 mm Fromthe
Rear Faceof the Tube Without Surface Roughness Augmentation to the Heat
Transport.
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Figure7.SurfaceTemperature, Carbon Diffusion Depth, and SurfaceMeltingDepthina
ChromeChip of an M 256 Tank Cannon, Presented 1,350mm FromtheRear Faceof

theTubefor an M 829A2 CartridgeWith SurfaceRoughnessAugmentationtothe
Heat Transport.

Figure 7 shows the influence of gross surface melting at the same axia location due to the addition of
surface roughness augmentation. Once the surface reachesthe base materia melt temperature, the carbon

diffuson remains condant, asit only depends upon temperature.

Thefirg of thetwo 25-mm systemsin thisstudy isthe M 791 APDS-T round. Experimental datawere
obtained from alate 1980's study performed by Veritay Inc. [28] in their instrumented test fixture. The
data included averaged erosion rate/round (over 20 individua rounds were averaged) at a series of axid
locations given with repect to the commencement of full rifling. When the cdculaions were performed
usngtheinterior ballistic dataprovided by Benet Laboratories[29], the resultswere presented with respect
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to the rear face of the tube (RFT). Thisleadsto apossible discrepancy of the actud location of the origin

of rifling asthislocation has atendency to move down-bore as the tube has more rounds fired through it.

The surface temperatures of the cannon firing the M 791 cartridge are shown in Figure8. Whilethese
temperatures do not reach the bulk melting temperature of the steel used in the 25-mm nonchromed
nitrided Bushmaster cannon of 1,792 K, thereismateria lossnonethdess. Thenitriding was not takeninto
account in these caculations and would cause some differences in subsurface carbon diffuson. Again, as
in the previous example, the materid is being logt in this case due to the materid transformation to iron

carbide and the subsequent remova of this very thin layer when the surface temperature is above the melt

temperature of the iron carbide.
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Figure8. SurfaceTemperaturesfor ThreeAxial L ocationsof anM 791 CartridgeFiredinan
M 242, 25-mm Bushmaster Cannon.
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The result of the computed surface materid removal for the M 791 is presented in Figure 9 along with
the experimenta data and the location of full rifling. Although the axia location seems to be shifted as
stated before, the magnitude of material 0ss appears to be correct. The surface roughness augmentation
to the heet transfer was not used in this case as the surface is not chromed and therefore does not have the

gte for high recirculaing flows.
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./ Numgrical Dgta \

4.0 4.5 5.0 5.5 6.0
Axial Position From RFT (in.)

Erosion Depth (in.'e)
N
o

Figure9. Computedand Experimental Erosion per Roundfor anM 791 CartridgeFiredina
25-mm Bushmaster Cannon. NoteThat theExperimental DataWereOriginally
Presented With Respect to the Commencement of “ Full Rifling,” Whilethe
Computational Data Are Presented With Respect tothe RFT.

Figure 10 shows the bore surface temperatures for the cannon firing the 616W (M919 origina)
cartridge. Also, for this case, the melting temperature of the base materia of the Bushmaster cannon isnot
reached. However, thetemperatures areindeed somewhat higher in this case than for the M 791 cartridge,
and the surface materia removed, shown in Figure 11, reflects the higher diffusion of carbon into the gun

urface.
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Figure 10Burface Temperaturesfor Three Axial Locationsfor a 616W (Original M 919
APFSDS) Cartridge Fired in an M 242 Bushmaster Cannon.
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The experimentd datain Figure 11 again appears to be shifted with respect to the commencement of
rifling, while the magnitude tracks the experimental datawel. FromFigures11 and 9, it isshown that the
proportiona experimental increase in materia oss between the M791 and 616W is closely represented

in the numericd caculaions.

9. Concluding Remarks

An andytica description of the processes involved in the mechanistic description of the gas-surface
interaction has been presented to include the melt wipe mechanism, equilibrium chemistry, surface control
volume, heet transfer and roughness augmenteation, as well as the multicomponent mass transport, and

subsurface carbon diffuson.

Three sysemswere investigated: the M829A2 120-mm tank cartridge, and two 25-mm cartridges:
the M791-APDS-T and the 616W-APFSDS. The caculated erosion for the M829A2 cartridge, given
the assumption of achip in the chrome plating, compared well with the experimenta data once the surface
roughness was incorporated into the heat transport. Neither of the 25-mm systems reached the bulk
meting temperature of the base materia for the Bushmaster barrdl, though both erode. Carbon diffusion
limited erosion predicted the amount of materid lost in the M 791 and 616W cartridges reasonably well.

Other condtitutive models and/or conceptud ideas and additional physics are to be investigated to
determine their level of importance to surface degradation/eroson, thus providing indght into the
mechanisms for eroson and possibly the mitigation thereof through additives to control the heet trandfer,
gas chemigtry, or possibly dtering the structure or physics of the surface.
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Appendix A:

Blake Thermochemical I nput Decks for
Propellants Used in This Study
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Bl ake Thernochem cal input deck for the 25-mm Mr91 Cartridge using HC-33 propellant.

TI'T, HC- 33 NOM

I NG

PRL, CON, 2

REJ, H2S, S20, SO2, K$, KOH$, K20, K202, KO2, K2, NO2, HNGC3

REJ, KCO$, KSO$, K20$, NA2$, ALN, COF2, F2, ALF3, ALO, ALF2, AL23, AL$

REJ, C2N, C2H, C2, CH20, CH, CH2, CH3, CN, C2H2, C2H4, C2N2,

REJ, ALOH, A202, AHO2, ALCF, Al 02, BACS

REJ, C(S), K2CO3$, K25O4$, K2S$

CM2, NC1325, 87. 87, NG, 6. 99, PEG, . 68, KN, . 66, ALC, . 5, ACETON, 1. 4, H20, . 9, C, . 15,
DPA, 0. 85

UNI, ENG
GUN, . 05, .05, .6
QT

Bl ake Thernmochem cal input decks for the Original 25-nm M319 Cartridge

TI T, HES9053 (L-751) Propellant

I NG

PRL, CON, 2

REJ, H2S, S20, SO2, K$, KOH$, K20, K202, KO2, K2, NO2, HNO3

REJ, KCO8$, KSO$, K208, NA2$, ALN, COF2, F2, ALF3, ALO, ALF2, AL23, AL$

REJ, C2N, C2H, C2, CH20, CH, CH2, CH3, CN, C2H2, C2H4, C2N2,

REJ, ALOH, A202, AHO2, ALOF, Al 02, BACS

REJ, C(S), K2COB$, K2SO4$, K2S$

CM2, NC1300, 34. 40, NG, 14. 91, RDX, 45. 60, TRI AC, 2. 90, PEG, 0. 31, EC, 0. 52, KN, 0. 75,
KS, 0. 75, H20, . 10, C, 0. 20

UNI , ENG

GUN, . 05, .05, .6

QT

TI T, HES9053 (L-752) Propel | ant
I NG

PRL, CON, 2

REJ, H2S, S20, SO2, K$, KOH$, K20, K202, K02, K2, NO2, HNC3

REJ, KCO$, KSC$, K20$, NA2$, ALN, COF2, F2, ALF3, ALO, ALF2, AL23, AL$

REJ, C2N, C2H, C2, CH20O, CH, CH2, CH3, CN, C2H2, C2H4, C2N2,

REJ, ALOH, A202, AHO2, ALCOF, Al 02, BACS

REJ, C(S), K2CO3$, K2S5O4$, K2S$

CM2, NC1300, 35. 38, NG, 14. 71, RDX, 43. 48, TRI AC, 3. 04, PEG, 1. 36, EC, 0. 52, KN, 0. 84,
KS, 0.77, H20, . 23, C, 0. 20

UNI , ENG

GUN, . 05,.05, .4

QT

TI T, HES9053 (L-753) Propellant
I NG

PRL, CON, 2

REJ, H2S, S20, SO2, K$, KOHS$, K20, K202, KO2, K2, NO2, HNO3

REJ, KCO$, KSO8, K208, NA2$, ALN, COF2, F2, ALF3, ALO, ALF2, AL23, AL$

REJ, C2N, C2H, C2, CH20, CH, CH2, CH3, CN, C2H2, C2H4, C2N2,

REJ, ALOH, A202, AHO2, ALOF, Al O2, BAOS

REJ, C(S), K2CO8$, K2SO4$, K2S$

CM2, NC1300, 35. 71, NG, 12. 73, RDX, 44. 78, TRI AC, 3. 24, PEG, 1. 08, EC, 0. 63, KS, 1. 05,
KN, 0. 78, H20, . 24, C, 0. 020

UNI , ENG

GUN, . 05, .05, .4

QT

TI T, HES9053 (L-754) Propellant
I NG

PRL, CON, 2

REJ, H2S, S20, SO2, K$, KOHS$, K20, K202, KO2, K2, NO2, HNO3
REJ, KCO$, KSO$, K20$, NA2S$, ALN, COF2, F2, ALF3, ALO, ALF2, AL23, AL$

REJ, C2N, C2H, C2, CH20, CH, CH2, CH3, CN, C2H2, C2H4, C2N2,

REJ, ALOH, A202, AHO2, ALOF, Al 02, BACS

REJ, C(S), K2CO3$, K2SO4$, K2S$

CM2, NC1300, 32. 25, NG, 14. 94, RDX, 47. 73, TRI AC, 2. 75, PEG, 0. 35, EC, 0. 45, KS, 0. 78,
KN, 0. 75, H20, . 23, C, 0. 20
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UNI , ENG
GUN, . 05,.05, .4

QUIT

Bl ake Thernochem cal input deck for 120-nm Cartridges using nom na

TIT, JA-2 - NOM NAL
PRL, CON, 2

REJ, H2S, S20, SO2, K$, KOHS$, K20, K202, KO2, K2, NO2, HNO3

REJ, KCO$, KSO$, K20$, NA2S$, ALN, COF2, F2, ALF3, ALO, ALF2, AL23, AL$
REJ, C2N, C2H, C2, CH20, CH, CH2, CH3, CN, C2H2, C2H4, C2N2

REJ, ALOH, A202, AHO2, ALOF, Al 02, BAOCS

REJ, C(S), K2CO3$, K2SO4$, K2S$

CM2, NC1298, 59. 02, NG, 14. 78, DEGDN, 24. 60, AKAR2, . 69, BAO, 0. 0496
C,.0496, H20, .5

UNI , ENG
GUN, . 05, .05, . 4
QT

32
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Appendix B:

XKTC Interior Ballistic Input Decks
Used in This Study
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An XKTC i nput

deck of an MB29A2 round (Courtesy of Dr. G Peter

MB29A2 APFSDS- T
TTFFTTT001000001060000010010000000

69 -3 099999 . 0001
0.015 186. 660 0. 00025 2.000 0. 050 0. 005
1000 100 1100 100 1500 100
6 4 3 4 0 0 3 2 0 0 0 8
0 0 0
5.290E+02 1.470E+01 2. 890E+01 1. 400E+00 0. OOOE+00 0. O0OOE+00
5. 290E+02 0. OOOE+00 0. OOOE+00 0. OOOE+00 0. OOOE+00 0. O0O0E+00
Stick 0. 0O00E+00 7.500E-01 4.400E-01 5. 763E-02
1.925E+01 2. 200E+01 8. 600E-01 0. 000E+00 0. 000E+00
7 4.310E-01 3.100E-02 8. 750E-01 7.000E+00 0. 00O0E+00 0
1. 000E+04 1. 000E+00 4. 175E+04 0. 000E+00 5. 000E-01
1. 000E+04 4.040E-03 7.162E-01 1.000E+05 8. 600E-04 8. 796E-01
2. 770E-02 1. 345E-04 6.000E-01
2. 037E+07 2. 482E+01 1.227E+00 2. 698E+01
Stick 7.500E-01 1.925E+01 1.490E+00 5. 763E-02
7 3.840E-01 3.900E-02 5.980E-01 7.000E+00 0. 000E+00 0
1. 000E+04 1. 000E+00 4. 175E+04 0. 000E+00 5. 000E-01
1. 000E+04 4.040E-03 7.162E-01 1.000E+05 8. 600E-04 8. 796E-01
2. 770E-02 1. 345E-04 6.000E-01
2. 037E+07 2. 482E+01 1.227E+00 2. 698E+01
JA2H - 7.500E-01 1.925E+01 1. 600E+01 5. 763E-02
15 6. 710E-01 3. 700E-02 8. 750E-01 1.900E+01 0. 000E+00 0
1. 000E+04 1. 000E+00 4. 175E+04 0. 000E+00 5. 000E-01
1. 000E+04 4.040E-03 7.162E-01 1.000E+05 8.600E-04 8. 796E-01
2. 770E-02 1. 345E-04 6.000E-01
2. 037E+07 2. 482E+01 1.227E+00 2. 698E+01
9. 968E+06 3. 093E+01 1.221E+00 2. 300E+01
0. O00E+00 2. 500E-04 1.250E-03 1.500E-03
5. 000E-01 4. 800E+00 4. 810E+00
0. OOOE+00 0. OOOE+00 0. O0O0E+00
1.400E+01 1.400E+01 0. 0O00E+00
1.400E+01 1. 400E+01 0. 0O00E+00
0. 000E+00 0. OOOE+00 0. 000E+00
0. OOOE+00 2. 250E+00 3. 000E+00 3. 090E+00 1.900E+01 3. 090E+00
2.373E+01 2. 360E+00 2.087E+02 2. 360E+00
0. OOOE+00 1. 000E+02 1. 000E+00 1.500E+03 1.500E+00 4. 000E+02
1. 400E+00 1.470E+01 5.290E+02 2.890E+01
5. 000E-02 4.850E-01 6. 000E+00 2. 000E+00
7.770E+00 2.280E-02 7.000E-01
0. OOOE+00 1. 000E+01 0. OOOE+00 1. 000E+00 1. 000E+00
2.200E+01 1. 720E+01 4. 400E+01 0. O00OE+00 0. O0OE+00 4.057E+03
3.0 19. 30. 41. 60. 90
7 2 0 0 0 0 0 1 0 0 0 0
0. 000E+00 0. 000OE+00 7.200E-01 5.930E-01 4.380E+00 5. 930E-01
6. 750E+00 7. 300E-01 1.196E+01 1.170E+00 1.546E+01 1.420E+00
3 4 0 0
0. OOOE+00 1.450E-01 1.800E+01 1.450E-01 2.220E+01 5. 000E-03
2.950E-02 1.470E+01 4.550E-02 1. 100E+04 4.970E-02 2. 500E+04
2 0 0
1. 000E+04 1. 310E-04 1.301E+00 1. 000E+05 3. 950E+00 1.761E-01
0. O0O0E+00 8. 000E+02 2. 770E-02 1. 345E-04 0. 000E+00
9. 300E+06 2. 239E+01 1. 258E+00
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An XKTC i nput

deck of an M791 round (Courtesy of Dr.

G Peter

RESI STANCE- PERRI N

0. 050

0 0

0.01

0 5

400E+00 0. O0OOE+00 0. 0O00OE+00
0O0OE+00 0. 0O0OOE+00 0. 0O00OE+00
447E+00 2.141E-01 5.560E-02
01 7.000E+00 0. 000E+00 0
000E+00 5. 000E-01
. 300E+02 2. 770E-02

25MM M242 M791 - 135 gm
TTFFTTT001000001010100010000000000
75 -2 099999 0 0 0. 00001
0. 003 73. 400 0. 0002 1.500
1000 50 1100 50
10 3 3 10 2 0 1 1
0 0 0
5. 300E+02 1.470E+01 2. 890E+01 1.
5. 300E+02 0. O0OOE+00 0. O00E+00 O
7 Perf HC33 7.300E-02 4
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