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Abstract 

Historically, comparisons between computer systems were based primarily on theoretical 
peak performance. Today, comparisons based on delivered levels of performance are frequently 
used. This, of course, raises a whole host of questions concerning methodology. From the 
standpoint of the user, delivered performance frequently refers to how fast a job runs. However, 
is it reasonable to base this measurement on running the same algorithm on all of the computers? 
When comparing some combination of mainframes and vector supercomputers, the answer is 
probably yes. The same holds true when comparing the performance of large distributed memory 
MIMD MPPs. However, when comparing the algorithms of choice used on these two classes 
of platforms, one frequently finds that the algorithms are quite different. Furthermore, the 
amount of work (the number of FLOPS) associated with each algorithm can also be quite 
different. 

While troubling, this dichotomy has been largely unavoidable. This implies that for an MPP 
to have the same level of delivered performance as the mainframes and the vector 
supercomputers, it must have a significantly greater level of performance when measured in 
terms of FLOPS. Recent advances involving moderate-sized RISC-based SMPs have allowed 
us to solve this problem. The net result is that for some problems a 128 processor Origin 2000 
can deliver levels of performance that might require the use of a 500 + processor MPP using more 
traditional approaches. 
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1. Introduction 

. 

For a given job, one can define the Delivered Performance such that 

Delivered Performance = Theoretical Peak Performance * Total EfJiciency, 

where 

Total Eficiency = Algorithmic Eficiency * Serial Eflciency * Parallel EfJiciency. 

Traditionally, many researchers using parallel computers have ignored the question of 

Algorithmic Efficiency and/or Serial Efficiency, preferring to stress Parallel Efficiency. A few 

people have even gone so far as to assume that all jobs on all machines have similar levels of 

efficiency, and therefore, all one needs to know is the Theoretical Peak Performance for the 

machines in question. 

A direct consequence of this attitude has been the reaction by many users of vector computers 

who point out that while the parallel computers may be delivering higher levels of FLOPS, the 

vector computers will frequently have better wall clock time. Even when one takes into account the 

relative costs of the machines, an important consideration in throughput oriented environments, the 

vector machines will frequently fare much better than the raw numbers might indicate. Based on 

these observations, it is clear that one needs to consider Algorithmic Efficiency and Serial Efficiency 

as well as Parallel Efficiency when evaluating projects that use parallel computers. 

When one compares the architectures of Cray vector computers (e.g., the C90), traditional MPPs 

(e.g., the Cray T3E or the IBM SP), and RISC*-based SMPs (e.g., the SGI Origin 2000 or the SUN 

HPC lOOOO), one finds significant differences in the design principles on which these systems are 

based. The Cray vector computers have vector processors, a low latency very high bandwidth 

* Definitions for boldface text can be found in the glossary. 
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memory system, and make very few assumptions about data locality or data reuse. In fact, the very 

nature of their design tends to discourage attempts to tune for data locality or reuse. 

Traditional MPPs have an intermediate level of memory latency and bandwidth. Most of these 

systems now use RISC processors with moderate-sized caches and some design features that 

facilitate streaming data into and out of the processor. Experiments reported by the NAS group at 

NASA Ames and an analysis performed by David O’Neal and John Urbanic at the Pittsburgh 

Supercomputing Center indicate that the memory system limitations on these systems result in a 

lower level of efficiency than with comparable codes running on the Cray vector machines (Saini 

1996,1997; O’Neal and Urbanic 1997). 

RISC-based SMPs tend to have longer memory latencies and somewhat lower memory 

bandwidth than the MPPs. In general, they also have no special features designed to facilitate the 

streaming of data into and out of the processor. On the other hand, they are usually equipped with 

at least 1 MB of cache per processor. Codes that have been tuned to take advantage of this cache 

can in many cases reduce the rate of cache misses, that miss all the way back to main memory, to less 

than 1%. As a result, for some codes, it is possible to achieve serial levels of performance that 

actually exceed the performance achieved on MPPs (both in terms of absolute single processor 

performance and in terms of the percentage of peak). However, the serial performance for codes that 

were only tuned to run on an MPP may fall short of what is normally seen on an MPP (Sahu et al. 

1997, 1998). 

From this discussion, it should be clear that different classes of machines are likely to deliver 

different percentages of peak performance. Furthermore, the delivered level of performance is likely 

to strongly depend on the quality of the tuning (this includes the vector machines, since the 

production of good vectorizable code requires the mastery of multiple complementary techniques). 

Finally, the ability to deliver well-tuned code will frequently depend on the design of the hardware 

itself. 
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For the rest of the discussion, it will be assumed that the codes are well tuned for serial 

performance and that the serial performance achievable with the MIPS RlOK, HP PA-8000, Alpha 

21164 (as configured for the T3E), and the IBM P2SC are all comparable. This means that in terms 

of efficiency, the MIPS RlOK and the IBM P2SC have a significant lead over the other two chips 

(this agrees with published results as well as information that the author has received in private 

briefings). It is also assumed that the achievable serial efficiency of the MIPS RlOK and the IBM 

P2SC approaches and, in some cases, matches that seen on Cray vector machines.* 

The remainder of this report will focus on parallel efficiency and algorithmic efficiency, with 

most of the emphasis being on the latter. The assumption here is that in many cases one can produce 

parallel efficiencies that are close to loo%.+ 

This leaves the question, What is the algorithmic efficiency? While it is hard to identify what 

one means by an algorithmic efficiency of lOO%, it is generally easy to define the relative 

algorithmic efficiency of two approaches by comparing the number of floating point operations 

required to achieve a solution.* 

The important point here is to recognize that many parallelized programs have a significantly 

lower algorithmic efficiency than do the programs normally run on serial/vector processors. 

Evidence will be given that it is, in some cases, now possible to avoid the need to use less efficient 

algorithms. The downside is that the approaches that lead to this conclusion are, in many cases, not 

highly scalable. In some cases, they may work on a range of SMPs and MPPs, while in other cases, 

they will only work on SMPs. However, even with these limitations, it is possible that these 

l To a first approximation, the preceding assumptions seem to be nearly independent of the processor speeds in 
question. This probably means that each of these designs is strongly limited by the performance of the memory 

’ 
system and/or other system components. 

$ 
In situations where this is not likely to be the case, some discussion will be made of what the predicted behavior is. 
Ideally, this comparison should be made on a single machine, even if the different algorithms are not normally all used 
on the same machine. This way, one is measuring differences in the algorithms, not in the compilers. However, even 
here, it is important that if operations are normally performed N times, where N is the number of processors, then if 
one is comparing using three different algorithms, one to be run on a vector machine with 16 processors, one on an 
SlvIP with 100 processors, and one on an MPP with 500 processors, then the operation counts should reflect the 
intended usage. 
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approaches will allow the performance of a 64-128 processor job to equal or exceed the performance 

of a job using a 5 12 processor MPP written using traditional techniques. 

2. Delivered Performance 

If one asks most users of computer equipment what job characteristics they consider to be 

important, the replies seem to center on two themes: 

(1) The accuracy of the results.* 

(2) The time to completion.+ 

While, in general, one assumes that these two themes are independent, in reality, that has rarely 

been the case. In a resource-constrained environment, it is easy to see how the sophistication of the 

calculations that one can reasonably hope to carry out will be limited. What may be less obvious is 

that there are other ways in which the search for a rapid time to completion can adversely affect the 

accuracy of the results. 

A common problem, which comes from the field of CFD, is that, frequently, the most efficient 

serial or vectorizable algorithm uses what is known as an Implicit approach to solving the Navier- 

Stokes equations. Unfortunately, such an approach has generally resisted attempts to parallelize it. 

An example of this problem can be found in the F3D code from NASA Ames Research Center, 

which uses a block tridiagonal solver based on Gaussian Elimination. Due to dependencies in this 

part of the code, even though this solver handles three-dimensional problems, each of the sweeps 

through the data can only be parallelized in a single direction. In the past, three methods have been 

used to get around this problem: 

* 
’ 

In general, this is a relative concept and refers to the accuracy conforming to the expectations for a particular run. 
This may either apply to the time required to run a single job or the time required to run a complete set of jobs. In the 
former case, one is usually limited to using some or all of a single computer. In the latter case, one is usually limited 
to using some or all of the resources at one or a small number of computer centers. 
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(1) In theory, one can replace Gaussian Elimination with a more parallelizable algorithm such 

as cyclic reduction. Unfortunately, this approach can itself result in two major problems: 

l It increases the operation count by a factor of LOG2 (N), where N is the number of 

processors being used. Clearly, this has the effect of decreasing the algorithmic 

egiciency.’ 

l Since this algorithm requires the use of a large number of relatively small messages, it was 

much better suited for use on SIMD (Flynn 1972) machines than for use with today’s 

MIMD (Flynn 1972) machines. 

(2) One can use an entirely different algorithm, such as one of the Explicit algorithms, which are 

known to be highly parallelizable. Unfortunately, the use of these algorithms will, in general, 

. substantially increase the operation count required to obtain a solution. In other words, once 

again, the algarithmic eflciency suffers. 

(3) Alternatively, one can use domain decomposition as the basis for parallelization. 

Unfortunately, this approach can severely compromise the convergence behavior of the 

algorithm. A number of approaches have been suggested to deal with this problem, but in 

all cases, the algorithmic ecfficiency will to some degree suffer’ (Wang and Tafti 1997; Singh, 

Uthup, and Ravishanker, 1998[?]). 

The key point here is that: 

Delivered Pqfbrmance = Theoretical Peak Performance * Total Eflciency, 

where 

Total Eflciency = Algorithmic EfJiciency * Serial Eflciency * Parallel Eficiency. 

* using51 
’ Many of 

2 processors will 
these approaches 

increase the operation count for this part of the solver by ’ a factor of 9. 
will also limit the available parallelism and/or adversely affect the parallel efficiency. 
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Therefore, any changes that result in a decrease in the Algorithmic E’ciency will directly affect 

the Delivered Performance, even though the performance as measured by MFLOPS might be quite 

high.* Using this unit, DeEivered Performance is inversely proportiotial to the Time to Completion 

for a job (assuming that the processors are dedicated to this job). 

Figure 1 shows an example of this for a fixed-sized problem when one attempts to scale to large 

numbers of processors. Two things that are important to note here are: 

(1) For sufficiently large numbers of processors, the combined effects of Amdahl’s Law and the 

costs of interprocessor communication will limit the maximum achievable level of 

performance. Therefore, for all but the largest problem sizes, and given enough processors, 

the parallel efficiency may be far less than 100%. 

(2) The effect of going to less efficient algorithms in an attempt to improve the parallelizability 

of the code can virtually eliminate the perceived benefits of having a highly parallelizable 

code. 

If one applies Gustafson’s (1988) concept of scaled speedup, one can overcome some if not all 

of the limiting effects attributable to Amdahl’s Law and interprocessor communication. However, 

this concept will have little impact on the loss of algorithmic efficiency. Therefore, the basic 

premise behind Figure 1 (and this report) remains intact. 

3. Loop-Level Parallelism 

It turns out that there is an alternative way in which one can parallelize Implicit CFD codes, 

which does not result in a reduction of their Algorithmic Eficiency. This approach is based on 

parallelizing the individual loops and is therefore referred to as Loop-Level Parallelism. Of course, 

* The units for Delivered Performance are Useful MFLOPS. 
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Figure 1. Predicted Speedup From the Parallelization of a Problem With 
a Fixed Problem Size. 

if this method is so great, then one might wonder why it was not the method of choice all along. The 
following are some of the reasons for this. 

Loop-Level Parallelism in general is based on the same parallelism used to produce vector code. 

Therefore if the program is to run in parallel on a vector computer such as the Cray C90, it will be 

difficult to produce a code that exhibits both good vector performance and good parallel performance 

at the same time. 

While in theory it is possible to implement Loop-Level Parallelism using some form of 

message-passing code, the result can be a huge number of calls to the message-passing library (either 

to implement matrix transpose operations and/or to manually implement some form of coherency 

protocol). By comparison, when Loop-Level Parallelism is implemented on a shared memory 

system, it is not uncommon to leave the loops in the boundary condition routines unparallelized (in 

general, these loops may represent 80% or more of the loops in the program, but less than 1% of the 
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total work). This makes it both painful to implement Loop-Level Parallelism using message-passing 

code and, in general, results in code that is very inefficient. 

Traditionally, there have been two types of shared memory platforms. The first type is based on 

a small number of vector processors. This tends to make the system very expensive, while limiting 

one’s ability to show good speedup. As a result, many codes run on vector processors were never 

parallelized. The second type of system was based on inexpensive mass-market microprocessors. 

Unfortunately, until recently, the aggregate peak speed of systems based on this design was generally 

much less than the peak speed of one processor on a state-of-the-art vector machine from Cray 

Research. 

Therefore, until recently, none of the machines commonly used for High Performance Computing 

were well suited for use with Loop-Level Parallelism. It was not until the advent of the SGI Power 

Challenge that one could make a clear case for investigating this approach. Even then, enough 

people equated Loop-Level Parallelism with Automatic Parallelization (a concept that doesn’t work 

very well) that they failed to properly appreciate the potential for this approach (Theys, Braun, and 

Siegel 1998). In fact, even now there are only a few systems (e.g., the SGI Origin 2000) for which 

a compelling case can be made (in some cases, the bottleneck is the hardware, while in other cases, 

limitations in the operating system and/or the compilers are at fault). 

Table 1 shows the potential benefit of using Loop-Level Parallelism in conjunction with a 

well-designed shared memory system, Table 2 shows the actual speedup that was achieved for 

different problem sizes when using Loop-Level Parallelism with an SGI origin 2000 to run the F3D 

code for a common test case. 

4, Speedup 

Up until now, this discussion has assumed that one can easily achieve linear speedup. In reality, 

this is freqluently not the case. Therefore, let us consider what is likely to be the case when using 
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Table 1. The Number of Processors Required to Achieve a Specified Level of Delivered 
Performance Using Traditional Techniques 

Speedup Relative to Minimum No. of Processors Required When Using II 
One Processor 

16 
32 
48 
64 
80 

Domain Decomposition Cyclic Reduction 
64 108 
181 256 
333 418 
512 589 
716 767 

Table 2. The Speedup Achieved When Using the F3D Code Parallelized Using 
Loop-Level Parallelism on SGI Origin 2000’s 

II No. of Processors Used I Grid Size Speedup Relative to One 

61 59.4 48.1 
61 124.0 48.6 

117 59.4 66.9 

II 88 124.0 65.7 I 1 
II 116 I 124.0 I 81.4 11 
Note: Except for the largest test case, runs using fewer than 64 processors were run on either 32 or 64 processor 

Origin 2000’s. Due to the memory requirements of the largest test case, all runs were made on a 128 
processor Origin 2000. For all of the remaining cases, runs were made on a preproduction 128 processor 
origin 2ooo. 
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both the traditional approaches to parallelization and loop level parallelism. Based on the numbers 

in Table 1, it is clear that when using traditional approaches, one will likely need a large number of 

processors. However, for fixed-size problems, Amdahl’s Law predicts that there is enough serial 

code remaining that one will asymptotically approach a maximum level of performance when using 

large numbers of processors. The traditional counter argument has been to use the concept of scaled 

speedup (Gustafson 1988). With this concept, the available parallelism and the available work are 

assumed to scale linearly with the problem size. Therefore, as the problem size gets bigger, one can 

use additional processors while keeping the run time constant. This concept also assumes that the 

amount of work associated with the serial code grows very slowly, if at all, and can therefore be 

ignored. 

A common rule of thumb when parallelizing programs on distributed memory MPPs is that one 

should use the smallest number of processors possible, with the amount of memory per processor 

usually being the limiting factor. Most modern MPPs are now equipped with between 64 MB and 

1 GB of memory per processor, with somewlrere around 10-20 MB of memory per processor 

reserved for use by the operating system. Based on these numbers, Table 3 shows how many 

processors one would normally expect to use for the test cases mentioned in Table 2. 

There is no guarantee that one will actually get good scalability all the way to the upper bounds 

listed in Table 3. Rather, the upper bound is based on the impossibility of running the job if there 

is not enough memory. However, the rule of thumb indicates that it is questionable if one will see 

linear speedup when using even larger numbers of processors. 

When comparing Tables 1 and 3, it becomes apparent that there are some problems. The smaller 

test cases are unlikely to produce speedups much in excess of a factor of 16. While in theory the 

larger problem sizes will fare better, there is a second, less obvious problem. Very few of the 

currently installed MPPs are configured with 5 12 or more processors. Therefore, in many cases, one 

will find it difficult, if not impossible, to use enough processors to get speedups of 64 or greater. 
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Table 3. The Number of Processors That One Would Normally Use When Using an MPP 
and Traditional Techniques to Process the Test Cases 

. 
Grid Size 

I 
Recommended No. of 

(Millions of Grid Points) Processors II 

3.0 2-30 
6.0 3-60 

12.0 6-120 
23.8 12-240 

Turning our attention to programs parallelized using Loop-Level Parallelism, the following 

question comes up: What kinds of speedup is one likely to see from these programs? The answer 

here is a bit complicated. In general, the available parallelism will be a function of the smallest of 

the grid dimensions. Therefore, the available parallelism will, at best, scale as the cube root of the 

size of each zone. A direct result of this is that it no longer makes sense to talk about scaled 

speedup. Instead, one is back at the problem of obtaining speedup for a fixed problem size. 

The second problem is that when using Loop-Level Parallelism, the available parallelism is 

frequently within an order of magnitude of the number of processors being used. Since there are an 

integer number of iterations in a loop, the predicted speedup is no longer linear, but rather is a 

stairstep. 

Figure 2 and Table 4 show an example of this. This also means that, for smaller problems, one 

may run out of parallelism in some/or all of the loops prior to using all of the processors in the 

machine. 

An additional complication with Loop-Level Parallelism is that since many of the loops will be 

doing very little work, the overhead associated with parallelizing them may be so great as to result 

in Parallel Slowdown! This situation is especially common in the boundary condition routines. 

11 
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Figure 2. Predicted Speedup for a Loop With 15 Units of Parallelism. 

Table 4. Predicted Speedup for a Loop With 15 Units of Parallelism 

No. of Processors 

1 
2 
3 
4 

5-7 
8-14 

1s 

Maximum Units of Parallelism 
Assigned to a Single Processor 

15 
8 
5 
4 
3 
2 
4 

Predicted Speedup 

1 .ooo 
1.875 
3.000 
3.750 
5.000 
7.500 

1s.rm-l 

While in theory this problem should be less severe when dealing with larger problem sizes, the 

reality of the situation is that the code will normally be tuned for the smaller problem sizes. While 

in many cases it should be possible to reduce the amount of CPU time spent on serial code to 1% 

or less of the total CPU time, this is enough for Arndahl’s Law to be a problem when using more 
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than about 50 processors. The combination of the stairstepping with Amdahl’s law explains why 

the smaller test cases show limited speedup in Table 2.* 

Figures 3 and 4 show all of these effects in a real problem. Figure 3 is for a relatively small 

problem (less than 500 MB of memory), while Figure 4 is for a relatively large problem (over 20 GB 

of memory). Our calculations indicate that the primary reason for the difference between the 

predicted and measured levels of performance in these curves is Amdahl’s law.’ 

6000 . 

1 = - ----‘*,?-s- 
pc 5000 -----A---- 
2 -,.-..-..-..-. 

2 
f 4000 - 

2 
F 
z 3000 - 

E 
P 
.$! 2000 - 

Cray C90 
SGI Origin 2000 (32 processor system) 

:- I 
i ’ 

SGI Origin 200 (4 processor system) 
SGI Origin 2000 (64 processor system) .I 

I 
Predicted performance 
SGI Origin 2000 (128 processor system) i 

(preproduction hardware and operating systern)ir 

i 
b 

1000 

0 
0 10 20 N”E3ER 

o”f”PFioCEssoFtss”usEo 
70 80 90 

Figure 3. Performance Results for the One-Million-Grid-Point Data Set. 

* A third reason for the limited speedup is that the average memory latency on the 128 processor Grigin 2000 is slightly 
longer than on the 32 and 64 processor systems. This has the effect of decreasing the serial efficiency from 30-40% 

t 
to about 25-30% on the 128 processor system. 
The predicted curve is based on the assumption that one can achieve the same percentage of peak performance for 
a single processor job on both the Cray C90 and on RISC-based machines such as the SGI Origin 2000. This does 
not mean that one will achieve this without any work. Rather, it is assumed that a significant effort at tuning the 
code was made on both platforms. Taking into account only the available level of parallelism (the stairstepping 
effect), this expected level of performance is then extraploted out for multiprocessor runs. As such, the predicted 
level of performance will, in general, equal or exceed the observed level of performance and serve as an excellent 
reference point for dete mining how well the system is performing. 
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Figure 4. Performance Results for the 59-Million-Grid-Point Data Set. 

5. Coklusions 

The combination of Loop-Level Parallelism and RISC-based SMPs has been shown to be a 

promising approach to parallelizing a class of highly efficient algorithms that had previously resisted 

attempts at parallelization. Additionally, evidence has been presented that demonstrates that, in 

general, the resulting code achieves a much higher level of delivered performance than traditional 

techniques might be expected to deliver. While it is not practical to look at all possible approaches 

in detail and to determine what their effect is on the Total Efficiency in all cases, it seems likely that 

the benefits of using our approach are real. 

An additional consideration is the availability of the hardware. SGI and SUN have both been 
quite successful at selling moderate-sized RISC-based SMPs. While IBM and Cray (a subsidiary 

of SGI) have sold a significant number of MPPs, very few of them had 512 or more processors. 

Therefore, even when in theory the performance of a large MPP using traditional methods should 

exceed our results, it is far from certain that one will actually be able to obtain access to enough 

processors in a single machine at one time. 
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Glossary 

Cm> 
Domain decomposition 

FLOPS 
mops 

MPP 
RISC 
SIMD 

SMP 

Computational Fluid Dynamics 
The process of splitting a small number of zones (some of which are 

assumed to be large) into a moderate to large number of zones 
(generally all of which are fairly small in size) 

Floating-Point Operations Per Second 
Million Floating-Point Operations Per Second 
Multiple Instruction Multiple Data - a class of parallel computers as 

defined in Flynn’s taxonomy 
Massively Parallel Processor 
Reduced Instruction Set Computer 
Single Instruction Multiple Data - a class of parallel computers as 

defmed in Flynn’s taxonomy 
Symmetric Multiprocessor - a term normally only applied to shared 

memory systems using hardware memory coherency protocols 
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