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Abstract

The primary purpose of the low cost competent munitions (LCCM)
program was to improve the effectiveness of indirect fire support from
cannon artillery (D’Amico 1996). With the advances in microelectronics,
sensor technology, and packaging design, the reality of a range correction
device for artillery is conceivable. One of the main objectives of the range
correction device concept was to contain all the mechanical and electrical
components within a fuze-like envelope, while maintaining certain
constraints that would allow the fuze to fit into a variety of artillery shells
used by North Atlantic Treaty Organization (NATO) countries. Another
objective of the range correction device concept was to avoid any changes
within the ogive of any of the projectiles in the existing stockpile.

This report is a culmination of many design iterations, numerical analyses,
shock tests, and actual cannon launchings. Most of the design iterations
and numerical analyses are not mentioned in this report simply because
they were stepping stones that led to the final design. Structural analyses
indicated that the overall prototype design was durable enough to withstand
the most severe artillery cannon launching available today. The design
should be capable of withstanding a 15,000 g inertial set-back load with
150,000 rad/s2 of angular acceleration. In addition, the design should be
capable of deploying while the projectile has velocity of 650 m/s and is
spinning at 250 cycles per second. The next step would be to fabricate and
test the design in order to truly verify the integrity of the structure and to
determine the overall effect of the deployed drag blades on the range of
flight.
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DESIGN AND ANALYSIS OF A FUZE-CONFIGURABLE TRAJECTORY
CORRECTION DEVICE FOR AN ARTILLERY PROJECTILE

1. INTRODUCTION

The primary purpose of the low cost competent munitions (LCCM) program was to
improve the effectiveness of indirect fire support from cannon artillery (D’ Amico 1996). With
the advances in microelectronics, sensor technology, and packaging design, the reality of a range
correction device is conceivable. A previous report entitled “Preliminary Design of a Range
Correction Module for an Artillery Shell” (Hollis 1996) demonstrated a possible concept called
the D-ring range correction device. One of the main objectives of the range correction device
concept was to contain all the mechanical and electrical components within a fuze-like envelope,
while maintaining certain constraints that would allow the fuze to fit into a variety of artillery
shells used by North Atlantic Treaty Organization (NATO) countries. Another objective of the
range correction device concept was to avoid any changes within the ogive of any of the
projectiles in the existing stockpile.

Range correction is achieved by a mechanism that symmetrically deploys four D-shaped
blades, or drag blades, with the sole purpose of increasi'ng drag. Estimates have been made of the
percent change in drag as related to increases in frontal area. Before deployment of the drag
blades, the frontal area of the fuze would be the largest diameter of the fuze geometry, which is
approximately 60.7 mm. When deployed, the frontal area will resemble figure (a) in Figure 1.
The deployed D-rings, with a spread of 80 mm, will increase the frontal area by 1.63 times. In an
effort to improve the range correction concept, the D-rings are extended a centimeter farther to a
deployment diameter of 100 mm, as seen in Figure 2. The increase in frontal area is 2.39 times.
An initial study by Brandon and Jara has indicated that reasonable maneuver authorities can be
- achieved for frontal areas of 7.3 in2 (47.1 cm?) and 10.7 in? (69.0 cm?), which corresponds,
respectively, to the 80-mm and 100-mm deployment diameters.

This report describes the final design for a prototype gun-launched range correction device
for an artillery shell. The design considered the future of artillery launching platforms, such as
Crusader, and incorporated the possible launch and flight conditions. The windshield, or radome,
was designed to withstand artillery cannon launching and aerodynamic heating from a Mach 3
flight. The mechanisms involved in the deployment of the D-rings are designed to take the
abusive launch, flight conditions, and deployment phases of cannon-launched artillery proj ectiles.
In addition, the design also allowed flexibility in deployment diameters of the blades. Depending
on the desired deployment diameter, 80 mm or 100 mm, one could assemble the device with
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different blades. The 80-mm deployment diameter version would require blade stops and would
deploy the blades to the 80-mm diameter, whereas the 100-mm deployment diameter version
would simply require a different stop. The stops would be located only on the blades so that no
further modifications of the rest of the drag device would be necessary. This report discusses the
final design and the structural analyses involved. Figure 3 displays the gun launch configuration

of the prototype.

(@ . (b)
Figure 1. Range Co ection Concept With the D-Rings Deployed to 80 mm.

(a) | (b

| Figure 2. Range Correction Concept With the D-rings Deployed to 100 mm.
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Figure 3. Electro-Mechanical Assembly of the Range Corrector. Gun-Launched Prototype.

2. DESIGN CRITERIA

The three main criteria for the prototype are structural integrity during launch and flight,
size, and room for supporting electronics. The cannon-launching environment would produce the
conditions shown in Table 1.

The criterion for room is to keep the extension of the device to a minimum. When the
projectile is fitted with the device, the assembly should be no longer than 1 meter long. The device
also cannot protrude too far into the ogive so that it interferes with existing hardware in the
projectile. However, this being a prototype, the latter criterion is relaxed to allow for relatively
large, off-the-shelf electronics that would support the prototype device. Figure 3 displays the
amount of available volume for supporting electronics. The maximum volume totals 8.7 in3.




Table 1. Conditions of the Cannon-Launching Environment

Condition Quantity
muzzle velocity 825 m/s
muzzle exit spin rate 300 Hz (1885 rad/s) A
inertial set-back load- 15,000g’s
maximum angular acceleration 150,000 rad/s?

3. DRAG BLADE DESIGN

“Show me your successes; don’t show me your failures” (anonymous 1997). The prototype
assembly for the drag blades and the guides is depiéted in Figure 4. It is the intent of this désign,
for the uppermost blade guide bulkhead and the drag blades to stack on top of the lowermost blade
guide bulkhead. The hex thin nut would then thread onto the circular boss on the lowermost guide
thus locking the assembly together. The blades can slide outward along the grooves provided in the
uppermost and lowermost guides. The uppermost and lowermost guides are depicted in Figure 5a
and b, respectively. During the pre-deployment part of flight, the lowermost blades would be ’
locked in place by two pins (not shown). The pins would protrude through holes in the lowermost
guide and into holes in the lowermost blades. Figure 6a depicts a lowermost blade, while Figure 6b
shows an uppermost blade. Notice that on the uppermost blade is a small wedge-shaped
projection that fits into a notched region on the lowermost blade, as seen in Figure 6a. When the
blades are assembled, and a high spin rate is applied, centrifugal forces are pulling the blades
outward. The uppermost blades are restrained because the wedge projection on each blade is trying
to force the lowermost blades apart. However, the lowermost blades are locked in place by pins.
Therefore, with the pins in place, the blades are locked into position for gun launch and free flight.

Several design iterations were necesséry to develop a viable solution for the drag blade
design. Early concepts incorporated extra parts such as a cam plate and guide pins as a means of
restraining and synchronizing the ejection of the blades. However, with the possibility of faster
muzzle velocities and more abusive boundary conditions, these parts required further structural
scrutiny. Quasi-static, finite element analyses revealed weaknesses in the design of the cam plate
and the guide pins. Similar analyses that were performed on the current design indicated
significantly improved performance during the launch and free flight conditions.
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| Figure 6. A Lowermost Drag Blade and an Uppermost Dra Blade.

The design for the uppermost and lowermost guides, as seen in Figure 5, required a few
iterations and structural analyses. In order for the device to survive the torque loading of gun
launch and also integrate the relatively large drag blades, a hexagonal spline was required. The
hexago'nal spline on the lowermost guide, coupled with a hexagonal hole in the uppermost guide,
allowed enough surface area to effectively transmit the torque produced by the 150,000 rad/s2
angular acceleration. This angular acceleration, combined with the predicted moment of inertia of
the upper portion of the drag device, 0.79 Ib-in? (2.3 x 104 kg-m?), produces a torque of 307.5
Ib-in. (34.7 N-m). As a result of a quasi-static finite element analysis (FEA), the lowermost
guide was required to be made of steel with a minimum yield strength of 150,000 psi, and the
uppermost guide is to be made of aluminum 7075-T651 that has a yield strength of 73,000 psi
(503 MPa). The FEA is discussed in detail later in the report. '

4. ANALYSIS OF THE DRAG BLADES

Several analyses were performed on the blades in an effort to determine the effects of
various loading conditions. A possible worst case deployment scenario occurs when the
projectile has a velocity of 650 m/s and a spin rate of 250 Hz. The details of this analysis are
presénted in Hollis (1998). This report documents an earlier design of the blades that are locked
in place by guide pins that connect the blades to a central cam plate. The results of Hollis (1998)
indicated that the blades, deployed to 100 mm in diameter, with the 250-Hz spin rate and an




aerodynamic load applied, would remain structurally intact. However, analysis of the same
blades during the pre-deployment conditions of 300 Hz showed structural probléms. The
analysis indicated that the guide pins were bending and the drag blade and the cam plate were
possibly plastically deforming. The final blade design, as seen in Figure 6, were the most
successful in handling the loads attributable to the high spin rate.

5. ANALYSIS OF THE HEXAGONAL SPLINE

The purpose of the hexagonal spline is twofold. The first is to provide support to the
upper portion of the drag device during launch and free flight. The launch forces include a
15,000-g inertial load and a torque load of 307.5 Ib-in (34.7 N-m). Secondly, the spline must be
small enough to allow the drag blades to be the desired size.

6. BOUNDARY CONDITIONS FOR THE HEXAGONAL SPLINE ANALYSIS

As mentioned previously, the loads on the spline during launch are 15,000 g’s of inertial
loading and 304.5 1b-in (34.7 N-m) of torque loading. The inertial loading is of concern, since the
load has to be absorbed by a small “lip” at the top of the hexagonal portion of the lowermost blade
guide bulkhead (see Figure 5). Hand calculations found that this surface area was large enough to
withstand the inertial load of 9660 Ib. This amount is derived from multiplying 15,000 g’s by the
intended weight of the uppermost region of the drag device. If relatively large displacement of the
uppermost guide occurred, it was assumed that the drag blades would aid in support. Therefore, |
this boundary condition was not analyzed with the finite element method, but the torque load was.

Figure 7 shows the geometry that was used to perform a three-dimensional, quasi-static,
finite element analysis of the hexagonal spline. The geometries have been simplified to allow the
analysis to focus on the hexagonal spline. Notice that the spline in the lowermost blade guide is
hollow. Common engineering practice dictates that the best torque-transmitting geometry is a
hollow tube, which also provides a conduit for wires. Figure 8 shows the finite element model of
the assembled lowermost and uppermost blade guides. The model consists of 11,088 linear
quadrilateral brick elements, 13,824 nodes, and 384 linear transient contact elements. The contact
elements are used to simulate the contact between the sides of the spline and the hexagonal hole.
The spline geometry has the material properties of steel, whereas the upper plate that contains
the hexagonal hole is made of aluminum 7075-T651. The density of the ring that is attached to
the upper plate has been tailored so that the moment of inertia would match the intended moment




of inertia for the entire upper region of the drag device. The material properties of interest for the
FEA are shown in Table 2. -

F INITE ELEMENT MODEL OF THE HEXAGONAL SPLINE

@ (b)

Simplified Geometries of the Lowermost and Uppermost Blade Guides.

F igure 7.

Steel elements

_ Aluminum elements
Elements with tailored density '

Surface of eléments restrained in all 6 d.o.f.'s

Figure 8. The Finite Element Model of the Assembled Lowermost and Uppermost Blade Guides.

7. RESULTS

The results presented are based on the von Mises stress criterion. This theory specifies
that plastic (deformable) yielding will occur when the combined stresses of a body equal or -




exceed the tensile stress of a metal. The von Mises stress failure criterion has been validated by

previous empirical studies (Sorenson 1992).

Table 2. Material Properties Used for the Finite Element Analysis

Material Young’s Modulus of Specific Poisson’s Ratio
Elasticity psi [MPa] Gravity
Generic Isotropic Steel 30x106[207] 7.83 29
Aluminum 7076-T651 10x106 [69] 2.79 33
Tailored Mass 10x106 [69] 133.58 29

Von Mises stress, ¢”, can be represented by the following equation:

2 2 2 172
O"={|:(O'I"‘O'2) +(0'2'—0'3) +(O'1—'O'3) ]/2}
in which o}, 0,, and o3 are the principal stresses and

(o)’ > O'2> O3.

" Plastic yielding is predicted to occur when the von Mises stress is equal to or greater than
the yield stress, &, of the material. If the design has extensive areas of plastic yielding, then it
is likely to suffer unacceptable deformations and possibly even fracture in service. However, if
only small, localized regions of yielding are predicted, then it is presumed that some
redistribution of material through plastic flow will alleviate these high stress areas (Hollis 1997).

Figure 9 shows a cut-away contour plot of the hexagonal spline. Notice that the largest von
Mises stress is 77 ksi and is localized to the vertices of the hexagon. This stress is of no concern
because the vertices would either be chamfered or filleted, and the choice of steel would have a
yield strength of approximately 150 ksi. Figure 10 shows a contour plot of the von Mises
stresses on the uppermost blade guide because of the torque loading. Notice that the maximum
von Mises stress is 76 ksi, which is 3 ksi higher than the yield strength of aluminum 7075-T651.
This does cause some concern; however, the stresses are localized to the vertices of the geometry.
Again, the vertices would not exist because the fabrication process would call for the corners to

be replaced with small fillets, thus eliminating the stress riser effect of corners.
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8. DESIGN OF THE DRAG BLADE RELEASE DEVICE

Figure 11 displays the drag blade release device and the components, which would retract
the pins from the lowermost drag blades. The device is a simple lever type mechanism, in which
a micro-miniature piston actuator (MMPA) pushes the crank arm slider and the crank arm
alignment pin. The crank arm slider, which can only translate in one direction because of the
alignment pin, is linked to two crank arms. The crank arm, as seen in Figure 12, rotates about the
pivot point while maintaining a connection with the release pin. The release pin is limited to one

degree of freedom, which is a translation only because the pins must slide through guide holes in

the release device bulkhead. In addition, the pivot points are maintained in the release device
bulkhead. The nacelle houses the entire mechanism, protecting it from electrical potting
compound. The MMPA is capable of producing a 60-1bf impulse. The force of the impulse is
distributed by the crank arm slider to the crank arms. The crank arm represents a 2.7:1 lever
ratio, which'ampliﬁes the imparted force of the crank arm slider. A device similar to this was
successfully used in bench tests in late 1996 and in an actual flight test at Wallops Island in
January 1997.

RELEASE PIN
(04019811)

RELEASE DEVICE BULKHEAD

oe——— CRANK ARM PIVOT PIN
o (04019813)

CRANK ARM
>AE (040198091

BN

]

CRANK ARM CONNECTOR PIN
o (04019813

-]
°

CRANK ARM SLIDER
w/ [04019810)

CRANK ARM ALIGNMENT PIN
[—— (040198131

NACELLE
[04019812A)

Figure 11. Exploded View of the Drag Blade Release Device.
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Release pin yoke

Figure 12. An Isometric View of a Crank Arm From the Drag Blade Release Device Assembly. |

9. DESIGN AND ANALYSIS OF THE WINDSHIELD

With the future of artillery projectiles being launched at higher muzzle velocities, i.e., Mach
3, there comes the concern about aerodynamic heatirig. At Mach 3, there is a possibility of a
stagnation temperature of 600° to 700° F (589° to 644°K) occurring on the nose of the
windshield. Thorough aerodynamic heating and heat transfer analyses are beyond the scope of
this report. Therefore, the design was intentionally over-compensated to handle possible
aerodynamic heating for flights with an initial muzzle velocity of Mach 3. Since this design
intended to have hardware that telemetered data, the material of the windshield needed to allow
for the transmission of radio frequencies. Therefore, a high strength, heat-resistant plastic was

chosen. Table 3 lists plastics that were surveyed.

This report focuses on the use of Nylon 66 as the polymer of choice. Nylon 66 is
relatively strong, has a high melting point and has the lowest cost. Since none of the plastics -
surveyed had a melting temperature high enough to withstand the stagnation temperature of 316°
to 371° F, a ceramic nose tip was designed. The ceramic of preference was Macor®, which is
produced by Dow Corning. Macor® is a machinable ceramic that can withstand temperatures as
great as 1000° C and has a thermal conductivity of 1.46 w/m/C°. Both the nylon windshield and
the Macor® nose tip are shown in Figures 13 and 14. The nose tip merely screws into the
windshield. This design was intended to survive the angular acceleration and inertial loading
conditions used in the hexagonal spline analysis mentioned earlier. A quasi-static, linear analysis
was performed on the assembly of the windshield and the nose tip. Even though the windshield
is nylon, the analysis was intended to determine how much linear deformation the windshield
would incur. If the deformation and the stresses diverged from the linear regime, then the

12



analysis would not be valid. On the other hand, if the analysis remained linear, the assembly

would then be fabricated and tested on a shock table.

Table 3. Material Properties of Surveyed Plastics

™ -z/

14 I
MAJOR ¢1,810°

2,603-.003

Figure 13. Schematic of the Nylon Windshield.
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Polymer Nylon 101 Unfilled Unfilled Polyphenylene | Unfilled
| Description Type 66 Polycarbonate | Polyetherimide | Sulfide Polyehterether | Polyamideimide
at 73°F Ketone
Tensile 11,500 10,500 16,500 13,500 16,000 18,000
Strength (psi) :
Compressive 12,500 11,500 22,000 21,500 20,000 28,000
Strength, 10% '
Deformation (psi)
Tensile 425,000 320,000 475,000 500,000 500,000 600,000
Modulus (psi)
Melting 500 n/a n/a 540 644 n/a
Point (F)
Tg-Glass n/a 293 419 n/a n/a 527
Transition (F)
Dielectric 3.6 3.17 3.15 3.0 33 3.9
Constant, 106 Hz
Relative Cost $ $$ 333 $$5% $$588 $3588
4.6‘14:.001 e
$ .5756.605
. et . 210-.002
= A7 777> SRS
N R.350
. f——— ., 250 ~.005
20.5361.001 : .
m.swoﬂi X K R.125¢.005. A1
T 3/8-15 UNC 28
$1.948 -,002 m —t




— .375-.003

-I -—.125-.002
\555/1 .590-,002
3/8-16 UNC 2A/

!
19.3°%,1°
R1/32

.204 MIN THD LENGTH

Figure 14. Schematic of the Ceramic Nose Tip.

10. BOUNDARY CONDITIONS OF THE WINDSHIELD FINITE ELEMENT ANALYSIS

The loads that were used in the hexagonal spline analysis were also used in this analysis.
Figure 15 depicts how the loads were applied to the geometry. The inertial set-back load of 15,000
g’s is applied along the centerline axis, while an angular acceleration of 150,000 rad/s? is also applied
along the positive sense of this axis. In addition, the surface where the threads are to be located is
restrained in the axial, radial, and theta directions. The bottom surface of the windshield is also
restrained in the axial direction. Figure 16 represents the finite element model used to evaluate the
windshield assembly. The nodes at the threaded interface between the nose tip and the windshield
were merged to simulate the threads. ‘Four hundred twenty (420) transient contact elements were
used to model the interface between the bottom of the insert and the top of the windshield. The -
model incorporated 13,260 linear quadrilateral brick elements and 18,872 nodes.

11. RESULTS

The axial, radial, and hoop stresses were used to evaluate the windshield assembly. Figure 17
displays the axial stresses that were present in the finite element model. One can see that the
maximum stress is approximately -2070 psi (-14.3 MPa) with a maximum axial displacement of
-0.0056 inch (-0.14 mm). The axial deflection is on the order of 0.2% of the overall length, and the
level of stress is well below the 12,000-psi compressive strength of Nylon type 66.

14




Threaded region restrained

Flat surface axially restrained

Figure 15. Boundary Conditions and Restraints of the Windshield Model.

Figure 16. Finite Element Model of the Windshield.

The radial and hoop stresses were much lower in magnitude of stress than the axial component.
The maximum radial component of stress was 1,450 psi (10 MPa) and the maximum component
of the hoop stress was 860 psi (6 MPa).

15
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Figure 17. Axial Stress Contour Plot of the Windshield Model.

12. TESTING OF THE WINDSHIELD

In addition to the structural analysis, the windshield assembly was shocked on an Impac
shock test machine. Two separate windshield assemblies were tested. The test applied 15,000
g’s for approximately 0.01 millisecond. No noticeable permanent deformation was witnessed,
thus verifying the inertial loading part of the analysis. However, one will argue that nylon is a
rate-dependent material and that this analysis does not cover this topic. This much is true. The
scope of this report was to estimate the viability of the design using linear numerical tools. Since
the shock table testing, several windshield assemblies have been fabricated and successfully flight

‘tested. To date, the fastest launch was from a smooth bore, 120-mm gun tube at Mach 3. The
fastest artillery gun launch to date was Mach 2.4 with a spin rate of approximately 250 Hz.

13. CONCLUSION

This report is a culmination of many design iterations, numerical ahalyses, shock tests, and
actual cannon launchings. Most of the design iterations and numerical analyses are not mentioned
in this report simply because they were stepping stones that led to the final design. Structural
analyses indicate that the overall prototype design is durable enough to withstand the most
severe artillery cannon launching available today. The design should be capable of withstanding
15,000 g’s of inertial set-back loads with 150,000 rad/s2 of angular acceleration. In addition, the
design is also capable of deploying at a velocity of 650 m/s while spinning at 250 cycles per
second. The next step would be to fabricate the design in order to truly verify the integrity of the
structure and to determine the overall effect of the deployed drag blades on the range of flight.
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Further development would be to incorporate the drag mechanism into an actual fuze. Figure 18
displays the M773 multi-option fuze artillery (MOFA) and a layout of the incorporation of the range
corrector concept within the MOFA. This figure demonstrates that the range corrector-MOFA could
be a possibility. A portion of the fuze would be extended enough to insert the drag-producing blades
and to re-route wires via a central conduit which the range corrector provides. ‘

- XM782 with
ARL D-Rings

Exploded
View

Figure 18. The M773 MOFA and a Possible Incorporation of the Range Corrector Device.
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APPENDIX A

SCHEMATICS FOR RANGE CORRECTION CONCEPT
WITH VARIABLE DEPLOYMENT D-RINGS
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APPENDIX B

PHOTOGRAPHS OF FLIGHT TEST HARDWARE
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PHOTOGRAPHS OF FLIGHT TEST HARDWARE

In early January 1997, a D-ring range correction concept with an 80-mm deployment
diameter was tested at Wallops Island National Aeronautics and Space Administration (NASA)
flight test facility. Four 155-mm M483A1, inert artillery shells were fitted with D-ring range
correction devices that deployed the drag plates at specified times in the flights. The devices
were instrumented with a timing circuit, a deployment sensor, and telemetry electronics. After
being successfully cannon launched, the mechanisms were deployed at either 10- or 20-second
intervals, depending on the timing circuit setting (Hollis 1998). This appendix presents
photographs of the hardware that was flown for that test.
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Figure B-2. A Top-down View of the Range Correction Device With the Drag Blades Fully
Deployed..
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Figure B-3. An Isometric View of the Range Correction Device With the Drag Blades Fully
Deploved
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Figure B-4. A Side View of the Range Correction Device With the Drag Blades Fully Deployed..
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Figure B-6. An Isometric View of the Lower Blade Guide for the Range Correction Device.
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Figure B-7. An Isometric View of the Top of the Cam Plate Housing for the Range Correction

Device.
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Figure B-8. An Isometric View of the Bottom of the Cam Plate Housing for the Range

Correction Device.
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Figure B-9. A Pre-assembly View of the Blade Locking Device That Allowed the Blades to
Deploy at the Desired Time.
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Figure B-10. An Assembled View of the Lockin Device for the Range Correction Device. |

52




Figure B-11. An Isometric View of the Blade L.ocking Device Without the Cover.
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