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Errata for ARL-TR-2076, "Effect of a Simple Lateral Impulse on KE Projectile Flight," 
by Bernard J. Guidos and Gene R. Cooper, Dec 1999 

Page 19, Equation (67) is incorrectly typed as: 

F " - M F  = ?,*[h(s-s, +As,)-h(s-s , )]-3*[hf(s--s ,  +As,)-hl(s-s,)] Eq(67) 

The correct equation is: 

-* 
r., 

I f  
- P* 

4 - = i [ h ( s  - s, + As,) - h(s - s,)]-'[hf(s - s, + As,) - hf(s - s,)] Eq (67) As As 

Page 20, Equation (69) is incorrectly typed as: 

The correct equation is: 

F = K,ne 
i41,n ei4f(s-so) 

+ K2,ne 
'42  ,n e-j4f(s-so) 
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Abstract 

Existing analytical theory for quantifying the free-flight motion of non- 
rolling, statically stable projectiles is extended to include the effect of a 
simple lateral impulse applied during flight. The extended theory is based 
on the incorporation of generalized lateral translational and angular 
disturbances into the familiar equations of projectile free-flight motion. The 
applied disturbances are then modeled using specified mathematical forms, 
and the modified equations are solved to obtain the angular and translational 
motion of the projectile over the trajectory. The various components of the 
translational motion of the projectile are extracted and characterized. An 
idealized application is presented for a large caliber finned projectile, 
representative of the class of 120-mm long rod kinetic energy projectiles 
fired from the MlAl Abrams tank, subjected to a single lateral control 
impulse in flight. The analytical closed form solutions are validated against 
results obtained using a numerical trajectory simulation code that 
incorporates generalized guidance and control commands. 
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THE EFFECT OF A SIMPLE LATERAL IMPULSE ON 
KINETIC ENERGY PROJECTILES IN FLIGHT 

1. INTRODUCTION 

The U.S. Army is developing precision-guided munition technologies to improve the 

accuracy and extend the range.of its weapon systems. In-flight guidance and control of 

munitions involve the application of lateral course correction maneuvers that alter the angular 

and translational motions of the flight body. Such maneuvers are accomplished by applying one 

or more sets of prescribed translational and/or angular disturbances to the projectile during flight. 

These applied lateral disturbances can be delivered in a variety of ways, including fin/canard 

deflections or laterally thrusting jets. Disturbances of comparatively short duration can be 

characterized as impulsive and are of particular interest here. 

In this report, a specific class of lateral impulsive disturbances is incorporated into the 

equations of motion for a finned, long rod, kinetic energy (KE) projectile. The procedure leads to 

closed form analytical solutions that show straightforward relationships to exist between the 

applied impulsive disturbances and the projectile angular and translational motion. The analytical 

expressions not only eliminate much of the computational overhead associated with the prediction 

of impulsively guided projectile motion but also lead to a generalized framework with which to 

analyze actual measured projectile motion or to design complex guidance and control maneuvers. 

The objective here is to present the impulse model, incorporate it into the modified 

equations of motion, and validate the results with a 6-degrees-of-freedom (DOF) numerical 

trajectory simulation code that has guidance and control commands. Application is presented for 

an idealized large caliber finned KE projectile subjected to a single, simple in-flight lateral 

impulsive disturbance. Characterization is made of the projectile motion before and after the 

application of the lateral impulsive disturbance for some representative cases. 

2. IDEALIZED KE PROJECTILE 

An idealized 120~mm finned KE projectile geometry is adopted to compare the analytical 

results with those from a numerical trajectory simulation code. Figure 1 illustrates the idealized 



projectile geometry. Table 1 shows the defining parameters of the projectile. The configuration 

represents the current class of 120-mm armor-piercing, fin-stabilized, discarding sabot (APFSDS) 

KE ammunition fired from the Abrams MlAl tank. These projectiles are commonly of large length- 

to-diameter ratio, statically stable, damped, with low to moderate spin rates, launched in flat fire. 

LATERAL JET 

NORMAL FORCE CENTER OF GRAVITY 
CENTER OF PRESSURE 
WITHOUT JET 

Figure 1. Idealized IE Proiectile and Lateral Jet. 

Table 1. Idealized Proiectile and Lateral Jet Parameters 

I Metric English I 
Rod Diameter, d 0.0254 m 0.08333 ft 

Mass, m 
Length 

Center of Gravity (CG) from Base 
Transverse Moment of Inertia, It 

5.0 kg 
0.8 m 
0.5 m 

0.2 kg-m2 

11.023 Ibm 
2.62467 ft 
1.6404 ft 

0.1475 125 slug-ft2 
Pitching Moment Coefficient, CM~ 

Lift Force Coefficient, CL= 
Location of Lateral Jet Relative to CG, dF 

Jet Impulse Magnitude, 71” 

- 100 cal/rad 
10 / rad 
0.2 m 
1 .O N-s 

-100 cal/rad 
10 I rad 

0.6563 ft 
0.2248 1 lbf-s 

The projectile is assumed to be perfectly symmetrical. The aerodynamic pitch-plane center of 

pressure is determined from the prescribed values of pitching moment coefficient CM~ and lift 

force coefficient &. The projectile is prescribed to have a lateral impulse jet situated at an axial 
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location that would correspond to a location on the windshield, near the shoulder. The lateral 

impulse jet is prescribed to have a total impulse of 1 N-s, typical of an off-the-shelf component. 

3. LATERAL DISPLACEMENT, ANGULAR DEVIATION, AND JUMP 

The target impact of tank-fired rounds has been traditionally characterized in terms of jump. 

The jump associated with a particular shot can be defined using the nomenclature introduced in 

Figure 2. The boresight line of fire (LOF) is established as the line connecting the center of the 

muzzle and the visual aim point (boresight point) that would be obtained by a muzzle borescope. 

The gravity drop is extracted separately from various data sources and is considered known. The 

LOF and gravity drop together establish an aim point, from which the target impact point is 

measured. The vector that connects the aim point and target impact point is considered here to be 

the lateral displacement. The horizontal and vertical components of the lateral displacement are 

Zr and Yr, respectively. The lateral displacement is converted into an angle, in units of radians, 

when divided by range. This angle, denoted as g represents the total angular deviation of the 

projectile from the intended flight path as measured from the muzzle, i.e., 

Eq (1) 

in which 8, and 8, are the horizontal and vertical components, respectively. The unit vector 7 

is oriented upward (along the positive Y axis in the figure), and the unit vector z is oriented to 

the gunner’s right (along the positive 2 axis in the figure), and these physical orientations 

constitute range coordinates as used in this report. 

The angular deviation of the projectile is commonly discussed in flight dynamics theory 

using complex notation (to be introduced subsequently) and denoted here as 8 . In the complex 

notation to be used here, the vertical component is oriented along a real coordinate axis and the 

horizontal component is oriented along an imaginary coordinate axis, i.e., 

with i equal to fi. 

e”=e, +ie, Eq (2) 
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Y 
I UNIT VECTORS 

TARGET RANGE =X, 

&, = HORIZONTAL COMPONENTOFANGULAR DEVIATION 

6” = VERTICAL COMPONENT OF ANGULAR DEVIATION 

Figure 2. Components of Angular Deviation. 

At typical engagement ranges, the angular deviation of tank-fired KE ammunition, 

historically consisting of unguided projectiles, is, for practical purposes, constant. In that case, 

the lateral displacement of the projectile is proportional to range and it can be said that the 

angular deviation of the projectile at the target corresponds to the jump attributable to the tank 

launch event. However, at these same typical ranges, the lateral displacement of apuziZed tank- 

fired KE projectile is typically not proportional to range after a mid-flight course correction 

maneuver is applied. As a result, the angular deviation of the projectile at the target is not likely 

to correspond to the jump attributable to the tank launch event. These observations, supported by 

the mathematical development to be presented subsequently, produce discussions herein that 

focus on the lateral displacement and angular deviation of the projectile, rather than on the more 

traditional quantity of jump. 

4. APPLIED FORCE AND MOMENT DISTURBANCES 

In free flight, the projectile is acted upon by a lateral impulsive disturbance. The 

disturbance can be separated into a translational component (i.e., force) F and an angular 
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component (i.e., moment) iI? , both defined as functions of time. In range coordinates and vector 

form they are 

F = F(t) = F,I+ F$ W (2) 

n?=ti(t)=M,~+M,~ Eq (3) 

in which the usual right-hand rule applies to the moment components. 

The forms of the lateral disturbances F and n? are completely general in actual projectile 

flight. The approach introduced here specifies simple modeled forms of the impulsive 

disturbances that can be extended and used in more advanced applications to model actual; more 

generalized, disturbances. Two basic mathematical forms of applied impulsive disturbances are 

of interest here. The first is a single, positive phase duration, unidirectional square wave 

disturbance. The disturbance has the form 

Eq (4) 

in which the subscript 1 denotes one of any number of disturbances that could be modeled. The 

orientation of the applied lateral disturbance is measured from the vertical direction in the earth- 

fixed frame, is denoted @, , and is constant. The magnitude is Fl with the restriction 
* 

F, =F,(t)=C,[h(t-t,+At,)-h(t-t,)] for t-AtIct<tl Eq (5) 

in which Cl is a real constant and h(t - tl) is the Heaviside unit step function occurring at tl 

(Lighthill 1958). The form of Fl is illustrated in Figure 3, and this form of applied disturbance 

is henceforth simply referred to as a square disturbance. The disturbance creates intervals and 

sub-intervals, also illustrated in Figure 3, with which motion parameters will eventually be 

associated. Concurrently, the disturbance can be described in terms of distance along the flight 

path, S, as illustrated. 

The second form of impulsive disturbance considered here is a singular disturbance. A 

specific form of the square disturbance, it is defined here in the same manner as the square 

disturbance but with the additional restriction that At, = 0 . 
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( interval 0 , syb-interval: (. interval 1 , 

. > 

t0 t, - A t, tl 

SO sI - A sI SI 

t or s 

Figure 3. Square Wave Disturbance. 

The singular disturbance is the most important form for representing actual disturbances. 

First, it is the most basic form of an impulsive disturbance, forming a building block with which 

to model more complicated impulses and motions. Second, it is the most mathematically simple 

form with which to work. 

The modeled force and moment disturbances are to be incorporated into the free-flight 

equations of motion that are presented and solved by Murphy (1963) and McCoy (1998). 

McCoy’s coordinate systems are adopted here and illustrated in Figure 4. The (7, 7, r) system 

is the earth-fixed range system, the (i, j,E) system is a non-rolling system aligned with the 

velocity vector, and the (X, 7, Y) system is a body-fixed system. For flat fire trajectories, the 

unit vector 3 is usually aligned to within lo or less with the unit vector 7, and the unit vector k 

is usually aligned even closer with the unit vector K. 
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Figure 4. Coordinate Systems. 

The ensuing development requires that the applied lateral force and moment disturbances 

be cast in complex notation consistent with McCoy, and the following complex representations 

are defined as 

& =I$ +iF, Eq (6) 

ii?] =M, -34, Eq (7) 

in which i is the square root of -1. The applied disturbances are nondimensionalized to form 

corresponding complex nondimensional force and moment coefficients, e,, , and eMI , 

respectively 

Gvl - E 
= chm = y2 p V2A 

Eq (8) 

Eq (9) 

The ensuing development also requires the formation of “starred” quantities, obtained by 

multiplying the original quantity with the density factor, i.e., 
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-* 
C NI 

_ PAde 
2m N’ Eq (10) 

Eq (11) 

The corresponding nondimensional generalized translational and angular impulses are 9]* 

and %y, respectively. These impulses are complex constants found by integrating the applied 

disturbances over the duration of the disturbances, i.e:, 

Eq (12) 

The integrations are performed with respect to flight path S, the disturbances end at SI, the spatial 

duration of the disturbances is ASI, and the appropriate transformation of the limits of integration 

from time t to distance along the flight path s is applied. 

The horizontal and vertical components of the translational impulse are defined in the 

complex notation as 

The translational impulse can be written in polar form as 

Eq (14) 

in which 7,* and @I are the magnitude and orientation, respectively, of the translational lateral 

impulse. 

The applied force vector associated with, for example, a lateral jet, is typically coplanar 

with and perpendicular to the projectile axis. If the pitch and yaw angles are small, then the 
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components of the force vector may be assumed to correspond to the horizontal and vertical 

coordinate directions without additional transformation. Prescribe the applied force vector to act 

upon the body at an axial distance d, from the projectile center of gravity (CG). The sign of d, 

is positive for a case in which the force is applied forward of the CG (e.g., near the nose tip). 

The relationship between the applied force and moment is prescribed as 

fi, = F]d, Q (16) 

By substituting into the expressions already introduced, the relationship between the applied 

force and moment impulses is found to be 

-* $d, m, =- 
d 

Eq (17) 

The assumed relationship between the applied force and moment is convenient to satisfy 

the objectives of the current report. More accurate (and complex) expressions to define the 

applied force and moment disturbances can be used to refine the development of the theory for 

specific applications. For example, the expressions employed here, both in the analytical and 

numerical approaches, do not model the jet-body interactions. 

5. ANGULAR MOTION WITH SINGULAR IMPULSE 

5.1 Equation of Angular Motion 

The complex yaw angle relative to the flight path is defined consistent with McCoy (1998): 

f =a+$ Eq (18) 

with the pitch angle cx being positive for nose up and the yaw angle p being positive for nose 

right from the gunner’s perspective, as shown in Figure 5. 
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Y 

Figure 5. Pitch Angle a and Yaw Angle D. 

The projectile is assumed to be symmetrical, non-spinning, statically stable, and in flat fire. 

Damping, while important for certain aspects of the projectile motion, is neglected here in order 

to focus attention on the analytical model methodolbgy. Under these assumptions, the linearized 

free-flight equation of angular motion with no applied lateral impulse as given by McCoy (1998) 

can be reduced to 

F”..& = 0 Eq (19) 

in which the superscript prime denotes differentiation with respect to the flight path s and 

A4= ‘/z pAd3CMa/ It Eq (20) 

Now consider the single set of applied translational and angular impulsive lateral 

disturbances, e,*, and ?* MI, respectively, discussed in the previous section. The free-flight 

equation of angular motion can be re-derived with these terms included, giving the more 

generalized equation of angular motion as 
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Eq (21) 

in which kt is the transverse radius of gyration, with the definition 

kt= 
I =f 

md2 
Eq (22) 

If the impulses attributed to c,*, and ez, are modeled as singular, then Equation (21) can 

be written as 

Eq (23) 

in which the Dirac delta function (Lighthill 19X+), s(s - sl), is used. 

This approach is analogous to that used by Cooper and Fansler (1997) to model the 

impulsive effect of yaw card impacts on the angular motion of spinning projectiles. The major 

difference (aside from the zero spin assumption) is that the directionality of the angular and 

translational impulsive disturbances has been generalized. Also, the present effort focuses on a 

single set of angular and translational disturbances, while the effort by Cooper and Fansler was 

generalized for successive impulses. 

For convenience, the following definition is used: 

Eq (24) 

Then the general solution to the angular equation can be written as 

i& (s--sJ if (s-s]) e 2.1 
i& (s--sJ + e&,1 (s--sl) 

Eq (25) 
e 

6 1.1 + 6, 

The solution in the nth interval (here, n is either 0 or 1) can be written in a form analogous 

to the free-flight cases given by Murphy and McCoy, referred to here as modal form: 
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Eq (26) 

in which the modal parameters are defined as follows: 

K,;, = magnitude of first epicyclic modal arm for nth interval, real and positive 

K 2.n = magnitude of second epicyclic modal arm for nth interval, real and positive 

@ 1.n = reference phase angle of first epicyclic modal arm for nth interval, evaluated at s= so and 

real 

@ 2 .n = reference phase angle of second epicyclic modal arm for nth interval, evaluated at s= so 

and real 

4’ 1-n = turning rate of first epicyclic modal arm for nth interval, real 

@’ 2 .n = turning rate of second epicyclic modal arm for nth interval, real 

Because the spin is assumed to be zero, the turning rates are related by 

Eq (27) 

in which the magnitudes of the rates are assumed to be constant in all intervals throughout the 

flight. The usual relationship between the pitching moment coefficient and modal turning rate 

for a non-spinning projectile is retained: 

Eq (28) 

The modal form of the solution, as given by Equation (26), is a parametric equation for an 

ellipse representing the modeled undamped epicyclic motion and is illustrated in Figure 6. The 

two terms on the right-hand side of Equation (26) are the two epicyclic modal arms, represented 

as vectors in the a, p complex plane. For one full cycle of motion, the summation of the two 

vectors etches the image of an ellipse in the complex plane. The eccentricity of the ellipse is 

determined by the relative magnitudes of the two modal arms. If the magnitudes of the two 

modal arms are equal (ICI,, = J&n ), then the angular motion is planar. If the magnitude of one of 

the two modal arms is zero, then the angular motion is circular. 
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Figure 6. Illustration of Undamned Enicvclic Motion. 

The solution to Equation (24) yields two conditions at sl. The first condition is 

in which 

5”1_ =Rs;> 
The second condition is 

in which 

5”1+ = 5”Ys:) 

5”:. =5”‘w 

Eq (29) 

Eq (30) 

Eq (31) 

Eq (32) 

Eq (33) 

Eq (34) 

The subscripts I- and 1+ represent the quantity immediately before and after the application 

of the singular impulse. The first condition recognizes that a discontinuity in projectile yaw exists 

at SI for a non-zero singular translational disturbance. The second condition recognizes that a 

discontinuity exists in the projectile angular rate at SI for a non-zero singular angular disturbance. 

The solution of the equation of angular motion has the same mathematical form as the free-flight 
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solution given by Murphy and McCoy, but with additional sets of conditions occurring where the 

singular impulsive disturbances are applied. 

5.2 Modal Parameters 

The modal parameters given previously have long been used to characterize aeroballistic 

flight in the absence of applied in-flight impulses. The modal parameters in adjacent intervals can 

be related to each other and to the impulses experienced during flight. Following the same 

procedure as Cooper and Fansler (1997), the reference complex modal arms of the nth interval 

are defined as 

Then the reference complex modal arms in the two adjacent intervals are related by 

Eq (35) 

Eq (36) 

Eq (37) 

Eq (38) 

The relative contributions to the angular motion-from the applied translational and angular 

impulses can now be ascertained by comparing the magnitudes of the terms ( &* /@‘) and ?,* . 

The comparison can be made by substituting the assumed relationship between the applied 

translational and angular impulses, rewritten here as 

?I” - ;; 
I 

Eq (3% 

For the idealized projectile and lateral jet configuration prescribed here, the contribution from 

the angular disturbance is found to be approximately 80 times greater than the contribution from 

the translational impulse. The angular motions of interest here are already limited to total angles of 

attack in the linear range, i.e., a few degrees. Therefore, it is prudent in the present work to drop 
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the applied translational impulse contribution to the angular motion and retain only the applied 

angular impulse contribution. This may not be acceptable for cases in which the lateral jet is 

located closer to the projectile CG and/or the magnitude of the translational impulse is larger. 

The values of the modal parameters, K,,n, K,,n ,q& ,& ,R under these assumptions are now 

obtained. The applied angular impulse is characterized in complex polar form as follows: 

?;* = &i@l 

in which the orientation of the angular impulse is @I as previously defined and 

Q (40) 

Eq (41) 

The scalar quantity g,*, which can be positive or negative, represents both the magnitude and sign of 

the angular impulse within the specified orientation. The following functional definition is specified: 

sign(d, ,) = 1 1 ford,20 

-1 for d,cO 

The relationship between the modal arms in adjacent intervals is then 

K = 
2.1 

in which 

The phase shifts of the modal arms are then given by 

Eq (42) 

Eq (43) 

Eq (44) 

Eq (45) 

Eq (46) 

Eq (47) 
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Eq (48) 

6. TRANSLATIONAL MOTION WITH SINGULAR IMPULSE 

The translational motion, also called “swerve,” is the motion of the projectile CG. Using 

McCoy’s coordinate system, the free-flight swerve equation with no applied in-flight impulse 

given by McCoy can be written in complex notation as 

y” + iz” = C;J-glm Eq (4% 

in which y and z (not related to the 7 and Z unit vectors mentioned previously) are defined as 

y=Y/d Eq (50) 

z=Z/d Eq (51) 

The left-hand side is the lateral acceleration of the projectile CG. The right-hand side is the sum 

of aerodynamic and gravitational forces divided by the projectile mass. 

The equation can be modified to include the applied m-flight force and moment impulses, giving 

y/‘-k iz” = c$e + Z;,*, - g I m Eq (52) 

The right-hand side now contains the applied translational disturbance c,*, . Also, the functional 

form of the complex angle of attack on the right-hand side now contains the additional terms 

representing the angular effects of the applied impulses. For the singular impulse model, the 

equation can be written as 

Eq (53) 

The functional form of the complex angle of attack on the right-hand side now contains the 

additional terms representing the effects of the singular impulse on the angular motion, as given 

by Equation (25). The solution to this differential equation can be written as 
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F= 6 +gs-s,)+?* +F. Eq (54) 

The lateral displacement of the projectile CG is denoted here as F and written in complex 

notation as 

? =(y-y,)+iz Eq (55) 

in which the gravity drop, yg , is removed from further consideration. The gravity drop is 

discussed by both Murphy (1963) and McCoy (1998) and remains unchanged from the free-flight 

case and is considered known. Before addressing the individual terms on the right-hand side of 

Equation (54), it is noted that, following the discussion of Section 3, the lateral displacement is 

related to the angular deviation by 

8 7 =- Eq (56) 
x 

The first two terms describing the projectile lateral motion, 6 and <‘(s - so), are initial 

conditions evaluated at s = so. The term 5 is the projectile CG’s lateral location at so and is 

typically taken to be zero, i.e., the origin of the range coordinate system. This term’s contribution 

to angular deviation, obtained by dividing it by range (s - so) is effectively zero. The term 

c’(‘<s - so) is the lateral displacement of the projectile attributable to its lateral velocity at so, and 

this term’s contribution to the angular deviation is constant with respect to range. 

The third term is the non-aerodynamic component of the lateral displacement attributable to 

the translational impulse and is denoted Yr . For the singular impulse model, the term can be 

written as follows, with r~ and r2 being dummy variables: 

s r2 

c= 
II 

yl*6(s - s,)dr,dr, Eq (57) 
s s 
0 0 

The term can be evaluated in the first interval as 

$ = (s - s, )#* Eq (58) 
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Because the angular data can often be obtained more accurately in testing than the translational 

data can, a useful alternate expression for 5 is obtained by substituting the relationship between 

the applied translational and angular impulses, giving, in the first interval, 

Eq (59) 

This term’s contribution to the projectile angular deviation at range (S - SO) is denoted here as 

5. and is given in radians as 

Eq (60) 

This contribution to the projectile angular deviation is not constant with respect to range except 

for cases when SI is close to so and s is comparatively large, or in the limit as s approaches 

infinity. Therefore, down range from the location where a lateral course correction is applied, the 

angular deviation of the projectile relative to the muzzle is not likely to be equal to the jump 

attributable to the tank launch event. 

The fourth term, denoted FL, is the 

effects, i.e., 

lateral displacement attributable to all aerodynamic lift 

Eq (61) 

Upon performing the double integration, it becomes apparent that the lift terms can be separated 

into the sum of two specific complex terms, i.e., 

C = 7, + FA Eq (62) 

The epicyclic component of the swerve, FE, can be algebraically simplified and expressed 

in terms of the motion parameters and aerodynamic coefficients in the first interval as 

FE =k+ (&-Eo -?,*I Eq (63) 
Ma 
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The epicyclic component of the swerve is the only component that fluctuates with respect 

to range. The magnitude of the epicyclic component for theidealized projectile with small yaws 

of the current study remains on the order of the projectile diameter. It is therefore not considered 

to be a significant contributor to lateral displacement, given the current assumptions. 

The remaining aerodynamic lift terms can be collected and simplified in the first interval as 

FA = -kr2 Eq (64) 

This term’s contribution to the projectile angular deviation at range (s - so) is denoted here 

as e?, and is 

(s--o) 1 
Eq (65) 

In Equation (65), the contribution from the initial projectile angular rate (5;) is recognizable 

as the aerodynamic jump as expressed by Murphy (1963) and McCoy (1998) for a non-spinning, 

statically stable projectile. It can be concluded from Equation (65) that, down range from the 

location where a lateral course correction is applied, the total aerodynamic contribution to angular 

deviation is not likely to equal the aerodynamic jump attributable to the tank launch event. The 

expression does, however, demonstrate the equivalency that exists between the angular impulse 

imparted to the projectile by the gun and the angular impulse imparted by the applied in-flight 

angular impulse. If the applied angular impulse occurs close to the muzzle in comparison to the 

target range, the expression can be approximated as 

Eq (66) 

7. ANGULAR MOTION WITH SQUARE IMPULSE 

If the applied lateral translational and angular disturbances are modeled as square wave 

disturbances with non-zero duration, as described earlier, then Equation (2 1) can be written as 

5”“-Mf =j-]*[h(s-s, +Asl)-h(s-s,)]-g~*[h’(s-s, +As,>-h’(s-s,)] Eq (67) 
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The general solution, with the simplification that @’ = $I,, = -@I,, , is 

x* 
-- 
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I 

-h(s-s,) e 
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@‘(s-s,) + ,-i@‘(s-s,) _ 2 11 
igl* 
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+ 2@’ [ 
h(S-s, +As,) c e W(s--sI+hl) _ ,-i$‘(s-s,+Asl) 

I 

-h(s-s,) e ( @‘(s-s,) _ ,-i@‘(s-s,) 

)I 

The solution in the nth interval can be written in modal form as 

5” = K,,neit4,rl ,4%-s,> + K2,nei@2,n ,ws-43) 

Eq (68) 

Eq (6% 

although this particular form does not apply within the sub-interval itself. While the modal form 

for the square impulse is the same as for the singular impulse, the values of the modal parameters 

themselves (with the exception of $‘) are different. The expressions relating the modal 

parameters of adjacent intervals, however, are not needed to solve the swerve equation for the 

square impulse model and are not included here. It will be shown that, for the conditions of 

interest here, the square impulse model gives only slightly modified expressions as the singular 

impulse model for the projectile lateral motion. 

8. TRANSLATIONAL MOTION WITH SQUARE IMPULSE 

The swerve equation for the square impulse model can be written as 

y” + iz” = C,*, f + ** 
-[h(s-s, +As,)-h(s-s,)]-g/m 
4 

Eq (70) 

The functional form of the complex angle of attack 5” on the right-hand side now contains the 

additional terms representing the effects of the square impulse on the angular motion, as given by 

Equation (68). The solution can be written in the same form as for the singular impulse, i.e., 
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F= 6 +~‘(s-s(J+F~ +FL Eq (71) 

The terms 5 and c’(s - so) are unchanged from the singular impulse model. The non- 

aerodynamic component of the lateral displacement attributable to the translational impulse is 

now 

and is evaluated in the first interval as 

Eq (72) 

Eq (73) 

The first term on the right-hand side of this expression is identical to that of the singular impulse 

model. The second term is the difference between the square and singular impulse models for 

this component of the swerve and is denoted A& and given as 

As in the singular impulse case, the lateral displacement attributable to aerodynamic lift, 

Fr, can be separated into components FE and FA . The epicyclic swerve component, FE, for the 

square impulse model differs slightly from that of the singular impulse model. However, like the 

singular impulse model, its magnitude is still small and is not considered to be a significant 

contributor to the projectile angular deviation during the current conditions. 

The remaining lift terms can be collected and simplified to express FA in the first interval as 
. 

which is the same as for the singular impulse model but with an additional term representing the 

difference between the square and singular impulse models for this component of the swerve 

which is denoted AFA and given as 

ATA = -% k: Eq (76) 
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9. RESULTS 

9.1 Case 1: No Impulse 

The numerical trajectory simulation code written by Costello (1997) was used in 6-DOF 

mode to validate the analytical theory. Many different cases with varying launch conditions and 

in-flight lateral impulses were examined during the course of the study, but only three cases are 

presented here. The idealized projectile configuration was introduced earlier in the report. For 

all three cases to be presented, the launch velocity is prescribed to be 1600 m/s (approximately 

Mach 4.7). The gun elevation is prescribed to be zero, i.e., horizontal to the ground. The 

projectile is prescribed to exit the gun with no lateral translational rate relative to the pre-trigger 

line of fire, i.e., the components of 5’ are zero in both azimuth and elevation. The pitch and yaw 

angles are prescribed to be zero at launch. The projectile is non-spinning. 

In Case 1, no in-flight lateral impulse is applied. While the existing theory of epicyclic 

motion as described by Murphy (1963) and McCoy (1998) is adequate to handle this case, some 

defining characteristics of the projectile motion can be extracted with which to compare 

subsequent cases. The initial angular rate is prescribed to be 5 rad/s, with the nose rotating 

directly upward. The angular motion is planar and sinusoidal, occurring strictly in the vertical (a) 

plane. Figure 7 shows the numerical and analytical results for pitch angle versus range from 

launch to 1 km range. The maximum pitch angle is approximately 2.9”. Because no damping is 

used in either the analytical or numerical models, the amplitude of the sinusoidal motion remains 

constant throughout the flight. 

Figure 8 shows the lateral displacement versus range from the numerical and analytical 

methods for Case 1 from launch to 3 km range. Like the angular motion, the translational motion 

is planar, occurring strictly in the vertical plane. The numerical and analytical results for Case 1 

are indistinguishable in Figure 8. The vertical displacement from the two approaches is 

approximately 1.478 m upward at 3 km range, and the two methods differ by less than 1 mm. 

The fluctuating component of the swerve is seen to be small (on the order of a few centimeters) 

compared to the total swerve, indicating that a good estimate of lateral displacement can be 

obtained even if that component is ignored. 
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Figure 7. Pitch Angle Versus Ranpe, Case 1. 
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Figure 8. Vertical Displacement Versus Range, Cases 1 and 2. 

. 
9.2 Case 2: In-Plane Impulse 

Case 2 is the same as Case 1, except that the lateral jet is engaged at some location in mid- 

flight. As was shown in Table 1, the jet is located 0.2 m in front of the CG and the magnitude of 

the impulse is 1 N-s. The orientation of the jet relative to the ground is such that the jet releases 
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upward, resulting in a downward force applied to the projectile nose, (i.e., & = 0” ). The jet (i.e., 

impulse) therefore acts within the vertical plane of motion to which the projectile is already 

adhering. In the analytical case, the impulse is modeled as a singular impulse occurring at 992 m 

range. In the numerical case, the impulse is modeled as a square wave disturbance initiated at 

0.615 s into the flight (corresponding to 984 m range) with a duration of 10 ms (i.e., occurring 

over a range of approximately 16 m). The resulting angular and translational motions for Case 2, 

as for Case 1, are planar motions occurring strictly in the vertical plane. 

The vertical displacement obtained from the analytical and numerical approaches is 

included in Figure 8, along with the result from Case 1. The vertical displacement is calculated 

by the analytical theory to be 1.029 m at 3 km range, almost 0.5 meter below the vertical 

displacement of Case 1. The analytical and numerical results are indistinguishable in the figure, 

although the two methods give results that differ by approximately 1 cm. It was found that this 

difference was a function of the time step size used in the numerical trajectory simulation code 

and could be reduced with a further reduction in the time step size. The time step size apparently 

affected the numerical integration process near the beginning and end of the square wave 

disturbance. The numerical result shown here used a time step size equal to 0.25 ms. 

The analytical result could be generated using the square wave impulse model rather than 

the singular impulse model, but the results would be virtually unchanged. The difference 

between the square wave and singular impulse analytical models of the non-aerodynamic lateral 

displacement component, As, is calculated using Equation (74) to be 0.0394 caliber, or 

approximately 1 mm. The difference in the aerodynamic component, A;IA , is calculated using 

Equation (76) to be 0.005 caliber, or approximately 0.13 mm. Both of these differences are 

independent of range. It is concluded that for Case 2, the difference between the lateral 

displacement calculated by the singular impulse model and the square impulse model is 

insignificant. A substantial increase in either the impulse magnitude or the impulse duration 

would be required before the differences between the singular impulse model and the square 

impulse model become significant. 
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The analytical result of Case 2 shows that the applied impulse causes a lateral course 

correction of 0.437 m downward from the uncorrected flight of Case 1. Equations (59) and (64) 

can be used to show that the translational (i.e., non-aerodynamic) component provides 56% of the 

lateral course correction, while the angular (i.e., aerodynamic) component provides the remaining 

44%. 

Figure 9 shows the pitch angle as a function of range for Cases 1 and 2 as obtained from the 

analytical and numerical approaches. The figure shows the detailed behavior of the pitch angle at 

and near the range at which the lateral jet impulse is applied. While no strict quantitative 

characterization is made between the analytical and numerical results, both the amplitude and 

phase of the sinusoidal motions appear qualitatively correct to within the scale of the figure. The 

application of the jet impulse produces a slight shift in phase as well as a decrease of maximum 

pitch angle of approximately 0.5”. 

Pitch Angle vs. Range 
Ideal Finned KE Projectile 

I 

A. Case 2 - Analytical 

I 
950 1000 1050 1100 1150 1200 

Range (m) 

Figure 9. Pitch Angle Versus Range, Cases 1 and 2. 

In general, the change in maximum angle of attack produced by the lateral jet can be 

positive or negative, depending upon where in the yaw cycle the impulse is applied. The 

analytical theory has the ability to characterize the pitching and yawing behavior in closed form 

in this manner, although no further discussion is made of this aspect at this time. It is noted that 
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a more advanced application of the analytical theory is the simultaneous control of lateral 

displacement and angular behavior. Such an approach leads to the design of guidance maneuvers 

that not only improve accuracy but also reduce the in-flight maximum angle of attack. 

9.3 Case 3: Out-of-Plane Impulse 

Case 3 is the same as Case 2 except that the orientation of the jet is such that the jet releases 

to the gunner’s left, resulting in the projectile nose being forced to the gunner’s right (i.e., q$ = 90”). 

That is, a horizontal impulse is applied out of the plane of the existing vertical motion. The resulting 

angular and translational motions are no longer limited to the vertical plane. Figure 10 shows the 

analytical and numerical results of the vertical displacement for Case 3. The results are plotted with 

those from Case 1, and all four lines are indistinguishable, demonstrating that the vertical 

translational motion is unaffected by the horizontal impulsive disturbance. 

I I 

I I Vertical Displacement vs. Range 

Ideal Finned KE Projectile 

-Case 1 - Analytical 

-Case 3 - Numerical 
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Figure 10. Vertical Displacement Versus Range, Cases 1 and 3. 

Figure 11 shows the analytical and numerical results of horizontal displacement for Case 3, 

along with the results from Case 1. Up range from the range at which the jet is initiated, the 

horizontal displacement is zero for both cases. For Case 3, however, the impulse produces a 
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. 

horizontal displacement to the gunner’s right, while the horizontal displacement for Case 1 

remains zero throughout the flight. The horizontal displacement for Case 3 is equal in magnitude 

to that of the vertical course correction observed in Case 2. Also, as in Case 2, the difference 

between the analytical and numerical result is approximately 1 cm at 3 km range and is 

attributable to a numerical integration error that is affected by the time step size. 

0.6 
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-Case 3 - Numerical 
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Figure 11. Horizontal Displacement Versus Range, Cases 1 and 3. 

Finally, Figure 12 shows the analytical and numerical results of the angular motion for Case 

3. As in Figure 9, the figure shows the detailed behavior near the range at which the lateral jet 

impulse is applied. The pitching motion is unaffected by the lateral jet but the yawing motion, 

however, is affected. Up range from the range at which the lateral jet is applied, the yaw angle is 

equal to zero. The impulse produces yawing motion that reaches a maximum value greater than 

0.5”. The analytical and numerical results compare qualitatively to within the scale of the figure. 

It is concluded here that the analytical theory has been validated by the numerical approach for 

all three cases for both angular and translational’motion with the prescribed conditions. 
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Figure 12. Pitch and Yaw Angles Versus Range, Case 3. 

10. CONCLUSION 

An analytical theory for quantifying the effect of a simple in-flight impulsive disturbance 

acting on a non-spinning KE projectile has been presented. The theory is based on the 

incorporation of a specific class of modeled applied lateral translational and angular impulsive 

disturbances into the equations of projectile free-flight motion. The modified equations were 

solved to obtain the angular and translational motion of the projectile, and the components of the 

translational motion were extracted. 

A sample of results from the analytical model was validated by an existing numerical 

trajectory simulation code. The lateral impulse simulated a constant magnitude, constant 

direction, 1-N-s lateral jet with a duration of 10 ms, located on the nose of the projectile and 

initiated at a range of 1 km. The calculated lateral displacement of the projectile, as well as the 

components of the displacement, consistently agreed with the numerical results to approximately 

1 cm at 3 km range. The difference was found to be caused by error associated with the time step 
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size in the numerical code. Both sets of results showed that the lateral course correction 

maneuver produced a lateral displacement of almost 0.5 meter at 3 km range. 

Two different analytical models for the applied impulsive disturbances were presented: a 

singular impulse model and a square impulse model. For the impulse magnitude and duration of 

the prescribed jet, insignificant differences were found between the two models. It was concluded 

that a substantial increase in the magnitude and/or duration of the square wave impulse would be 

necessary before the difference in lateral displacement between the two models would be 

significant. The consideration is relevant because the singular impulse is a convenient form with 

which to model actual impulsive disturbances. 

The analytical model provides closed form analytical solutions to the equations of angular 

and translational motion for a projectile acted upon by this specific class of generalized 

impulsive disturbances. While the lengthy mathematics of the solution procedure have been 

omitted from the report, the final expressions are simple and straightforward. The simplicity of 

the expressions suggests that reduced computational overhead for on-board course correction 

instrumentation may be achievable. Furthermore, the theory has application in the testing and 

development of smart munitions, providing a framework for analyzing and predicting free-flight 

motion of a projectile undergoing applied course correction maneuvers. 

The impulse model was presented here for non-rolling, statically stable projectiles, 

neglecting pitch damping. Typically, KE projectiles are adequately damped and have low to 

moderate spin rates. The generalization to include these parameters is a straightforward 

extension of the current theory. In addition, the complete incorporation of the translational 

impulse into the angular equations will be necessary to accommodate certain classes of larger 

impulsive disturbances. 

One of the most important extensions of the current theory, however, is the incorporation of 

successive disturbances in order to facilitate the modeling of highly complex motions and course 

correction maneuvers. An example of such a maneuver is one in which a multi-stage course 

correction is derived that improves the accuracy of the projectile while simultaneously reducing 

its maximum angle of attack. 
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A 

d 

4 

g 

h 

It 

?J,K 

k 

6 
-* 
% 

LIST OF’ SYMBOLS 

reference area, ti2/4 

reference diameter 

distance from CG to location of applied force, negative if applied aft of CG 

lift force coefficient 

pitching moment coefficient 

complex nondimensional applied moment coefficient 

complex nondimensional applied lateral force coefficient 

applied translational disturbance vector 

complex nondimensional applied translational impulse 

gravitational constant 

unit step function 

transverse moment of inertia 

earth-fixed Cartesian coordinate system unit vectors 

non-rolling coordinate system unit vectors aligned with projectile velocity vector 

complex applied angular impulse quantity, $!f / k: 

magnitude of jrh complex modal arm in nth interval 

jth complex reference modal arm in nth interval 

radius of gyration 

applied angular disturbance vector 

complex nondimensional applied angular impulse 

projectile mass 

complex lateral displacement 

non-fluctuating complex lateral displacement attributable to aerodynamic effects 

fluctuating complex lateral displacement attributable to aerodynamic effects 

complex lateral displacement attributable to all aerodynamic effects 

35 



S 

t 

v 
V 

x,y,z 
%jG 

& y,z 

Greek Svmbols 

complex lateral displacement attributable to translational component of applied 

disturbance 

distance along flight path 

time 

projectile velocity vector 

magnitude of projectile velocity vector 

earth-fixed coordinates 

rolling body-fixed coordinate system unit vectors 

earth-fixed coordinates normalized by projectile reference diameter 

pitch angle 

yaw angle 

complex yaw angle, a+ ip 

Dirac delta function 

complex angular deviation relative to gun muzzle 

non-fluctuating complex angular deviation attributable to aerodynamic effects 

complex angular deviation attributable to translational component of applied 

disturbance 

orientation of nth applied translational impulse 

jth reference phase angle in nth interval 

jth reference phase angle turning rate in nth interval 

derivative of quantity q with respect to s 

normalization of quantity q by density factor, pAd l(2m) 
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Miscellaneous 

complex representation of quantity 4 

vector representation of quantity 4 

unit vector 4 
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