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Abstract

A methodology for accelerated curing of commercially available room-temperature curing
paste adhesives is outlined. Cure kinetics of the adhesive were studied by thermochemical
analysis, and degree of cure was related to processing parameters and cure cycles. Increasing the
cure temperature to 100°C reduced the cure time from 16 hr to approximately 15 min for 98%
cure. Induction-heating techniques were used to demonstrate rapid heating of adhesives at the
bondline for lap shear specimens.
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1. Introduction

The motivation for this work arises from the expanding use and complexity of design of
composites in military vehicles and, with that, the increasing need for field expedient and

depot-level repair procedures for these components.

A critical issue in adhesive-based repair of composites is the application of sufficient heat
and pressure at the bondline. It is highly desirable that thermal generation be localized at the
bondline and be evenly distributed (taking into account thermal conductive losses). One method

of rapidly applying localized heating at the bondline is induction heating [1].

Electromagnetic induction heating techniques are well known and wideiy used for metals and
alloys. Recently, significant research has been undertaken to adapt inductioﬂ heating to
composites for benefits such as cost and reduced processing times. One of the heating
techniques uses hysteresis losses in ferromagnetic particles subjected to high-frequency magnetic
fields as the heat-generation mechanism. Another generates heat through joule losses caused by
the formation of eddy currents through Faraday’s Law. Both of these heating techniques can be
applied to the repair of composites through the use of a susceptor material placed at the bondline
or through the susceptorless heating of carbon-fiber-based systems [2, 3]. Susceptor layers are
used to promote localized uniform heating to produce desired process temperatures in the
~ bondline. When susceptors are used, the remotely located induction coil transfers
electromagnetic energy to the susceptor, which in turn, generates thermal energy in the plane of
the bondline. These techniques allow rapid heating of the susceptor material and, through
thermal conduction, rapid heating of the adjacent adhesive. These methods have traditionally
been plagued by nonuniformity of heating in the plane of the bondline. Several techniques have
recently been developed [3, 4] that enable uniform heating of the susceptor in the plane of the

bondline.

Appropriate process windows are needed for each adhesive system to be used. In this study,

eddy-current-based susceptors are formed from electrically conductive meshes and an




epoxy-based adhesive. Room-temperature curing adhesives that are often used in the repair of
composites require from days to weeks to achieve full cure. This work establishes a
methodology for relating cure cycles to degree of cure predictions for accelerated curing of
adhesives for repair. Furthermore, the induction heating is used to accelerate the cure of a

room-temperature curing epoxy adhesive placed at composite-to-composite bondline.

2. Thermochemical Analysis

In order to maximize the benefits of accelerated cure of adhesives using induction heating, a
process window must be established for the adhesives of interest. The process window would
then be used to optimize the bonding process in terms of time and temperature. Issues that
dictate the process window include cure kinetics, evolution of exotherms, flow and wetting, and
thermally induced residual stresses. Adhesive cure is the most dominant of these issues and must
be addressed to determine cure time as a function of temperature, as well as ultimate degree of
cure. In this study, we have chosen a typical room-temperature curing epoxy for evaluation of

accelerated cure properties.

Differential scanning calorimetry (DSC) has been widely used to characterize the cure
kinetics of thermosetting polymers including polyeéteré [5], epoxies [6], vinyl esters, and
bismaleimides. Since the heat evolution dQ/dt measured by the DSC results from the chemical
cross-linking reaction, it is possible to relate the heat evolution (dQ/dt) to the rate of reaction

(do/dt) and the conv¢rsion (o). This can be accomplished by using the following relationships:

de__l [&9) | O
dt  AH_  dt ), '

do __1 :[99 dt @)
dt  AH, J(at )




where AH,, is the total heat of reaction, generally determined by averaging the reaction
exotherms measured from several dynamic-temperature DSC runs. Various chemical kinetic

models can then be fit using data that are obtained from isothermal DSC experiments.

The mechanistic models of thermoset cure that usually provide a more accurate
representation of cross-linking reactions are not generally applicable to complex systems such as
formulated adhesives. Since the goal of this work is to provide a process window for accelerated
cure, the specific cure mephanisms need not be critically assessed. Alternatively, there are
several empirical models that have been successfully used to predict to cure of thermosetting
polymers. One popular model was proposed by Kamal and Sourour [7]. Their model
(equation [3]) has found widespread acceptance for a number of cross-linking reactions

(including epoxies) and will be used to fit the adhesive studied here.

d m n
F? = (k, +k,0™)(a, — @) 3)

In this expression, d is the degree of conversion, 0, is the temperature-dependent maximum
conversion, k; and k, are Arrhenius-type rate constants, and m and n are constants usually
assumed to sum to 2 but often allowed to vary freely. The a, term arises from the fact that the
entire heat of reaction is not released during isothermal cure due to the decreased mobility of the
polymer chains as cross-linking occurs. By performing a series of isothermal cures, values for

the model parameters can be determined and used to predict the cure kinetics of the adhesive.

The material studied here was a two-part epoxy room-temperature-curing paste adhesive
from Ciba. It was selected because of our prior experience with the system for composite and

metal bonding. Additionally, the manufacturers suggest a 16-hr cure time at room temperature,

~ making it an ideal candidate for accelerated cure studies.

Several (10) dynamic DSC runs were performed to evaluate AH,, and the glass transition

temperature (T) of the cured material. Resin and hardener were mixed one to one by weight and




immediately inserted into the DSC (TA Instruments 2908), where they were heated at 10°C/min
to 200°C. The resulting cure exotherm was integrated to evaluate the heat of reaction. A second
heat of each sample was performed in order to measure the T, of the cured material. The
average and standard deviation of AHy,; was 190.5 + 10.2 J/g and T, was 102 * 14°C. This value

of AH,, is used in equations (1) and (2) to relate the isothermal heat data to o and d(x/dt.

Next, isothermal scans were performed at temperatures ranging from 40°C to 150°C.
Samples were mixed and placed in the preheated DSC cell. Data were collected until the heat
flow returned to the baseline value. The isothermal heat flow was related to o and do/dt using

equations (1) and (2). A typical DSC isotherm and the resulting conversion vs. time are shown
in Figure 1. Figure 2 shows the general trend of increased conversion and rate of reaction with

increasing cure temperature.
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Figure 1. DSC Heat Flow for Isothermal Cure at 110°C and the Associated Degree of
Conversion With Time.
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* Figure 2. Degree of Conversion Versus Time for Increasing Isothermal Cure
Temperature.

Equation (3) was then used to fit the dov/dt versus. o curves for each isotherrh. A value of 0y
was determined from the asymptotic conversion from each test, and m and n were permitted to
vary freely. Figure 3 shows typical data and the associated fit. Analysis of each experiment
produces values for all of the kinetic parameters at that specific temperature. The temperature
dependence of a, was found to be linear and is shown in Table 1. The Arrhenius parameters for
k, were evaluated as shown in Figure 4 (analysis of the data indicated that k; = O regardless of
temperature and was subsequently neglected). A summary of all of the parameters is listed 1n

Table 1.

The use of the model will enable prediction of the entire curing process over a wide range of
processing temperatures. Initially, however, the prediction of cure time at a specific temperature
is of greatest interest to applying induction techniques to accelerate adhesive cure. Here, cure

time is defined as the amount of time necessary to reach 98% of o, for each temperature.




Table 1. Kinetic Model Pérameters

' | Parameter | Value l
m 0.28 + 0.03
n 1.67 £0.32
ko(T) 9.8 x 10%xp(—6306/T [K])
(1/min)
o (T) 0.62 +1.3x 107 T (°C)
(40 < T < 150°C)

0.5

Figure 3. Plot of da /dt Versus o for a Typical Isotherm With Associated Fit.

Figure 5 shows model predictions for cure time compared to the experimentally observed cure
times. While the agreement is not perfect, it does permit an estimate of minimum cure time at
each temperature. These values will be used to determine process windows for the induction

assisted accelerated cure of this adhesive.
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Figure 4. Arrhenius Relationship for the Parameter k; Used in the Kinetic Model.
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3. Induction Heating

“Appropriate cure times for this adhesive can now be selected for any process temperature.
This approach was used to select cure cycles for induction heating of the cdmposite adhesive
joints. Cure cycles chosen ranged from heating to 90-190°C under vacuum consolidation.
Single lap shear specimens were fabricated by induction heating using a stainless steel mesh as
the susceptor. An “earmuff” type induction coil was used and it carried currents between 25-40

Amps at a frequency of 284 kHz. Typical temperature profiles during induction heating of lap

shear specimens are shown in Figures 6 and 7.
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Figure 6. Typical Temperature Profiles for Induction Heated Adhesive Joints.
Tmax = 150°C (Dotted Line) and 205°C (Solid Line).

For baseline comparisons, lap shear specimens were fabricated under oven cure conditions
with vacuum consolidation. Lap shear tests showed comparable bond strengths between

induction-fabricated specimens and oven-cured specimens.
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Figure 7. Typical Measured Temperature Profile at Bondline at Steady
State by Infrared Thermometry.

4. Conclusions

This report has described a methodology that can be used to accelerate the cure of
room-temperature curing adhesives for rapid repair. Cross-linking reaction‘ kinetics were
developed and employed to determine cure cycles for a commercially available epoxy pasté
adhesive. This paste adhesive was combined with a metal screen to form a susceptor layer for

“bonding composite adherends. Induction techniques were used to rapidly heat the interface and
cure the adhesive. Adhesive taken from the bondline demonstrated full cure at times determined

from the kinetic models.
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