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Abstract 

The equations of motion for a dual-spin projectile in atmospheric flight are developed and 
subsequently utilized to solve for angle of attack and swerving dynamics. A combination 
hydrodynamic and roller bearing couples forward and aft body roll motions. Using a modified 
projectile linear theory developed for this configuration, it is sRown that the dynamic stability 
factor, S,, and the gyroscopic stability factor, S,, are altered compared to a similar rigid 
projectile, due to new epicyclic fast and slow arm equations. Swerving dynamics including 
aerodynamic jump are studied using the linear theory. 
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1. Introduction 

Compared to conventional munitions, the design of smart munitions involves more design 

requirements stemming from the addition of sensors and control mechanisms. The addition of 

these components must seek to minimize the weight and space impact on the overall projectile 

design so that desired target effects can still be achieved with the weapon. The inherent design 

conflict between standard projectile design considerations and new requirements imposed by 

sensors and control mechanisms has led designers to consider more complex geometric 

configurations. One such configuration is the dual-spin projectile. This projectile configuration 

is composed of forward and aft components. The forward and aft components are connected 

through a bearing, which allows the forward and aft portions of the projectile to spin at different 

rates. Figure 1 shows a schematic of this projectile configuration. 

Figure 1. Dual-Spin Projectile Schematic. 

Dual-spin spacecraft dynamics have been extensively studied in the literature. For example, 

Likins [l] studied the motion of a dual-spin spacecraft and conditions for stability were 

established. Later, Cloutier [2] obtained an analytical criterion for infinitesimal stability. Along 

these lines, Mingori [3] as well as Fang [4] considered energy dissipation. Hall and Rand [5] 

considered spinup dynamics, and resonances occurring during despin were studied by Or [6]. In 

the latter, the linear equations governing the resonance dynamics were found to depend on 

nondimensional parameters related to dynamic unbalance, asymmetry, and the time duration for 

resonance growth. Other work investigating asymmetric mass properties is due to Co&ran, Shu, 

and Rew [7] as well as Tsuchiya [8] and Yang [9]. Viderman, Rimrott, and Cleghom [lo] 



developed a dynamic model of a dual-spin spacecraft with a flexible platform. Stability was 

investigated using Floquet theory. Stabb and S&lack [ll] investigated pointing accuracy of a 

dual-spin spacecraft using the Krylov-Bogoliubov-Mitropolsky perturbation method. 

For projectile flight in the atmosphere, aerodynamic forces and moments play a dominant 

role in the dynamic characteristics. These effects have obviously not been considered in the 

dual-spin spacecraft efforts described previously. However, Smith, Smith, and Topliffe [12] 

considered the dynamics of a spin-stabilized artillery projectile modified to accommodate 

controllable canards mounted to the projectile by a bearing aligned with the spin axis. This work 

focused on the use of actively controlled canards to reduce miss distance. Both the forward and 

aft bodies were mass balanced and a hydrodynamic bearing coupled forward and aft body rolling 

motion 

The dual-spin projectile model developed here permits nonsymmetric forward and aft body 

components and allows a combination of hydrodynamic and roller bearing roll coupling between 

the forward and aft bodies. By applying the linear theory for a rigid projectile in atmospheric 

flight, a dual-spin projectile linear theory is developed. Expressions for the gyroscopic and 

dynamic stability factor are developed and compared to the rigid projectile case. The swerving 

motion of this configuration is also considered. 

2. Dual-Spin Projectile Dynamic Model 

The mathematical model describing the motion of the dual-spin projectile allows for three 

translation and four rotation rigid body degrees of freedom (DOF). The translation degrees of 

freedom are the three components of the mass center position vector. The rotation degrees of 

freedom are the Euler yaw and pitch angles as well as the forward body roll and aft body roll 

angles. The ground surface is used as an inertial reference frame [13]. 

Development of the kinematic and dynamic equations of motion is aided by the use of an 

intermediate reference frame. The sequence of rotations from the inertial frame to the forward 

and aft bodies consists of a set of body fixed rotations that are ordered: yaw, pitch, and 
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forward/aft body roll. The fixed plane reference frame is defined as the intermediate frame 

before roll rotation. The fixed plane frame is convenient because both the forward and aft bodies 

share this frame before roll rotation. 

Equations l-4 represent the translation and rotation kinematic and dynamic equations of 

motion for a dual-spin projectile. Both sets of dynamic equations are expressed in the fixed 

plane reference frame. 

(1) 

(3) 

A derivation of equation 4 is provided in the Appendix. 



Loads on the composite projectile body are due to weight and aerodynamic forces acting on 

both the forward and aft bodies. Equations 5 and 6 provide expressions for the forward body 

weight and aerodynamic forces. 

I I -se 
=m,g 0 

ce 
(5) 

Linear Magnus forces acting on the forward body are formulated separately in equation 7. These 

forces act at the Magnus force center of pressure, which is different from the center of pressure 

of the steady aerodynamic forces. 

The longitudinal and lateral aerodynamic angles of attack used in equations 6 and 7 are 

(7) 

computed using equation 8. 

I B = tan -1 
(8) 

(9) 
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Expressions for the aft body forces take on the same form. Aerodynamic coefficients in 

equations 6 and 7 depend on the local Mach number at the projectile mass center. They are 

computed using linear interpolation from a table of data. 

The right-hand side of the rotation kinetic equations contains the externally applied moments 

on both the forward and aft bodies. These equations contain contributions from steady and 

unsteady aerodynamics. The steady aerodynamic moments are computed for each individual 

body with a cross product between the steady body aerodynamic force vector and the distance 

vector from the center of gravity to the center of pressure. Magnus moments on each body are 

computed in a similar way, with a cross product between the Magnus force vector and the 

distance vector from the center of gravity to the Magnus center of pressure. Figure 2 shows the 

relative locations of the forward, aft, and composite body centers of gravity and the forward and 

aft body centers of pressure. The unsteady body aerodynamic moments provide a damping 

source for projectile angular motion and are given for the forward body by equation 10. 

=&D (10) 

Air density is computed using the center of gravity position of the projectile in concert with the 

standard atmosphere [ 141. 

3. Dual-Spin Projectile Linear Theory 

The equations of motion listed previously are highly nonlinear and not amenable to a 

closed-form analytic solution. Linear theory for symmetric rigid projectiles introduces a 



Composite Body 

Couples bodies 

Figure 2. Dual-Spin Projectile Geometry. 

sequence of assumptions, which yield a tractable set of linear differential equations of motion 

that can be solved in closed form. These equations form the basis of classic projectile stability 

theory. The same set of assumptions can be used to establish a linear theory for dual-spin 

projectiles in atmospheric flight. 

A) Change of variables from fixed plane, station line velocity, u, to total velocity, V. Equations 

11 and 12 relate V and u and their derivatives. 

v=Ju2+v2+w2 

vi= uli+v++ti 

V 
(12) 

B) Change of variables from time, t, to dimensionless arc length, s. The dimensionless arc 

length, as defined by Murphy [ 151 is given in equation 13 and has units of calibers of travel. 

2. j, .& s Do 

(11) 

(13) 

Equations 14 and 15 relate time and arc length derivatives of a given quantity c . Dotted 

terms refer to time derivatives, and primed terms denote arc length derivatives. 

(14) 



C) Euler yaw and pitch angles are small so that 

sin(e)=8 

swv) =Y 

D) Aerodynamic angles of attack are small so that 

cos(8)=1 

cos(yr)=l. 

E) The projectile is mass balanced, such that the centers of gravity of both the forward and the 

aft bodies lie on the rotational axis of symmetry. 

F) The projectile is aerodynamically symmetric such that 

c NR 
F =p 
MQ ctQ =c& 

CF cc* =cF =cA =o 
YO YO W W 

CF cc” =cF YE1 ZBl NA 

C A, = CA, = c& 
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G) A flat fire trajectory assumption is invoked, and the force of gravity is neglected. 

FI) The quantities V, @, and $A are large compared to 8, v, q, r9 v, and w, such that products of 

small quantities and their derivatives are negligible. 

Application of the above assumptions results in equations 17-30. 

y* = +v +lyD 

Z p- +V-0D 

(18) 

(191 



(27) 

(28) 

Equations 17-30 are linear, except for the total velocity, V, which is retained in several of the 

equations. Using the assumption that V changes very slowly with respect to the other variables, 

it is considered to be constant when it appears as a coefficient. With this assumption, the total 

velocity, the angle of attack dynamics, and the roll dynamics all become uncoupled, linear-time 

invariant equations of motion. The Magnus force in equations 25 and 26 is typically regarded as 

small in comparison to the other aerodynamic forces and is shown only for completeness. In 

further manipulation of the equations, all Magnus forces will be dropped. Magnus moments will 
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be retained, however, due to the magnitude amplification resulting from the cross product 

between Magnus force and its respective moment arm. 

4. Epicyclic Modes of Oscillation 

Equations 17-23 state that the fixed plane is mapped directly onto the inertial reference 

frame for the given assumptions. Equations 27 and 28 show that a roller bearing model requires 

knowledge of the zero-yaw drag on the forward and aft body separately. Also notice that the 

Magnus moments appear separately in equations 29 and 30. The equations for total velocity and 

the fore and aft spin rates have become completely decoupled from the angle of attack dynamics. 

It is a useful result to begin by studying equation 24, which represents the total velocity, V, of 

the projectile. Equation 24 is separable, and it is elementary to obtain the solution as downrange 

exponential decay. 

V(s) = V,e 
-9X0 
t j (31) 

After extracting the decoupled equations for total velocity and fore and aft spin rates, there 

are only four equations remaining to examine. These equations describe fixed plane expressions 

for translational and rotational velocities v, w, q, and r. The angle of attack dynamics are driven 

directly by these four equations because the aerodynamic angles of attack depend on v and w by 

definition. 

Using equation 31 and the definition for small angles of attack given in equation 16, the 

following two relations can be written. 

a(s) = 4s) _ w(s) e[E+ 
VW v, 

(32) 
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v(s) VW (*) B(s)=,0=y 
0 

(33) 

The translational and rotation velocities are described in a compact form as shown in equation 

34, 

V' 

W' = ii II_ 
-A 

q’ E 
rl -C 

D 

where 

0 

-A 
C 

D 
B 

D 

0 

D 

E 

F 

A= 

ZA =I& -tmfrfi2 +ZA +m,r,‘. 

(34) 

(35) 

(36) 

(37) 

(38) 

W) 

(41) 
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Eigenvalues of equation 34 provide the fast and slow epicyclic modes of oscillation for v, w, q, 

and r. The four roots of the characteristic equation are displayed below. 

(IT-A)+iFzt (E-A)2 -F2 +4(AE+C)+2iF 11 s= (42) 

(E-A)-iF+ (E-A)2 -F2+4(A.E+C)-2% 11 
Linear combinations of the previous equations lead to equation 43. 

In line with rigid body, six degrees of freedom projectile stability analysis, two more 

simplifications based on size are introduced. First, neglect the product of the damping factors 

: 

(E-4 
iF 

-AE-C 

-i(AF +B) 

h +4 

i 1 4% +Q>s) 
= aFas -<~,a, 

-I 

(43) 

compared to the product of the damped natural frequencies. Secondly, neglect the product of A 

and E, because multiples of the relative density factor are small compared with the magnitudes of 

other terms. A solution may now be obtained for both the fast and the slow damping factors and 

turning rates for the translational and rotational velocities. 

(45) 



a?, +-m-c] (47) 

Before making conclusions about the stability of the angle of attack dynamics, the damping 

factors and the damped natural frequencies have to be calculated for a and fl rather than v and w. 

These new damping factors will account for the fact that v, w, and V all decay downrange. 

Whether a and p are stable depends on which quantities decay fastest. Two new damping 

factors are introduced based on equations 32 and 33. 

I (2AF+2+,F +2B] 

A-2*&-E 
2m 

(48) 

(49) 

The fast and slow turning rates represent the imaginary parts of the complex eigenvalues. These 

will remain unchanged for a and p, because division by V(s) in equations 32 and 33 only affects 

the real parts of the eigenvalues. If either @r or @s is complex, there will be a positive real part 

in one of the four eigenvalues. To avoid complex turning rates, the term under the radical in 

equations 45 and 47 must be greater than zero, introducing the idea of the gyroscopic stability 

factor So. 

F2 s, E- 

4.c’ 
(50) 
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Furthermore, the dynamic stability factor is defined by equation 5 1. 

SD = 

jZAF+2EC,FtZB) 
-E 

(51) 

The fast mode damping factor, Ai , must be negative for stable flight. To ensure stability, the 

following two conditions must be satisfied. 

r ,4-2+,-E)>O (52) 
\ zm / 

+< &(2-S,) 
G 

The results shown in equations 50-53 are very similar 

(53) 

to conventional rigid body projectile 

analysis. Hence, dual-spin projectile stability analysis can be approached in essentially the same 

manner that rigid projectiles are analyzed. Differences in stability characteristics arise from the 

coeffkients F and B. The coefficient F contains terms with forward and aft body roll rate and 

roll inertia appearing separately. Magnus moments also appear separated in the coeffkient B, 

due to their dependence on the fore and aft roll rates. 

5. Dual-Spin Projectile Stability 

The gyroscopic and dynamic stability factors can be reexpressed as shown in equations 54 

and 55. 

4 

s _ <G a’ 
G- 21; M 

(54) 



where 

pc = (PF +YDSPA) 

(l + YDS ) 

YDS 
I& =- 
G 

G =(IL +I&)=I&(l+yDs) 

M =pwc~ 

p* = (PF + PDSPA) 
(l + PDS ) 

(55) 

(56) 

(57) 

(58) 

(5% 

(60) 

(61) 

(62) 

The inertia weighted average spin rate for the composite body, j! , is biased to the spin rate 

of the body with the largest roll inertia component. The Magnus weighted average spin rate, p* , 

behaves in precisely the same manner as F ; however, it is biased toward the body with the 

largest Magnus moment. A plot of jj vs. roll inertia ratio, 70,~ , and p* vs. Magnus ratio, 
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pDs , is shown in Figure 3. When yDs = 0, F is equal to pF , while as YLS + co , F 

approaches pA . Similar relations ‘hold between puos and p* . Gyroscopic stability factor Vs. 

inertia weighted average spin rate is plotted as Figure 4 for various values of composite inertia 

and external moments. 

,Y DS 
I 

0 0°1.‘,5 

Figure 3. Inertia Weighted Average Spin Rate vs. Roil Inertia Ratio. 

Gyroscopimlly 
Stable 

Gymscoplcally 
Unstable 

b 

Figure 4. Gyroscopic Stability Factor, SG, vs. Inertia Weighted Average Spin Rate. 
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It is interesting to expand equation 55 and examine the results. The dynamic stability factor 

can be broken into two parts. The first part, shown in equation 64 represents a stability factor 

offset that is independent of whether the system is a rigid or dual-spin projectile. Equation 65 

shows the second part, which does vary with respect to the rigid projectile case depending on the 

Magnus moment coefficients and spin rates. This portion of the total stability factor is directly 

proportional to the total Magnus moment acting about the composite center of mass and can be 

considered as a dynamic stability enhancement factor. 

S,=H+A,, , 

where 

i 

dh.JA -C,) 
H = (c, -2c, ,-[y+J 

A DS = 

GTp’ . 

(63) 

(64) 

(65) 

It is also informative to compare the dual-spin projectile stability factors to the conventional 

rigid projectile results. To do this, define F and Ap as the average spin rate and the spin rate 

difference, respectively. Thus, 

PF =jF+Ap p,=jT-Ap. 

The spin rate of an equivalent rigid projectile is p. The ratio of the dual-spin gyroscopic 

stability factor to the rigid projectile gyroscopic stability factor is shown as equation 66. 
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Equation 67 shows the ratio of dynamic stability enhancement factors between the dual-spin case 

and the rigid projectile case. These two relations are again of very similar form. 

(66) 

(67) 

Figures 5 and 6 represent equation 66 as a function of the roll inertia ratio and the differential 

spin ratio. When the gyroscopic stability factor ratio is greater than one, dual-spin gyroscopic 

stability is enhanced compared to the rigid projectile with a roll rate of p. It can be shown that 

the differential spin ratio is positive when the forward body is spinning faster than the aft, and 

negative when the reverse is true. The curves can also be grouped by the roll inertia ratio. When 

y DS is less than one, the forward body has more roll inertia. The aft inertia is larger when 

y DS is greater than one. Based on the values of the differential spin ratio and roll inertia ratio, 

Figures 5 and 6 can be viewedin separate quadrants. When both ratios favor one of the bodies, 

gyroscopic stability is enhanced. When the ratios favor opposite bodies, the stability factor is 

diminished. Note that the gyroscopic stability ratio can never become negative because the 

values compared are squared. Also note that in physical systems, the differential spin ratio must 

be zero when y DS goes to zero or infinity. 

Figures 7 and 8 represent equation 66 as a function of the Magnus ratio and the differential 

spin ratio. When the magnitude of the dynamic enhancement ratio is greater than one, both the 

total Magnus moment and the dynamic stability enhancement factor are larger than the rigid 

projectile case. This can result from several physical situations, which are represented by again 

considering the graphs in sections. 

18 
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Figure 5. Gyroscopic Spin Ratio vs. Gamma Dual Spin. 
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Figure 6. Gyroscopic Stability Ratio vs. Differential Spin Ratio. 

When the Magnus ratio is between negative and pdsitive one, the Magnus moment 

coefficient is larger for the forward body than for the aft. When the Magnus ratio is outside of 
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0.5 1.5 t 

4.5 -1 -0.5 A 

Figure 7. Delta Ratio vs. Magnus Ratio. 

AP 
y=0 

-1 1.5 

Figure 8. Delta Ratio vs. Differential Spin Ratio. 

these boundaries, the aft body has a larger Magnus coeffkient. Negative Magnus ratios indicate 

that the aft Magnus center of pressure is rearward of the composite body mass center. Positive 
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values of the differential spin ratio again indicate that the forward body is spinning faster than 

the aft. With this in mind, Figures 7 and 8 can be viewed where both ratios favor one body, or 

where they favor opposite bodies. For the first case, the total Magnus moment applied to the 

dual-spin projectile is larger than that of the rigid case. The opposite is true when the ratios 

favor opposite bodies. 

Some special values of Magnus ratio must also be considered. Magnus ratio equal to one 

indicates the Magnus coefficients are equivalent or, physically, that the centers of pressure and 

force coefficients are equivalent. In this situation, the dual-spin case will have the same Magnus 

moment as the rigid case because p* and p do not differ. When Magnus ratio is equal to 

negative one, the Magnus coeffkients are equal and opposite. For the rigid case where the 

bodies spin together, the Magnus moment will go to zero and drive the enhancement ratio to 

infinity. 

Dual-spin projectile stability results must match the standard rigid projectile stability results 

in two situations. First, either of the bodies may be neglected by setting their mass and inertia 

properties and force coeffkients to zero. In this case, the inertia properties of the total body 

reduce to those of the remaining body and the roll inertia ratio becomes either 0 or 00, depending 

on which body remains. Using the same logic, p becomes either pF or pA. Also, the moments 

considered, including Magnus, are only those applied to the remaining body. With these 

assumptions, the rigid body stability results are obtained. 

The second case to consider is when the forward and aft bodies spin together. For this case, 

both the inertia weighted average spin rate and the Magnus weighted average spin rate are equal 

to both the front and rear spin rates, since the projectile bodies are spinning together. This result 

is true regardless of the roll inertia ratio. The inertia properties are for the total body, as are the 

applied moments. Again, the rigid body stability results are obtained. 
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6. Epicyclic Pitching and Yawing Motion 

Equation 34 has been used to solve for the dynamic modes of projectile pitching and yawing 

motion along its flight path. To complete the analytical solution, the two complex conjugate 

pairs of modes in equation 41 must be used to evaluate the system mode shapes. Solutions will 

be obtained for v and w, and these will be used to evaluate a and /? . 

Mode shapes for equation 34 are displayed in the matrix V, described by equations 68-72 

using the familiar coeffkients. By applying the relations in equation 43, equations 68-72 can be 

expressed completely in terms of the coefficient A, and the fast and slow mode damping factors 

and turning rates. 

where 

i i -i -i 

K+l&. K-;& 
1 1 

PI= R+df R-G 

i(Z)&) i(?&) i(R?f) i(RtDfi) 

20 - 20 20 20 

, (68) 

K =(E-A)+2A+iF =(;1, +il,)+M+i(Q>. +@,) (69) 

Q =(E-A)2 +4AE+4C-F2 +2i(F(E-A)+Z@F+B))=((& -&)+i(@,, -@,)y (70) 

R=(E-A)+2A-iF=(&+il,)+2A-i&+@>,) (71) 

S=(E-A)2+4AE+4C-F2 -2i(F(E-A)+2(AF+B))=((& -Q-i@‘, -@,))“. (72) 

Recognizing that the turning rates are between one and two orders of magnitude greater than 

the damping factors, equation 68 can be simplified to equation 73. 

22 



I- i i -i -i 1 
F-J= i a,‘-iA I D _i@L +iA . QS1-iA 

CD,? iA Q>, -iA @,:A 

(73) 

Once these simplified mode shapes are obtained, the initial conditions for v, w, q, and r can be 

used to complete the solution. Equations 74 and 75 are the analytical solutions for the fixed 

plane translational velocities v and w, expressed in phase-amplitude form. 

v(s) = V1eAFS sin(Qi.s+0,,)+V,e4’sin(~,s+0,,) (74) 

w(s) =V1eAFS sil@Q + O,,) +vp sin(<f,,s+ O,,) , (75) 

where 

(78) 

(79) 
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7. Dual-Spin Projectile Swerve 

Having established the conditions for stability and analytically solving for the translational 

motion of v and w, it is now possible to solve for the swerving motion of the projectile as it 

travels downrange. Swerving motion is defined as projectile motion measured along the earth- 

fixed Y and Z-axes. To an observer standing behind the gun tube, these axes are oriented such 

that positive Y is to the right and positive Z is pointed downward. The swerving motion is a 

result of the normal aerodynamic forces exerted on the projectile during its flight, as it pitches 

and yaws due to the angle of attack dynamics. 

By differentiating the jn and &, components of equation 1 with respect to time, and 

substituting in the proper components of equation 3, equations 80 and 81 are generated. 

f= pso 
[ 2m 

(81) 

Equations 80 and 81 are second-order differential equations with respect to time. Rewriting 

these differential equations with respect to dimensionless arc length results in the final form of 

the equations governing the swerve dynamics. Dividing through by the characteristic length of 

the projectile gives results for dimensionless swerve, measured in calibers of travel. 

24 
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Consideration of equations 3 1, 72, and 73 lead to a double integration, which yields the 

solution for downrange swerve. This solution does account for the exponential change in V, and 

all the derived conditions of stability apply. Upon integrating, recognize that the damping 

factors A> and Ai are small compared to the turning rates and will be neglected in the 

amplitudes, phase angles, and integration constants. 

The fmal results after integration are displayed as equations 84 and 85. 

These equations for swerve include terms representing the point mass trajectory, the 

epicyclic swerving motion and a new term called “jump.” Both jump terms, J, and J, , are 

summarized below. 
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(87) 

Recalling the relations in equation 43, the jump terms can finally be rewritten as equations 88 

and 89. 

(89) 

Jump results from the initial pitching and yawing conditions and is introduced into the 

swerve equations after the first integration. Jump has been shown to have a much more 

significant effect on the final trajectory than epicyclic swerve. These expressions for jump show 

the similarities with the rigid projectile case. The only difference is the use of inertia weighted 

average spin rate. 

8. Conclusions 

The equations of motion for a dual-spin projectile in atmospheric flight have been developed. 

The model allows for unbalanced forward and aft components. The bearing that connects the 

forward and aft components is a combination hydrodynamic and roller bearing. 

After appropriate simplifications are made to the initial nonlinear equations, it is shown that 

the roller bearing requires knowledge of the axial force on each projectile body in the 

determination of the roll dynamics. This fact will require range reduction algorithms to be 
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modified to estimate the axial force on both components from roll angle and roll data. The 

hydrodynamic bearing does not have this complication because the reaction moment on a 

hydrodynamic bearing is a function of the roll rate difference only. 

It is possible to analyze the stability of a dual-spin projectile using a methodology similar to 

rigid body projectile stability analysis. The gyroscopic stability factor, So, is different from the 

conventional rigid projectile results. It depends on the spin rates of both bodies as well as their 

individual roll inertias. However, it is possible to define the inertia weighted average spin rate, 

F, which is essentially an equivalent spin rate such that the form of the gyroscopic stability 

factor is the 

both bodies 

results. 

same as the rigid projectile case. When either the fore or aft body is removed, or 

spin together, the stability results reduce to the standard rigid projectile stability 

The dynamic stability factor is also different from the conventional rigid projectile results. 

To emulate the standard results, a Magnus weighted average spin rate, p* is introduced. The 

dynamic stability factor can be shown to match the rigid case under the same two conditions that 

were checked for the gyroscopic stability factor. The dynamic stability enhancement ratio 

depends on the differential spin ratio and the Magnus ratio, which may both become negative. 
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The rotation kinetic differential equations are derived by splitting the two-body system at the 

bearing connection point. A constraint force, F, , and a constraint moment, M’ C , couple the 

forward and aft bodies. The translational dynamic equations for both bodies are given by 

equations A-l and A-2. 

mAa',,, = FA + Fc (A-1) 

mFaFII =PF --& 64-2) 

Key to the development of the rotation kinetic differential equations is the ability to solve for the 

constraint forces and moments as a function of state variables and time derivatives of state 

variables. An expression for the constraint force can be obtained by subtracting equation A-2 

from equation A- 1. 

mFmA mF mA 

(A-3) 

With the constraint force known, the rotational dynamic equations for the forward and aft bodies 

can be developed. The constraint force contributes to the applied moments from a. cross product 

between the constraint force vector and the position vectors from the individual centers of 

gravity to the bearing. An additional constraint moment couples the forward and aft bodies due 

to viscous or rolling friction in the bearing. 

-&I =G,-ti,-p,xFc, 

(A-4) 

(A-5) 

where 
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p, =JA-F (A-6) 

p’, =FF -r . (A-7) 

The acceleration of the mass center of the forward and aft bodies, a’,,, and ZAII, cm be 

expressed in terms of the acceleration of the composite body mass center. After making this 

substitution, the constraint force components in the fixed plane reference frame can be expressed 

in the following manner. 

1 
F cx 

GY (A-8) 

&z 

The constraint moment components in the fared plane reference frame acting on the forward 

body about the forward body mass center, and resulting from the constraint force cross product 

can be written in the following manner. 

(A-9) 

In a similar way, the components in the fixed plane reference frame of the moment of the 

constraint force acting on the aft body about the aft body mass center can be written as shown in 

equation A-l 0. 

(A-10) 
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The rotation kinetic differential equations are both expressed in the fixed plane reference 

frame. The equations are left general and allow for a fully populated inertia matrix and mass 

unbalance. Equations A-8-A-10 are substituted into both sets of rotation kinetic equations for 

the forward and aft bodies. At this point, both sets of equations still have unknown constraint 

moments at the bearing connection point. To eliminate the bearing constraint moments in the 

fixed plane j,, and in directions, the j,, and g,, components of the rotation kinetic equations for 

the forward and aft bodies are added together to form two dynamic equations that are free of 

constraint moments. In this way, the constraint moments at the bearing have been eliminated 

analytically from the pitching and yaw dynamics. 

To finish expressing the roll dynamic equations, however, an expression for the unknown 

constraint moment must be formed. The moment transmitted across the bearing is modeled as a 

combination hydrodynamic and roller bearing. The contribution from the hydrodynamic bearing 

can be modeled as viscous damping’ and the constitutive relation governing the constraint 

moment is given by equation A- 11. 

The frictional moment at a roller bearing is proportional to the normal force acting on the 

(A-l 1) 

bearing. Normal force at the bearing of a split bodied projectile is directly related to the axial 

aerodynamic coeffkients of the forward and aft bodies. The contribution to the constraint 

moment from a roller bearing* is given by equation A-12. To remove the effects of either 

bearing from the model, set the respective coefficient to zero. 

M: = C,IF,, Isign(pF - PA) (A-12) 

’ Close, C. M., and D. K. Frederick. Modeling and Analysis of Dynamic Systems. New York, NY: John Wiley and 
Sons, 1995. 

2 Bolz, R. E., and G. L. Tuve. CRC Handbook of Tables for Applied Engineering Science. OH: CRC Press, 1973. 
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Once the final constraint moment is known, the fixed plane c components of equations 4 

and 5 are the forward and aft body roll dynamic equations. These two individual equations, in 

conjunction with the fixed plane jn and &, equations, resulting from a sum of equations 4 and 5, 

can be assembled to represent the entire set of rotational dynamics. Equation 4, from the main 

body of this report, is restated below to demonstrate this point. 

The effective inertia matrix is a 4 x 4 matrix that is a combination of the inertia matrices of both 

the forward and aft bodies. As an aid in developing a formula for the effective inertia matrix, 

defme the following intermediate matrices. 

I; =i, -TA 

f-A = TATIATA 

TA = mASRA S, 

IJ =FF --TF 

TF = TFTIFTF 

rF =mFSRFSRF , 

where 
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(A-13) 

(A-14) 

(A-15) 

(A-16) 

(A-17) 

(A-18) 



(A-19) 

(A-20) 

(A-2 1) 

(A-22) 

Using equations A-13, A-16, A-11, and A-12, elements of the effective inertia matrix can now be 

formed. 

I 1.1 = ‘I;,,, + Mm,,, 

I 1.2 = Mm,., 

I 1,4 = Ii,., + MFQ + M,,g 

12.1 = M,,, 
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(A-23) 

(A-24) 

(A-25) 

(A-26) 

(A-27) 



I 22 = I;., -&A,** 

I 
2.3 =I;., -“w.? -MAEi.2 

I 2,4 =I;., -K4Al,s -MA% 

I =‘Fz, 3.1 . 

I 
32 = It.1 

I 3.3 = ‘K., + L.z 

I3,4 = IX., + ‘;.1 

I 
4.2 = I;.* 

(A-28) 

(A-29) 

(A-30) 

(A-3 1) 

(A-32) 

(A-33) 

(A-34) 

(A-35) 

(A-36) 

I 4,3 = ‘;;,,, + ‘h., 
(A-37) 

14.4 = ‘is., + ‘is,3 
(A-38) 

Two elements of the right-hand side vector of equation 4, from the main body of this report, are 

given by equations A-39 and A-40. 

gF, = ti 0 Ol[M, -S; -&,I (A-39) 

38 



The vectors 3: and 3; in equation 89, from the main body of this report, and equation A-l are 

given by equations A-41 and A-42. 

where 

s, = [TATI,FA +TATSAIATA 

PO 

s; = FF - ITF 

FF = bFT I& +TrTSFIFTF 

L J 

(A-41) 

(A-42) 

(A-43) 

(A-44 

(A-45) 

(A-W 
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S [ 

0 --r 4 

wF= 

r 0 1 

-PF 

-qPF ’ 

s 

Other unknown terms on the right-hand’side of equation A-4 include components of the vectors 

&? and s* . These vectors are described below. 

(A-47) 

(A-W 
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