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Abstract 

This report investigates the atmospheric flight mechanics of two projectiles connected by a 
flexible tether. Both projectiles are individually modeled with six degrees of freedom. The 
projectile aerodynamic model depends on angle of attack and Mach number and includes 
unsteady roll, pitch, and yaw aerodynamic damping. The tether is split into a finite number, of 
beads, with each bead possessing three translation degrees of freedom. Forces acting on the 
beads include weight, line stiffness, line damping, and aerodynamic drag. The tether 
aerodynamic drag force is dependent on the tether line angle of attack and Mach number. The 
tether line deployment process is modeled with a single degree of freedom that permits unreeling 
resistance to be incorporated. The effect of follower-to-lead projectile mass ratio and drag 
coefficient ratio on system response are investigated. 

ii 



Table of Contents 

1. 

2. 

3. 

3.1 
3.2 

4. 

5. 

6. 

7. 

8. 

List of Figures . . . . . ..- a . . . . . . . . . . . . ..*.......*.****...................*..... . . . . . . . . . . . . ..*..*.....**...........*.... V 

Introduction ............................................................................................................. 1 

Projectile Mathematical Models ............................................................................ 2 

Tether Mathematical Model ................................................................................... 4 

Elastic Line Forces .............................................................................................. 6 
Aerodynamic Line Forces ................................................................................... 7 

Reel Dynamic Model ............................................................................................... 8 

Flight Phases ............................................................................................................ 9 

Results . . . . . . . . . . ..~.......................... . . . . . . ..~.....*....~......*........***..*.......*..*~~~.........****....~...... 9 

Conclusions . . . . . . . . . . . . . ...*...***..*.........*.. . . . . . . . . . . . . . . . . . . . . . ..~..........**.**.***..............*...***......*. 17 

References ................................................................................................................ 23 

List of Symbols ........................................................................................................ 25 

Distribution List ...................................................................................................... 27 

Report Documentation Page ................................................................................... 33 

. . . 
111 



INTENTIONALLY LEFT BLANK. 

iv 



List of Figures 

Figure 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

Tether Bead Model Schematic .................................................................................. 

Deployment Schematic .............................................................................................. 

Range (Mass Ratio = l%, 100%) .............................................................................. 

Pitch Angle (Lead/Follower, Mass Ratio = l%, 100%) ............................................ 

Body Forward Velocity (Lead/Follower, Mass Ratio = 1 %, 100%) ......................... 

Pitch Rate (Lead/Follower, Mass Ratio = I%, 100%) .............................................. 

Angle of Attack (Lead/Follower, Mass Ratio = l%, 100%) ..................................... 

Range (Lead/Follower, Mass Ratio = lOO%, Drag Coefficient Ratio = 1.25, 1 S, 
1.75,2) ....................................................................................................................... 

Pitch Angle (Lead/Follower, Mass Ratio = lOO%, Drag Coefficient 
Ratio = 1.25, 1.5, l-75,2) .......................................................................................... 

Lead Forward Velocity (Mass Ratio = lOO%, Drag Coefficient Ratio = 1.25, 
1.5, 1.75,2) ................................................................................................................ 

Follower Forward Velocity (Mass Ratio = lOO%, Drag Coefficient 
Ratio = 1.25, 1.5, 1.75, 2). ......................................................................................... 

Tether Line Out Rate (Mass Ratio = lOO%, Drag Coefficient Ratio = 1.25, 1.5, 
1.75,2) ....................................................................................................................... 

Tether Line Out (Mass Ratio = lOO%, Drag Coefficient Ratio = 1.25, 1.5, 
1.75,2) ....................................................................................................................... 

Range (Mass Ratio = 1 %, Drag Coefficient Ratio = 1.0625, 1.125, 1.25, 1.5, 
1.75,2) ....................................................................................................................... 

Pitch Angle (Lead/Follower, Mass Ratio = 1 %, Drag Coefficient 
Ratio = 1.0625, 1.125, 1.25, 1.5, 1.75, 2). ................................................................. 

V 

Paae 

5 

10 

12 

12 

13 

13 

14 

15 

15 

16 

16 

17 

18 

18 

19 



Fimre 

16. Lead Forward Velocity (Mass Ratio = 1 %, Drag Coefficient Ratio = 1.0625, 
1.125, 1.25, 1.5, 1.75, 2) . . . . . ..~.............................................................................~...... 

17. Follower Forward Velocity (Mass Ratio = l%, Drag Coefficient Ratio = 1.0625, 
1.125, 1.25, 1.5, 1.75,2) ~.............~.........~....~.~~~~.~~~~......~~....................~~.............~........ 

18. Tether Line Out Rate (Mass Ratio = 1%, Drag Coefficient Ratio = 1.0625, 
1.125, 1.25, 1.5, 1.75, 2) . . . . . . . . . . . . . b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ . . . . . . . . . . * . . . . . . . 

19. Tether Line Out (Mass Ratio = 1%, Drag Coefficient Ratio = 1.0625, 1.125, 
1.25, 1.5, 1.75,2) *~.*..........*.****.............*.............*...*****............~~~~.*.*........*.******~.*....~... 

19 

20 

20 

21 



1. Introduction 

. 

Coupling two flight vehicles with a tether is by no means new, and a considerable bulk of 

literature has amassed. For example, Tye and Han [l], Puig-Suari, Longuski, and Tragesser [2], 

and No and Co&ran [3] provide examples of tethers used for spacecraft applications. Phillips 

[4] and Clifton et al. [5] address the application of tethers to atmospheric flight vehicles. 

Djerassi and Viderman [6] investigated the motion of two bodies connected by a cable in 

atmospheric free fall, and in particular, focused on a device to terminate a missile launch in 

flight. Upon mission abort, a missile would be separated into a stable lead projectile and an 

unstable follower projectile, with the purpose of drastically reducing range in a predictable 

manner. The cable length was assumed short so that elastic collisions between the two bodies 

occurred; this, in turn, induced relatively large yaw angle excursions and resulted in reduced 

range. 

The current effort develops a dynamic model of two projectiles connected by a flexible 

tether. Each projectile is modeled as a rigid body with six degrees of freedom. Loads on each 

projectile include weight and aerodynamic forces. The aerodynamic forces and moments are a 

function of the attack angle of the axis of symmetry of the projectile and the Mach number at the 

center of gravity. The aerodynamic expansion includes terms for high angle of attack flight as 

well as terms for roll, pitch, and yaw unsteady aerodynamic damping. Motion of the two 

projectiles is coupled through a tether line. The tether line is connected to each body with a 

frictionless ball-and-socket joint at an arbitrary point. The tether line is modeled as an elastic 

body, and is split into a finite number of beads; each bead is a point mass consisting of three 

translation degrees of freedom. Forces that drive the motion of the beads include bead weight, 

line spring force, line damping force, and aerodynamic drag. The tether line aerodynamic drag 

force is a function of the attack angle of the tether line and the local Mach number of the tether 

line element. The tether line deployment process is governed by a single degree of freedom 

model, which allows tether reel resistance to be incorporated. 



2. Projectile Mathematical Models 

The mathematical model describing the motion of both projectiles allows for six rigid-body 

degrees of freedom comprised of three body inertial position coordinates as well as three Euler 
I angle body attitudes. This mathematical model has been validated against spark range data for a 

generic 25mm, fin-stabilized sabot launched projectile [7]. Agreement between the model and 

range data is excellent. 

The equations presented below use the ground surface as an inertial reference frame. The 

body frame is defined in the conventional manner [8], and the dynamic equations are written 

with respect to this coordinate system. The translation and rotation kinematic and dynamic 

equations for the lead projectile are given by equations (14) [8,9]. 

(1) 

(3) 



The follower projectile equations are identical in sn-ucture to the previous equations, but are 

omitted here due to space limitations. The matrix [T,,,] represents the transformation from the 

lead projectile body frame to the inertial frame. The matrix [S, J is the skew symmetric cross 

product operator on the lead projectile body angular velocity components. 

The total applied forces on the lead projectile is split into contributions due to the tether line 

(T), weight (W), and body aerodynamics (A). 

where 

. 

(5) 

The total applied body moments contain conuibutions from the tether line (T), steady body 

aerodynamics @A), and unsteady body aerodynamics (UA). 
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(6) 



The projectiles considered in the subsequent analysis are spin-stabilized with relatively low roll 

rates, so Magnus effects were not included in the aerodynamic expansion. The steady body 

aerodynamic moment is computed by a cross product between the distance vector from the 

center of gravity to the center of pressure and the steady- body aerodynamic force vector. The 

unsteady body aerodynamic moment provides a damping source for projectile angular motion 

and is given. 

i 

L LUA 
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rLDLGR 
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‘. (7) 

The longitudinal and lateral aerodynamic angles of attack, a, and & , are computed using the 

following equations: 

Air density is computed using the center of gravity position of the appropriate projectile in 

concert with the standard atmosphere [lo]. The aerodynamic coefficients are Mach number 

dependent. Computationally, they are obtained by a table look-up scheme using linear 

interpolation. Mach number is computed at the center of gravity of the respective projectile. 

3. Tether Mathematical Model 

As depicted in Figure 1, the tether is split into N, point mass elements and IV, + 1 line 

elements. The motion of the point masses defines the motion of the tether line during deployment 

and throughout its flight phases. Each tether bead is a point mass possessing three translation 
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. 

Figure 1. Tether Bead Model Schematic. 

degrees of freedom. Forces that drive the motion of the tether beads include tether bead weight, 

adjacent tether line elastic forces, and tether bead aerodynamic forces. The tether bead equations 

of motion that follow are the same structurally for all beads, so the formulas are shown only for 

the ith tether bead. The equations are resolved in the inertial reference frame. 

I-i 0 
+ 0 

WE 

(9) 

In order to concisely express the different tether bead applied loads, the following tether bead 

position and velocity matices are introduced: 
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Equations (10) and (11) contain N, + 2 rows and three columns. The fust and last row 

elements contain the inertial position and velocity of the lead and follower projectile/tether 

connection points. 

3.1 Elastic Line Forces. The tether line forces are caused by the elasticity of the tether 

material and are directed parallel to the cable line. Tether line flexibility generates resistive 

stiffness and damping forces proportional to cable line extension and extension rate. Using the 

bead position and velocity matrices, tether line element vectors can be formed. 

AT =R,([l: N, +l],:)-R,([2: N, +2],:),and (12) 

& =&([l: N, +l],:)-&([2: N, +2],:). (13) 

. The elastic tether line force, expressed in the inertial reference frame, is given by 

equation (14). 

(14) 

The magnitude of the tether line force, FT 9 is determined by equation (15). 

F = KT(IAT,I-LTo)+CTAvT,* IA&L?, ” 
4 

0, 

(15) 

The second condition in equation (15) stipulates that when the tether line is slack, no force is 

transmitted across the tether. As the tether stretches, the tether diameter decreases. The diameter 

reduction, as a function of tether line extension, can be computed using Poisson’s ratio for the 

tether material. 
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D, = D,(l+, LT, -L, 
LT, 

1. (W 

3.2 Aerodynamic Line Forces. Aerodynamic forces on the tether line are generated by two 

sources: skin friction and flat plate drag. The matrices P, and I$ , defined by equations (17) 

and (18), are used to compute tether aerodynamic forces. 

pT +AT([l: N, +l],:)+A,([2: N, +21,:)), and 

PT +,([l: N, +1],:)+&([2:N, +21,:)). 

(17) 

(13) 

Skin friction drag acts in a direction parallel to the tether line and is given by equation (19). 

(19) 

Aerodynamic loads on a particular tether bead are obtained using average tether bead 

direction, diameter, and length from adjacent line elements. The skin friction drag coefficient is 

a function of the local Mach number at the tether bead. In the inertial reference frame, the skin 

friction drag exerted on a tether bead is given by equation (20). 

(20) 

The local aerodynamic velocity along a tether bead element, vSfi , can be computed by a dot 

product of the velocity vector with the normalized tether bead direction vector. 



‘SF, = (21) 

The flat plate drag force exerted on the tether line element responds normally to the tether 

bead element vector and is directed parallel to the aerodynamic velocity normal to the tether 

bead direction vector. 

D FP, = +i (YFP, “Fpi >&&,cFP * (22) 

The flat plate velocity vector is computed by subtracting the skin friction drag velocity from 

the total tether bead inertial velocity. 

(23) 

The flat plate drag coefficient, C, p is a function of the Mach number at the tether bead. The 

flat plate drag force expressed in the inertial reference frame is given by equation (24). 

DFP T =‘y 
I I ‘FP, 

FE ’ (24) 

4. Reel Dynamic Model 

The tether reel is assumed to consist of a rotating reel acted on by an elastic line force, FE, 

that tends to pay out the tether line and a resistance force, FR , which opposes the unreeling 

process. Rather than using reel rotation as a degree of freedom, it is more convenient to use 

8 



tether line pay-out as a dynamic variable. Equation (25) governs the dynamics of the tether line 

unreeling process. 

m,i, +cRiR +k,s, =FE. (25) 

The tether reel damping and stiffness coeffkients are scheduled as a function of tether 

pay-out so that the unreeling process can be dynamically tailored. The tether pay-out dynamic 

equation is a linear second order system with variable coefficients. With this general equation, 

any reel geometry that exhibits second order behavior can be accommodated. 

5. Flight Phases 

Simulation of the complete mission involves four distinct flight phases. When initially 

deployed from an aircraft, both projectiles are rigidly connected so the complete system moves 

as a rigid body. At a specific time after munition release, the follower projectile is unrestrained 

from the lead projectile and the tether line commences its unreeling process. The third flight 

phase is the time between when the tether line is completely unreeled and when the lead 

projectile impacts the target. After the lead projectile hits the target and stops moving, the 

follower projectile and the tether line continue their motion toward the target. A cartoon of the 

first four flight phases is provided in Figure 2. 

6. Results 

In order to exercise the dynamic model previously described, simulation results for an 

example system are shown. The baseline lead projectile is a 2,000 lb, fm-stabilized projectile. 

The tether line is 1,000 ft long with a total weight of approximately 3 lb. The reel stiffness 

coefficient is 0.1, and the reel damping is 1 .O. It is assumed that the lead projectile is 
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(a) Initial Configuration 

(b) Deployment Configuration 

(c) Fully Deployed Configuration 

(d) Terminal Configuration 

Figure 2. Deployment Schematic. 
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mounted on the parent aircraft such that the body axes of the aircraft and the lead projectile are 

aligned. The lead projectile is deployed from the parent aircraft that is flying straight and level at 

a speed of 500 ft./s. The effect of munition release on the lead projectile is to impart an initial 

vertical velocity of 10 ft/s downward on the lead projectile. All other initial conditions are zero. 

The lead and follower projectiles are separated at T = 0 s. 

Figure 3 plots the range of the lead and follower projectiles for a follower-to-lead mass ratio 

of 1% and 100%. The 100% mass ratio case has a slightly greater range because the projectiles 

separate more slowly and reel resistance is reduced. For a given mass ratio, both the lead and 

follower projectiles follow similar trajectories. The total flight time is approximately 40 s. 

Figures 4 and 6 show the pitch attitude and pitch rate for the same conditions as Figure 3. The 

pitch angle of both projectiles follows the same trends of decreasing from a level attitude to 

below 70” nose down at impact. The lead projectile oscillates at a frequency of l/7 cycles per 

second. Figure 5 shows the forward body velocity of the lead and follower projectiles for a mass 

ratio of 1% and 100%. The lowest trace with oscillations at T = 22 s is the follower projectile for 

a mass ratio of 1%. The lead projectile is the middle trace at T = 30 s. The lead projectile tends 

to increase in speed more than the follower projectile. The follower projectile does not slow 

down because as the tether line pays out, the resistance force in the tether reel tends to pull the 

follower projectile with the lead projectile. At about 22 s into flight, the tether line is fully 

deployed, and the lead projectile “snatches” the follower projectile and sharply increases its 

speed. The elastic nature of the tether line increases the speed of the follower projectile such that 

it is greater than the lead projectile. 

At the first peak in the follower projectile velocity time trace, the tether line goes slack and 

no force is transmitted along the tether line. At this point, the follower projectile is essentially 

uncoupled from both the lead projectile and the tether line. For this reason, the follower 

projectile begins to slow down to its uncoupled steady state drop velocity. The follower 

projectile continues to slow down until approximately 22.7 s into flight, when the lead projectile 

“snatches” the follower projectile again and rapidly increases its speed. This sequence continues 
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for six cycles, and then the lead and follower projectiles enter a steady state condition. At 

t = 42 s, the lead projectile impacts the ground and obviously stops moving. The tether line 

rapidly goes slack and again the follower projectile speed slows as it seeks to attain steady state 

drop velocity. Notice for this mass ratio, the lead projectile is essentially unaffected by the 

follower projectile and the tether. At T = 30 s, the lower trace is the follower projectile, and the 

upper trace is the lead projectile for a mass ratio of 100%. Notice for this mass ratio, the line 

takes longer to deploy due to the similar dynamic characteristics of both bodies, and significant 

interaction between the lead and follower projectiles exists. The plot representing the angle of 

attack vs. time (Figure 7) shows that the angle of attack remains small for both the lead and 

follower projectiles. 

6 

0 
0 5 10 15 20 25 30 35 40 45 

Time (s) 

Figure 7. Angle of Attack (Lead/Follower, Mass Ratio = 1%) 100 96). 

For a mass ratio of lOO%, Figures 8-12 show paramettic trends on the response of the system 

to different drag coefficient ratios between the lead and follower projectiles. The range and pitch 

attitude characteristics are similar for all drag ratios considered. However, the lead and follower 

forward velocity time histories show a predictable speed reduction as the drag ratio is increased 
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Figure 12. Tether Line Out Rate (Mass Ratio = lOO%, Drag Coefficient Ratio = 1.25,1.5, 
1.75,2). 

because higher drag ratios pay out the line more rapidly and increase the lead projectile 

resistance. 

For a mass ratio of I%, Figures 13-19 show parametric trends on the response of the system 

to different drag coefficient ratios between the lead and follower projectiles. As in the previous 

case, the lead and follower forward velocity time histories show a predictable speed reduction as 

the drag ratio is increased. However, the basic shape of the curve shows an oscillation induced 

by the snatch load. 

7. Conclusions 

A dynamic model has been developed for the flight mechanics of two projectiles connected 

by a flexible tether. Both projectiles are individually modeled with six degrees of freedom. The 

projectile aerodynamic model depends on the attack angle and Mach number, and includes high 
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Figure 18. Tether Line Out Rate (Mass Ratio = l%, Drag Coefficient Ratio = 1.0625, 
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Figure 19. Tether Line Out (Mass Ratio = l%, Drag Coefficient Ratio = 1.0625, 1.125, 
1.25,1.5,1.75,2). 

angle of attack terms as well as unsteady roll, pitch, and yaw aerodynamic damping. The tether 

is split into a finite number of beads, with each bead containing three translational degrees of 

freedom. Forces acting on the beads include weight, line stiffness, line damping, and 

aerodynamic drag. The tether aerodynamic drag force is dependent on the tether line angle of 

attack and Mach number. The tether line pay-out process is modeled with a single degree of 

freedom and allows for a resistive damping and stiffness force to resist tether line pay out. For 

follower projectiles relatively low in weight, the lead projectile motion is uncoupled. An 

oscillation in the forward velocity of the follower projectile is induced at the point where the 

tether line is completely deployed. However, for lead and follower projectile configurations with 

similar mass, lead projectile motion is coupled to the tether and follower projectile. 
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Local aerodynamic velocity in the direction of a tether bead 
Skin friction drag coefficient of the tether line 
Flat plate drag coefficient of the tether line 
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Poisson’s ratio of the tether line material 
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