
ARMY RESEARCH LABORATORY

Natural Computing: Analysis of
Graphs for Computer

Representation

Som Karamchetty

ARL-TR-2042 February 2000

20000404 038 I
Approved for public release; distribution unlimited.

The findings in this report are not to be construed as an
official Department of the Army position unless so
designated by other authorized documents.

Citation of manufacturer’s or trade names does not
constitute an official endorsement or approval of the use
thereof.

Destroy this report when it is no longer needed. Do not
return it to the originator.

Abstract

Some fundamental objects in practical documents have not been
implemented in software so that they can be used easily for
calculation. One such object is the graph. A survey of practical
graphs found in a variety of real-world documents reveals that many
of their useful features are not captured in software. I describe the
salient characteristics and features of graphs and propose data
structures and computer representations for graph objects. Through
the adoption of such structures and representations, practical graph
objects could be developed for use by domain specialists. Such
graphs embedded in electronic documents can be used in interactive
applications to retrieve data, but most importantly, they could be
used as functional representations for “cutting and pasting” in
procedures and programs. Use of these graph objects, together with
other natural computing objects (such as equations, tables, and
procedures), will permit electronic documents like handbooks,
textbooks, journals, and bulletins to be used seamlessly for
calculations by both domain specialists and naive users. Such
developments will reduce the lag between information availability
and its use in calculations, encouraging the further development of
knowledge. The face of software development for computation will
change, and many of the software engineering costs will be
contained.

ii

Contents

1.

2.

3.

4.

5.

6.

7.

8.

Introduction .. 1

A Textbook Example of Calculation Features .. 2

Usage of Graphs ... 6

Ends and Means .. 12

Informal Survey and Analysis of Practical Graphs .. 14

Computer Representation and Usage of Graphs in Natural Computing 18

6.2 Structure of a Graph .. 18

6.2 Choice and Use of Graphs ... 22

6.3 Insight into Graph Data .. 23

6.4 Testing a Graph in Jsolation .. 23

6.5 Embedding Graphs in Text .. 25

Example Usage of Natural Computing Graphs ... 27

Conclusions ... 29

Acknowledgments .. 30

References .. 31

Distribution ... 33

Report Documentation Page .. 35

Figures

1. A sample page containing text, sketch, and equations .. 3
2. A sample page containing text, graph, and equations ... 4
3. A sample page containing text, table, and equations ... 5
4. A simple graph showing path of an arrow .. 6
5. Samples of simple graphs ... 7
6. A sample graph with a logarithmic scale showing relationship between two

variables .. 7
7. A sample graph showing a discrete relationship .. 8
8. A sample graph showing a number of parametric curves .. 9
9. A sample of a complex graph: Mollier chart showing properties of steam 10

10. Simple steam power plant schematic and temperature-entropy diagramll
11. An example graph generated by Mathematical, useful for display only.. 12
12. An anatomy of a simple graph .. 15
13. A sample graph with several parametric curves .. 15
14. A sample graph with logarithmic scales on both axes ... 16
15. A sample graph containing a picture .. 17
16. A sample of a complex graph .. 17
17. A typical example of a simple graph class ... 19
18. An example of creation of a superset graph .. 20
19. Example showing an arithmetic operation on graphs to generate another graph.. 20
20 Example showing an arithmetic operation on a set of curves in a graph to generate

another graph .. 21

...
111

21. Iterative cycle of graph development in Natural Computing system 22

22. Interactive use of a graph along with input and output boxes ... 24

23. Program or procedure building using a graph ... 24

24. Text with embedded graph .. 26

25. Activating a text-embedded graph object for interactive use ... 27

26. An example Natural Computing screen showing a procedure consisting of a graph,
a table, and equations ... 28

iv

In another report (Karamchetty, 2000a), I described Natural Computing
(Karamchetty, 1997) as an approach to software for computation that is
based on the way people actually compute, using available information in
a variety of formats, In a separate report (Karamchetty, 2OOOb), I described
the use of tables in Natural Computing. This report builds on those
previous discussions by examining one aspect of Natural Computing: the
use of graphs.

1. Introduction

Before the invention of computers, most knowledge was captured in the
form of books and other paper documents. (Books can be further classi-
fied as textbooks, reference books, handbooks, and journals, based on the
temporal nature of the information. More transient documents are flyers,
brochures, and receipts.) Information was printed on paper for storage,
retrieval, and communication. The paper-based information was read by
the end user. By reading the information from one or more documents
and by combining it with one’s own intuition, invention, and discovery,
one generated new information and wrote (printed) it in the form of
another paper document.

In the paper-based universe, when we dealt with technical matter, do-
main knowledge was captured in the form of text containing equations,
tables, graphs, and pictures. Without pictures, descriptions of scenes were
elaborate. As we recall, “a picture is worth a thousand words.” In techni-
cal subjects, the pictures could be sketches, schematics, drawings, paint-
ings, or photographs. Sketches stood for descriptions of parts and compo-
nents in terms of shapes and sizes. Schematics and other diagrams
showed the mutual relationships of components in a system and the state
of the system and its temporal variations.

Graphs, tables, and equations captured relationships among sets of
variables. Graphs additionally provided a highly visual insight into the
mutual dependency of the variables.

Domain specialists read the text and concurrently used the included
graphs, tables, and charts. They used note pads to make temporary notes
and calculations. Simple calculations were done mentally. More compli-
cated calculations required aids, such as log tables and slide rules. As new
ideas, information, and knowledge were generated, the domain special-
ists captured them in natural forms (such as equations, tables, graphs,
and pictures), appended them to text, and communicated the new docu-
ments to others in the field. In general, paper-based documents were
subject to three principal types of uses: (1) reading and comprehension;
(2) interactive calculations using the calculation features (namely, tables,
equations, graphs, and pictures) found in the text; and finally, (3) devel-
opment and recording of new functions (tables, equations, graphs, and
pictures). Capturing these essential natural forms and processes in a
computer software system is the goal of Natural Computing.

2. A Textbook Example of Calculation Features

Figure 1 shows a sample page from an engineering textbook describing
mechanical springs (Shigley, 1977). The page consists of a sketch of a
mechanical spring, text, and equations. Figure 2 shows another sample
page with a graph, more equations, and more text. By reading the expla-
nations on these pages, an engineer can understand the domain of me-
chanical springs. By studying the graph on the page, the engineer can
understand the trends. At any time, the engineer can obtain values given
by the graphs-this is usually called reading IZ graph. While using these
pages, the engineer starts with values of D and d, proceeds to calculate
the value of the variable C from equation 8-l in figure 1, and reads the
value of the Wahl correction factor K from the graph of spring index
versus stress correction factor. This value of K and an input value of F
(force) are next substituted into equation 8-4 (fig. 2), and the value of
stress r is calculated. The engineer may next proceed to the page shown in
figure 3 and read the values of A and m for a given material from the table
8-2 (fig. 3). These values are substituted into equation 8-10 (fig. 3) for
calculating the ultimate strength in tension of the spring material.

This description shows how domain specialists present information in
textbooks for others to use to perform calculations. Thus, textbooks are
used both to explain the subject and to provide information in the form of
text, sketches, equations, graphs, and tables for ready use in calculations.
In paper-based documents, there is always more information than a
particular calculation requires. A user can perform several alternative sets
of calculations by selecting some equations, graphs, and tables and
chaining them appropriately for the desired calculation at hand.

(b)

(=I I_--+-----
FIGURE 8-1
(a) Axially loaded helical spring; (b) free-body diagram showing that the wire is
subjected to a direct shear and a torsional shear.

the hose in a straight line perpendicular to the plane of the coil. As each turn of
hose is pulled off the coil, the hose twists or turns about its own axis. The flexing
of a helical spring creates a torsion in the wire in a similar manner.

Using superposition, the maximum stress in the wire may be computed
using the equation

(4

where the term Tr/J is the torsion formula of Chap. 2. Replacing the terms by
T = FD/2, r = d/2, J = nd4/32, and A = nd2/4 gives

z= 8FD 4F
-+nd” nd3 (6)

In this equation the subscript indicating maximum shear stress has been omitted
as unnecessary. The positive signs of Eq. (a) have been retained, and hence Eq. (b)
gives the shear stress at the inside fiber of the spring.

Now define spring index

as a measure of coil curvature. With this relation, Eq. (b) can be arranged to give

8FD
~Z----

nd3 (c)

Or designating

Source: Joseph E. Shigley (1977). Mechmzical Engineering Design, 3rd ed., McGraw-Hill Book Co.,
New York, NY.

Figure 1. A sample page containing text, sketch, and equations.

3

then z = Kls (8-3)

6 8 10 12 14 76

Spring index C

FIGURE 8-2
Values of the stress correction factors for round helical extension or compression
springs.

where K, is called a shear-stress multiplicationfactor. This factor can be obtained
from Fig. 8-2 for the usual values of C. For most springs, C will range from about
6 to 12. Equation (8-3) is quite general and applies for both static and dynamic
loads. It gives the maximum shear stress in the wire, and this stress occurs at the
inner fiber of the spring.

Many writers present the stress equation as

Z=
K 8FD

Ad3 (8-4)

where K is called the Wuhl correctionfactor. * This factor includes the direct shear,
together with another effect due to curvature. As shown in Fig. 8-3, curvature of
the wire increases the stress on the inside of the spring but decreases it only
slightly on the outside. The value of K may be obtained from the equation

K=------ -
4C - 1 + 0.615

4c-4 c (8-5)

or from Fig. 8-2.
By defining K = K, K,, where K, is the effect of curvature alone, we have

Kc=; (8-6)
s

Source: Joseph E. Shigley (1977). Mechanical Engineering Design, 3rd ed., McGraw-Hill Book Co.,
New York, NY.

Figure 2. A sample page containing text, graph, and equations.

4

strengths for various wire sizes and materials.* But the availability of the scientific
electronic calculator now makes such a tabulation unnecessary. The reason for
this is that a log-log plot of the tensile strengths versus wire diameters is a straight
line. The equation of this line can be written in terms of the ordinary logarithms of
the strengths and wire diameters. This equation can then be solved to give

S”, =$ (8-10)

where A is a constant related to a strength intercept, and m is the slope of the line
on the log-log plot. Of course such an equation is only valid for a limited range of
wire sizes. Table 8-2 gives values of m and the constant A for both English and SI
units for the materials listed in Table 8-l.

Although the torsional yield strength is needed to design springs, sur-
prisingly, very little information on this property is available. Using an approxi-
mate relationship between yield strength and ultimate strength in tension,

S, = 0.75s,, (8-11)

and then applying the distortion-energy theory gives

S,, = 0.5778, (8-12)

and provides us with a means of estimating the torsional yield strength S,,. But
this method should not be used if experimental data are available; if used, a
generous factor of safety should be employed, especially for extension springs,
because of the uncertainty involved.

Variations in the wire diameter and in the coil diameter of the spring have an
effect on the stress as well as on the spring scale. Large tolerances will result in

l See, for example, the second edition of this book: Joseph E. Shigley, “Mechanical Engineering
Design,” 2d ed., p. 362. McGraw-Hill Book Company, New York, 1972.

Table g-2 CONSTANTS FOR USE IN EQ. (8-10) TO ESTIMATE THE TENSILE
STRENGTH OF SELECTED SPRING STEELS

Material
Size r8nge.
in

Constant, A
Size range, Exponent,
mm m Lpi MPn

Music wire’ 0.0040.250 0.10-6.5 0.146 196 2170
Oil-tempered wireb 0.020-0.500 0.50-12 0.186 149 1880
Hard-drawn wire’ 0.028-0.500 0.70-12 0.192 136 1750
Chrome vanadiumd 0.032-0.437 0.8@12 0.167 169 .2000
Chrome silicon’ 0.063-0.375 1.6-10 0.112 202 2000

’ Surface is smooth, free from defects, and with a bright lustrous finish.
b Has a slight heat-treating scale which must be removed before plating.
’ Surface is smooth and bright, with no visible marks.
’ Aircraft-quality tempered wire; can also be obtained annealed.
’ Tempered to Rockwell C49 but may also be obtained untempered.

Source: Joseph E. Shigley (1977). Mechanical Engineering Design, 3rd ed., McGraw-Hill Book Co.,
New York, NY.

Figure 3. A sample page containing text, table, and equations.

3. Usage of Graphs
I

Graphs are ubiquitous in books and paper documents of all types. Al-
though graphs have been in use for centuries, research into graphs and
their properties is nonexistent. In general, people use graphs quite intu-
itively and very little instruction is ever provided on graphs. Yet children
as young as six years old understand graphs when they see a graph (as
shown in figure 4) depicting the trajectory of a baseball or the path of an
arrow (Green, 1984). Originating with these simple beginnings, the
structure of graphs can become very complex (as I show later in this
report). Mature adults learn the structure, properties, and relationships of
items in a graph by trial and error, supplemented by intuition.

Figure 5 shows sample graphs with two simple curves. One curve* shows
a linear or straight-line relationship between two variables. The x-axis
represents time in seconds, and the y-axis shows velocity in feet per
second. In the second curve, a curvilinear relationship is shown, where
the x-axis represents time in seconds and the y-axis shows distance fallen
in feet. A reader can use these curves to find out the velocity or the dis-
tance fallen at any time between 0 and 10 s. Figure 6 is a sample of a
slightly more complex graph in which the x-axis is represented by a log
scale (Gartmann, 1970).

From these sample graphs, the basic functionality of a graph can be
discerned. A graph depicts a functional relationship between two vari-
ables. Even more importantly from a calculation point of view, a graph
allows a user to read a y-value for a given x-value. In that sense, a graph
can be seen as a substitute for an equation or a table; this observation
leads one to conclude that a graph represents a mathematical relationship
between two (or more) quantities or variables.

We can usually represent a graph as y =f (x), where y is the output value
for a given x (input value), withf (. . .) representing some functional

Figure 4. A simple
graph showing path
of an arrow.

relationship.

I

Figure 3-14

Source: C. R. Green (1984). Technical Physics, Prentice-Hall, Inc.,
Englewood-Cliffs, NJ.

*In the literature, terms like graph, curve, and line are used with somewhat similar meanings. In this
report, I use the term graph mostly to mean a complete graph consisting of a set of curves, the axes, and so
on. However, the word graph is also used to mean a curve even when one is specifically referring to only
one curve. The term cume is used to mean one item in a graph that may have many curves. A line is the
same as a curve.

6

Figure 5. Samples of
simple graphs.

Figure 6. A sample
graph with a
logarithmic scale
showing relationship
between two
variables.

Time of
fall s I

0

1

2

3

4

5

6

7

8

9

10

Velocity
ft/s. milh I

0; 0

32; 21.8

64; 43.6

96; 65.4

128; 87.3

160; 109

192; 130

224; 153

256; 174

288; 196

320; 218

fallen, ft

0

16

64

144

256

400

576

784

1024

1296

1600

Time, s

I

d 1200
=
,m
8 800

5
E 400

0 5 10

Time. s

Figure 3-11 Distance fallen and velocity as a function of time. The acceleration
of gravity is taken as 32 ft/s* and any effect of air resistance is not considered.

Source: C. R. Green (1984). Technical Physics, Prentice-Hall, Inc.,
Englewood-Cliffs, NJ.

90

I” ” I I I I

A-’

-

80
.J+ERAGE -. ._._

I

FFFICIENCY I I I

QUALITY FACTOR q
Fig. 5-7 Average efficiency of multistage turbines based on quality factor.

lource: Hans Gartmann (1970). The DeLavaZ Engineering Handbook, 3rd ed.,
McGraw-Hill Book Co., New York, NY.

7

Figure 7 shows an interesting sample graph; no curve or line connects the
points, because this graph represents a relationship between variables in a
discrete domain (Vaughn, 1974). The relationship between the X- and
y-values ex is t s only at the points shown on the graph. In between these
points, a relationship is nonexistent, invalid, and meaningless. This
situation corresponds to tables of data in which interpolation between
table values is not permitted.

It is very important to distinguish between graphs that represent data in
discrete and continuous domains. Figures 4 to 6 show continuous do-
mains. In a continuous domain, the values between the points on a graph
or curve can be obtained by interpolation, while in a discrete domain,
such interpolation is not allowed and may be meaningless.

In the days before slide rules, values of reciprocals, sine, cosine, tangent,
sinh, cosinh, tanh, and so forth were laboriously calculated and graphs
plotted (or tables developed) for later use by scientists and engineers in
performing calculations. A graph can be represented best if a large num-
ber of points are available. Graphs (a more appropriate term is lines or
curves, as explained earlier in the footnote) are drawn through the calcu-
lated points with best estimates (or least squares). Such graphs can be an
alternative to tables of data for subsequent calculations. Especially when
we are dealing with experimental data, graphs come in handy. As math-
ematics (particularly algebra) progressed, people preferred to fit equa-
tions and use them rather than relying on the plotted graphs or raw tables
of data. At any rate, graphs, tables, and equations can be alternative forms
for capturing functional relationships between variables in a given prob-
lem. Of course, each form (graphs, tables, and equations) has its relative
merits, demerits, and suitability for a given applkation.

Figure 7. A sample
graph showing a

REGRESSION CONTROL CHARTS 85
discrete relationship.

Upper
specification

limit

Nominal

dimension

Lower
specification

limit

0

I 1 1 I I I I 1

I 2 3 4 5 6 7 8 9

Time periods or batches of production units

FIG. 6.1. Dimensional trend from tool wear.

Source: Richard C. Vaughn (1974). Quality Control, Iowa State University Press,
Ames, IA.

Figure 8. A sample
graph showing a
number of parametric
curves.

Figure 8 shows a sample graph with seven curves (Baumeister and
Marks, 1964). In this case, the relationship is between vapor temperature
and pressure. Each curve represents this relationship for a different
hydrocarbon. Each is labeled with the appropriate name. In using this
graph, we begin with two quantities or variables (temperature and the
hydrocarbon) and obtain values for the third (pressure). The advantage of
a graphical representation is immediately obvious from the graph. A
graph gives high visibility to data trends. First, figure 8 shows that the
vapor pressure increases with temperature for every one of the hydrocar-
bons. The shapes of the curves are also somewhat similar. The graph
clearly shows which hydrocarbons have very high vapor pressures
compared to others for a given temperature. The curves are continuous,
thus allowing for interpolation along a curve. However, interpolation
between curves is meaningless, because the types of hydrocarbons are
discrete parameters.*

The foregoing samples depict how graphs clearly show the relationships
in the data. As the relationships get more complex or as more relation-
ships are presented, graphs become complex, but they are essential to
present this insight. For two centuries, thermal engineers dealt with
steam charts obtained through laborious experimental work. Steam has a
thermodynamic state that is defined in terms of a number of properties,
i.e., pressure (p), temperature (I), specific volume (v), internal energy (i),
enthalpy (h), and entropy (s). The state is completely obtainable if we
know any two of these properties (Keenan et al, 1969). Historically, steam
tables and steam charts, also called Mollier charts (fig. 9), have been the
main means of representing the thermal states of steam.

-280 -240 -200 -160 -120 -80 -40 0 40 I30 120 150 200 240 280

Temperature, degrees F

FIG. 31. Vapor pressures of pure hydrocarbons.

Source: Theodore Baumeister and Lionel S. Marks, eds. (1964).
Mechanical Engineers’ Handbook, 7th ed., McGraw-Hill Book Co.,
New York, NY.

*The term parameter represents a variable other than the two primary variables represented on the x-axis
and the y-axis. In a two-dimensional graph representation of data of the form y =,f(x, pl, p2, . . .), pl, p2, . . .
are the parameters. Sometimes, these parameters are also called contours or isolines.

9

Source: Joseph H. Keenan, Frederick G. Keyes, Philip G. Hill, and Joan G. Moore (1969). Steam Tables:
Thermodynamic Properties of Water Including Vapor, Liquid, and Solid Phases, John Wiley and Sons Inc.,
New York, NY.

Figure 9. A sample of a complex graph: Mollier chart showing properties of steam.

10

Figure 10. Simple
steam power plant
schematic and
temperature-entropy
diagram.

However, with the advent of high-performance digital computers, com-
plex functional (algebraic) relationships or equations between these
properties have been developed. A number of computer programs are
now available that facilitate calculations for a steam plant operation
without the use of the traditional steam tables or steam charts (Mollier
charts). Although these computer programs can be used to obtain the
properties of steam, they cannot match the visibility and intuition pro-
vided by the steam tables and the steam charts.

Figure 10 gives a sample of a highly visible presentation of the operation
of a steam plant by means of a schematic diagram and a temperature-
entropy (T-s) diagram (Van Wylen and Sonntag, 1965). The sketch and the
graph together show all the components that make up the system and the
representation of the states of the steam as it flows through the four
components: boiler, turbine, condenser, and pump. Specific functional
relationships apply to these states. Historically, the states (i.e., the prop-
erty values) of the steam were calculated from the Mollier charts. The
accuracy of these charts is limited by their scale. Steam tables were used
instead to improve the accuracy of the calculations (at the expense of
some visibility). With the advent of digital computers, software was
developed to represent the thermal behavior of the steam. Unfortunately,
such software is both complex and opaque, and its use in steam plant
calculations made problem solving a “black box” process. The aim of
Natural Computing is to restore to software programs this visibility
feature while preserving the accuracy and efficiency of computers.

I
Boiler 1

Pump a b cs

Fig. 9.1 Simple steam power plant which operates on the Rankine cycle.

Source: Gordon J. Van Wylen and Richard E. Sonntag (1965). Fundamentals of
Classical Thermodynamics, John Wiley and Sons Inc., New York, NY.

11

4. Ends and Means

In the last decade or so, traditional software has succeeded in represent-
ing and generating tables and graphs. Text, graphs, equations, and pic-
tures coexist in paper-based documents. Even so, these objects are gener-
ated as ends (display or printed documents) and not as means for further
continual computing. I will elaborate this distinction in the following.

Computer programs are now readily available that generate graphs in
vivid colors and multiple dimensions. Figure 11 is a graph generated by
Mathematical software (Wolfram, 1991). While this graph looks excel-
lent, it is meant to be displayed on a computer screen, but it is not meant
to be used by another program in a continuum of calculations.

Coad and Yourdon (1991) caution software practitioners that if the appli-
cation of a software engineering “method” produces a monument of
paper, then something is wrong--either in the method, in the application
of the method, or perhaps both. They lament, “if we lose sight of people
and begin producing charts, diagrams, and piles of paper as ends [italics
added] unto themselves, we fail to effectively communicate.” Currently,
most software methods generate graphs that can be used as records and
not as dynamic relationships. Contrast this with the traditional use of
graphs in books: A scientist can readily use a graph from a book (on
paper) either to look at or to act as a relation in his or her calculation. But
with the traditional computer software, the reuse of graphs is limited and
circuitous, since computer tools are not presently available that treat
graphs as relationships.

Figure 11. An ltl[4]:=
example graph
generated by Plot3D[Sin[x] Sir@], {x, 0, 2Pi}, 6, 0, 2Pi}]

Mathematical, useful
for display only.

6-O

In an earlier report (Karamchetty, 2000a), I demonstrated that a functional
relationship between a set of variables can be represented by an equation,
a graph, a table, or a computer program. I also showed that graphs
provide the greatest insight to a user. By developing data structures and
methods to represent graphs as means, as well as ends, we will be able to
facilitate their seamless reuse in computer systems. Graphs will then
become computational means for communication among people, under-
standing by people, and further generation of knowledge by people.
Graphs could then be copied and pasted into new computer programs as
part of a program development process.

13

5. Informal Survey and Analysis of Practical Graphs

In this section, I provide a number of examples of graphs from textbooks,
handbooks, brochures, and newspapers to demonstrate the richness and
complexity of data, information, and functional relationship representa-
tions in practical graphs. These examples allow me to identify and de-
scribe characteristics and properties of graphs.

As described in section 3, a graph represents some characteristics and
values in a domain. A graph is usually displayed as a two-dimensional
curve. A graph contains a set of characteristics (also called quantities or
variables) that are represented along the abscissa and the ordinate. These
names of two characteristics are usually used as labels for the X- and
y-axes. The value sets are the coordinates of a point on the curve. Since
the values are usually not measured in terms of the physical dimensions,
they are interpreted by means of the X- and y-scales. Where there is more
than one curve on the graph, parameter names (and values) are used to
identify distinct curves. A specific graph can be identified by a caption
that gives it a unique identity in the document. In documents, such as
books, we find a list of graphs that brings together all the graph captions
to one location (generally with the table of contents listing the appropriate
page number). Thus, a simple graph will consist of a graph caption,
X- and y-labels, a list of parameters, and x- and y-scales. The graph cap-
tion is a string. The X- and y-labels and the parameters are all strings. In
some instances, these strings also contain the units of the values.

Figure 12 is a sample of a simple graph with its parts identified. Note that
the graph caption, the x- and y-labels, and the X- and y-scales are combi-
nations of numbers and strings that can be represented in the computer in
conventional ways. However, the curve itself is a line that has no direct
computer representation. A table of values can be used to represent a
curve in a computer. In figure 12, the table of data labeled internal data
storage can be used as a representation for the curve. The curve is usually
drawn from a table of data, which can be stored in the computer. In other
instances, a curve may be drawn by use of an equation, which can also be
stored in the computer. In a third type of situation, where a curve is
obtained as a result of a long procedure, a data table may be generated or
an equation fitted to represent the curve (many sophisticated curve-fitting
programs are available to satisfy this need). The important point here is
that a curve is stored internally in the computer as a table or an equation
or a procedure. If we consider the internal data storage table in figure 12,
we can see that a table with a number of columns could be used to de-
velop the data in figure 13 (Green, 1984).

14

=qq ,Doo

Boiling Point, PreSSlJre,
OC mm Hg

/ :
900

I”

E

I 8oo-

94 611
96 634
96 658

97 662
98 707
99 733

100 760
101 767
102 816

103 845
104 875
105 906

106 938
107 971

94 96 98 100 102 104 106 108
Temperature, ‘C

Figure 13-17 Boiling point of water as a function of pressure.

Figure 12. An anatomy of a simple graph.

Figure 13. A sample
graph with several
parametric curves.

I I

A’ ’ ’ ’ 1600 K

0 1 2 3 4 5 6

Wavelength, microns (p)

Source: C. R. Green (1984). Teclzrzica2 Physics,
Prentice-Hall, Inc., Englewood-Cliffs, NJ.

15

Figure 14. A sample
graph with
logarithmic scales on
both axes.

In figure 8, given in section 3, the y-axis is not a linear scale but a logarith-
mic scale. In contrast, both x- and y-scales in figure 14 are logarithmic
(Baumeister and Marks, 1958). When the scales are logarithmic, the cursor
position on the curve requires care in scaling. Special interpolation pro-
cesses are needed to preserve the accuracy of calculations involving
logarithmic scales.

Figure 15 shows a sample graph containing a picture. Additionally, the
graph also has text, which guides the reader toward “blunt fillets” and
“sharp fillets.” In this example, the sketch and the text do not affect the
calculations with the curves, but they improve the understandability of
the information in the graph.

Figure 16 shows how complex graphs can become (Karassik et al, 1976).
This sample graph is rich with information that will be concealed if we
replace it with a computer program. The graph shows three regions: the
laminar region, the transition region, and the turbulent region. In the
laminar region, the y-value depends only on the x-value. In the turbulent
region, the y-value varies very little or only slightly with the x-value, but
is dependent on the value of the parameter (the pipe roughness). When a
hydraulic engineer does calculations and makes design choices, the
region in which the flow is operating should be known. With a graph like
that in figure 16, the region of operation is fully and readily evident. The
use of a computer program in place of this graph would seriously sacri-
fice such problem visibility. This example clearly shows that a graph
contains a lot of information and illuminates the problem. The user’s
attention is drawn to the opportunities and pitfalls in the problem.

THERMODYXA~MICS OF FLOW OF COMPRESSIBLE FLUIDS 4-G

0.06

nn71 Monoxide+ 1 Carbon

0.002 100 400 600 1000 2000 4oco
Temperature, Degrees R.

Fro. 38. Viscosity of gases.

7

Source: Theodore Baumeister and Lionel S. Marks (1964).
Mechanical Engineers’ Handbook, 7th ed., McGraw-Hill Book Co.,
New York, NY.

16

Figure 15. A sample
graph containing a
picture.

Figure 16. A sample
of a complex graph.

One could continue the survey and discover many other graph features in
books. However, these examples are sufficient to draw the reader’s
attention to the basic characteristics involved in computer representation
of graphs.

, I *

0.4 1.0 1.5 2 3 4 56

Sharpness uf fillet,?

FIG. 11. FM, plate with fillets, in bending.

Source: Theodore Baumeister and Lionel S. Marks (1964).
Mechanical Engineers’ Handbook, 7th ed., McGraw-Hill Book Co.,
New York, NY.

REnKLDS N”M)ER R s $ (Y IN FT/SEC. cl N FT. I IN FT~ISECI

Fig. 28 Moody dingram. (V. L. Streeter, “Fluid Mechsnies,” 5th ed. Copyright 1971 by McGraw-Hill Book
Company, New York)

Source: lgor J. Karassik, William C. Krutzsch, Warren H. Fraser, and Joseph I?
Messina (1976). Pump Handbook, McGraw-Hill Book Co., New York, NY.

17

6. Computer Representation and Usage of Graphs in
Natural Computing

Although most modern word processors allow graphs to be imported as
displays, not one supports the use of graphs as functional relationships.
In contrast, the focus in Natural Computing is on the use of graphs from
the perspective of calculations rather than display. Therefore, this section
emphasizes the representation of a graph as part of a document from the
point of view of a calculation.

6.1 Structure of a Graph

The survey in section 5 of practical graphs found in books, newspapers,
and brochures suggests a minimal structure for adopting such graphs for
computer applications. The anatomy of a simple graph, shown in figure
12, consists of a graph caption, X- and y-labels and parameter labels,
X- and y-scales, types of scales, and a table or equation for storing data
internally.

In general, these and other attributes of a graph can be programmed into
a graph class. The simple graph anatomy may form a base class, while
other complex features can be programmed into derived classes. A basic
class constructor can be designed to create a blank graph. A destructor
will delete the object and its components and release the memory space
back to the system. A number of operations on graphs can be pro-
grammed into these classes. First, a set of filler operators can be devel-
oped to perform functions connected with filling a (blank) graph with
data. A set of editor operators can be developed to edit and modify the
data in a graph. Display operators can be designed to display a graph on
a monitor, or print it on paper, whether as a stand-alone display or as part
of another object. Storage operators can store persistent data that can be
used to reconstruct a graph at any time during its life. Interactive calcula-
tion operators provide the capability for the graph to be used to provide
results in the interactive mode. The program calculation operators allow
the graph to be embedded into a procedure for use by that procedure.
Overloaded arithmetic operators allow the graph to perform functions on
itself. Examples of such operators include a “+” operator to add two
similar graphs to create a third graph; a “-” operator that subtracts a
graph from another (compatible graph) to create a third graph; a “*”
operator that performs a scalar multiplication of a graph; and a “/”
operator that performs a scalar division of a graph. A simple class ex-
ample is shown in figure 17.

Other sets of operations can be developed that would make graphs very
effective in programming. For example, consider the seven curves in
figure 8. In a particular application, a specialist may wish to eliminate
some of the curves and leave only a subset of them. This can be done if an
operator is available to the graph class that allows for the deletion of
parametric curves and the creation of a graph that is a subset of a given
graph. In reverse, by using an insertion operator, we may wish to add a

Figure 17. A typical
example of a simple
graph class.

II ----- A simple graph class
class Graph {
private:

string caption;
int nl=l;
labels x-label, y-label, p_label[nl];
scale x-scale, y-scale;
scale-type x-scale-type, y-scale-type;
Column-header column-header ;
Row-header row-header;

Data-body data-body;
boo1 Interpolatability;

public:
// constructor function(s)

Graph0 0

// destructor function(s)

-Graph0 0

II Graph functions

Graph_blank();
Graph_edit();

II Overloaded operators
Graph operator+ (Graph graph& Graph graph2);
Graph operator+ (Graph graphl, Graph graph2);
Graph operator* (Graph graphl, int mult);

superset and subset functions
Graph supergraph (Graph graphl, Graph graph2);
Graph subgraph (Graph graph, int n, . . .);
Other functions . . .

new curve to an existing set of curves. The graphs still represent the same
X- and y-labels, but the list of parameters and the values are changed.
Such operations allow for the creation of superset graphs and subset
graphs. Figure 18 illustrates the creation of a superset graph that com-
bines two curves with temperature values of 100 “F and 200 “F as param-
eter values. Given the data structure of the graph class, one can obtain
this superset graph by adding the list of volume values corresponding to
a list of pressure values with a new parameter with a value of (tempera-
ture equal to) 200 “F.

Mere addition or deletion of curves in a graph is thus straightforward.
One can also develop graph operations that perform arithmetic manipu-
lations on graphs. For example, a graph containing two curves, month IX
income and month ZLS expenditure, can be manipulated to yield a month DS
profit graph, if another curve is defined called profit, which is the differ-
ence between the income curve and the expenditure curve (see fig. 19).
Again, because of the data structure of the graph class, one can obtain the
result graph by generating a list of profit values through subtracting the
expenditure list values from the income list values. Thus, operations on

19

I Graph 1 Graph 2
12

h
10

5
= 8

5 6 Temperature, 100 “F

4 4

10 20 30 40 50 60

Pressure (psia)

12 Temperature, 200
Y

“F

_ ‘0
&,

E

2 6

S4

2
:

10 20 30 40 50 60

Pressure (psia)

Figure 18. An example of creation of a superset graph.

12 graph 1 and graph 2

IO
6
r

Temperature, 200 “F
8

2

IO 20 30 40 50 60

Pressure (psia)

Graph Graph 2

12 12

’ 10 4 10

5‘
8 E

Yz *
+? 6 2

;

a
6

4

C 2

10203040 50 60 10203040 50 60

Months + Months + Months +

Figure 19. Example showing an arithmetic operation on graphs to generate another graph.

Graph 3 = Graph 1 -Graph 2

12

4 10

5‘
??

8

5 6

2 4

2

10203040 50 60

graphs should be able to generate new graphs by addition and/or dele-
tion of curves and by arithmetic manipulation. We can achieve this result
by simply writing a functional relationship:

result-graph = graph-1 + graph_2.

If the income and expenditure curves are already part of a single graph,
one can obtain the result graph by subtracting the corresponding curves
on the same graph as shown in figure 20. Mathematical operations on
graphs make graphs very valuable and highly useful. Subtraction, scalar
multiplication, and division can constitute other operations on graphs.
More complex operations can be defined by combinations of these basic
operations.

Some operators in a graph class work to endow features like “responsibil-
ity” and “justification” to a graph object. For example, a graph class can
check for consistency of units. In the calculation mode, the graph can
check the units of the variables in the graph data and the units of the
variables in the query. The justification operators can act to adjust the
units, thus ensuring that unit errors do not occur with Natural Comput-
ing objects.

20

Figure 20. Example
showing an
arithmetic operation
on a set of curves in a
graph to generate
another graph.

1

Graph 1

I I I I I I

10 20 30 40 50 60

Months +

Graph 2

12

4 10

g 8

g 6

E 4

10203040 50 i0

Months +

Graph 2 = income curve - expenditure curve

The graph class can possess this capability because like all Natural Com-
puting features, graphs know that variables carry values and units. In
general, all calculation features in Natural Computing work with a set of
four items (characteristics): (1) a name of the item, (2) a variable repre-
senting the item (called notation), (3) its value, and (4) its units. The
characteristic belongs to or is an attribute of a system under discussion or
calculation. A variable is a symbol chosen to represent the physical quan-
tity or characteristic for brevity in writing relationships or equations. The
characteristic has a definite value at a given state. Its value is given in
some physical units. (In many documents, the relationships between the
variables and their descriptions are often given in lists of notation or lists
of symbols.)

In the graph class, these four items are used in the following general
ways. The X- or y-label of a graph contains a variable and/or its descrip-
tion. The units for a quantity are either given in the graph data or are
obtainable from the notation. Where the units are given in both the graph
data and the notation, they should be checked for compatibility For
example, a quantity like velocity can have units offeet per second and miles
per hour. Ensuring that they are either the same or are compatible is a
responsibility feature of a graph object. Converting them to a common set
of units is a justification feature of a graph. When a graph is queried, the
units in the query (input) and the units for the quantity in the graph
should be compatible. Likewise, there must be compatibility between the
units of a graph quantity and the units of the output quantity. By treating
units and conversions simultaneously with functional manipulation in
Natural Computing, one avoids the unit-related errors that have been the
cause for much grief in traditional computer programs.

Computer (software) system development and domain (knowledge)
development are both intricate processes. System development consists in
the development of the graph classes with operations in those classes.
These classes (along with other Natural Computing objects) will be made
available in the form of a Natural Computing software tool kit to domain
specialists who can incorporate their graph information into the graph
objects wherever they occur in their problem domain.

21

Use of a Natural Computing tool kit will allow a variety of domain
specialists to incorporate their domain information into software, and
robust domain growth will take place over time. As this process contin-
ues, domain specialists will find that certain graph features are not avail-
able in a version of the Natural Computing software tool kit. Computer
software developers can then step in and enhance the capabilities of
graphs by adding new classes that will accommodate new graph at-
tributes and new graph operators. This new tool kit will allow representa-
tion of more extensive domains. Thus, growth in domains and in the
Natural Computing software tool kit will occur iteratively (see fig. 21). As
domain specialists encounter or invent new graph features (structure or
behavior), software developers will play a primary role in developing
extended graph features. But once the tools are available, domain special-
ists will take over and program the calculation procedures in their
domains.

6.2 Choice and Use of Graphs

Just as word processors contain document manipulation tools and graph-
ics packages contain picture manipulation tools, a Natural Computing
software tool kit contains several graph tools for use by domain special-
ists. One will select a graph template that best fits the needs of one’s
application. Then, an instance of a blank graph is created. In the creating/
editing mode, all data and information are entered into a graph. The
domain specialists are responsible for filling in the footnotes and other
notes as appropriate. The graph object automatically develops a number
of behavioral characteristics and presents them for the domain specialist’s
review. For example, the limit values (minimum, maximum, and
singularities) of a curve are recorded automatically (minimum and maxi-
mum values of a variable prevent a naive end user from extrapolating a
graph outside its allowable bounds). The graph object uses these limits to
flag an error message when a user tries unallowable values. This feature
was inspired by human usage of graphs. Such checks, which are often
provided by domain specialists in real-world applications, are now given
to the graph classes as responsibilities.

Figure 21. Iterative
cycle of graph
development in
Natural Computing
system. -I Utilization

A graph object will also have a set of input (or query) templates and
output (result) templates (see fig. 22). Since a graph is a functional rela-
tionship between quantities (characteristics) identified on the x- and
y-axes and the parameters, given one set of these quantities, all others can
be determined from the graph (in Natural Computing). One can use this
functional relationship in generating query templates. The user can
choose the appropriate input template and type in a value for the inde-
pendent characteristic or variable and submit it to the graph object. The
template also guides the user with the limits on the variable values. These
guidance values in the templates protect a graph from invalid or out-
of-range queries. A graph will return a result by means of the output
templates. A graph with input and output templates can be likened to a
hardware component, with its input and output sockets. These input and
output templates are used to connect different functional objects into a
procedure or program (see fig. 23).

Since the curves on a graph are represented by tables or equations, using
a graph for results is very simple. A query consists of an x-axis variable-
value pair and a parameter value. The graph object returns the value(s)
corresponding to the y-axis variable.

6.3 Insight into Graph Data

Educators criticize current software systems as “black boxes” because the
solution method is incomprehensible from the software. The user learns
nothing from using the software. For that matter, even the domain spe-
cialists do not understand what is in the code once their domain informa-
tion (actually, algorithms shorn of all explanatory information) is put into
code by a software developer. With traditional media (paper, calculator,
and pencil), a student’s learning improves proportionately with the
number of problems solved. In contrast, with traditional computer soft-
ware, a student’s learning does not improve with the number of problems
solved. Graphs in Natural Computing, as described in this report, pre-
serve explanatory information and show functional relationships between
variables. A student can, therefore, realize opportunities available and
watch out for pitfalls in the problem domain represented by each graph.
Figure 16 (sect. 5) is an example of a graph with opportunities that a user
will understand from the display.

6.4 Testing a Graph in Isolation

Testing is a key task in both software development and application
development. In Natural Computing, a domain specialist can test each
graph in isolation for a variety of inputs. Owing to the built-in justifica-
tions, limits, behaviors, and responsibilities, a Natural Computing graph
class can be effective in eliminating software and application bugs. By
localizing and fixing errors, one can prevent their propagation to other
objects to cause a chain reaction of errors. Isolated testing is a major step
in very nearly guaranteeing the correctness of an entire application.

23

Figure 22. Interactive
use of a graph along
with input and
output boxes.

Figure 23. Program or
procedure building
using a graph.

24

I I
110.0

I
90.0 -

\
OUT 70.0

y = 49.0 c-

2.

-

Action I I Features

Show Text

Interactive use

Program use tl Setup

Options

6.5 Embedding Graphs in Text

Just as in textbooks and other paper documents, Natural Computing
graphs are embedded in text, similar to the sample in figure 24 (Shigley,
1977). Readers can read a document and get a general idea of the informa-
tion presented there, or they can choose to use graphs interactively by
activating them. Such an interactive facility is useful for studying a graph
and understanding trends in the domain, While developing a procedure
or a program, a user can copy and paste a graph from the text into the
procedure. The display aspects of a graph are seen in the graph object
embedded in the text, while the calculation aspects of a graph object are
accessible to the procedure object. Once set up into a procedure, a graph
object is available to that procedure, which itself can be saved for subse-
quent use. As described in the report on Natural Computing (Karam-
chetty, 2000a), one can develop complex procedures by connecting several
graphs, equations, tables, and procedures. Any and all Natural Comput-
ing objects can be embedded in a Natural Computing document object
and can be activated by a user as needed.

25

Figure 24. Text with

embedded graph.

26

f?atii of free length to maan diameter, 1,/D

FIGURE 8-5
Curves show when buckling of compression coil springs may occur. Both curves are
for springs having squared and ground ends. For curve A one end of the spring is
compressed against a fiat surface, the other against a rounded surface. For curve

B both ends of the spring are compressed against flat and parallel surfaces.

and so the deflection is
aU 8FD3N

y=s= d‘%G (f)

To find the spring constant, use Eq. (3-2), and substitute the value of y from
Eq. (8-7). This gives

d4G
kc---

8D3N (8-8)

The equations presented in this section are valid for both compression and
extension springs. Long coil springs having a free length more than four times the
mean diameter may fail by buckling. This condition may be corrected by mount-
ing the spring over a round bar or in a tube. Figure 8-5 will be helpful in deciding
whether a compression spring is likely to buckle.

Machine half loop -open Raised hook

FIGURE 8-6
Short twisted loop Full twisted loop

Types of ends used on extension springs. (Courtesy of Associated Spring
Corporation.)

Source: Joseph E. Shigley (1977). Mechanical Engineering Design, 3rd ed.,
McGraw-Hill Book Co., New York, NY.

7. Example Usage of Natural Computing Graphs

With the scheme for representing graphs in computers described in the
foregoing, one can build documents containing a variety of graphs. Such
graphs will manifest themselves in three basic forms: (1) graphs embed-
ded in text, (2) graphs that are usable in an interactive mode, and
(3) graphs that can be connected into procedures. Figure 24 shows a
graph embedded in text; the menus available to manipulate the document
as well as the graphs are not shown. When the user wishes to use the
graph to obtain values, the graph is changed to an interactive mode, as
shown in figure 25, where a highlighted sample graph appears with input
and output boxes. When the user types in an input value, result values
are output by the system. As stated earlier, this interactive mode is used
to test a graph in isolation. An end user uses this mode to obtain values to
see the trends or to use the result values in a series of calculations of a
temporary nature. Finally, when a domain specialist wishes to incorporate
a graph into a procedure, a procedure is invoked, and a graph is con-
nected to that procedure (a procedure is another Natural Computing
object, discussed in Karamchetty, 1997,200Oa). Figure 26 shows a proce-
dure consisting of a number of Natural Computing objects. Once a graph
is set into a procedure, it is embedded inside the procedure and calcula-
tions can be carried out with the entire procedure.

Figure 25. Activating
a text-embedded
graph object for
interactive use.

27

t ACTION 1 tSEAl”URES EDIT

Show Text Undo

Stresses in Helical Springs

Figure 1 shows a round-wire helical
spring loaded by the axial force f.

portion replaced by the internal forces. Then, the cut
portion would exert a direct shear force Fand a
torsion Ton the remaining part
superposition, the maximum str

I I zmax=+T_I-+ f
-J A

Replacing the terms by

T= FDl2,

r= d/2,

J=xd4/32,and

A=nd2/4

gives

zz8F_D+4F

computed using the equation

I I In this equation, the subscript in Iz%_ ;$C&;;_C&;,~~*> .*%r‘.ti* //(II>
shear stress has been omitted I tram

II
unnecessary. The positive signs
retained, and hence Eq. (b) give
the inside fiber of the spring. t
Now define spring index

I I q as a measure of the coil curvatu
Eq. (b) can be arranged to give

I I

I I

Figure 26. An example Natural Computing screen showing a procedure consisting of a graph, a table,
and equations.

28

8. Conclusions

Graphs are ubiquitous functional relationships used freely in paper-based
documents, such as textbooks, handbooks, journals, newspapers, and
flyers. Although graphs are complex representations, people use them
relatively effortlessly. I have explained in this report computer representa-
tion of graphs for a similar use in a computer calculation system.

The development of a base graph class and several derived classes is the
appropriate method to represent and use graphs. I have analyzed and
identified the components and structure of a graph. The uniqueness of the
graph anatomy presented in this report is that it allows a variety of
graphs to be handled. Data can be obtained from graphs by interpolation
and extrapolation, where permissible. Display of graphs ensures the
presentation to the user of opportunities with given data in a graph and
warns the user of pitfalls in the data. The proposed representation and
operations allow graphs to behave responsibly and justify their behavior.

Representation and use of graphs in the manner described in this report
would mark a giant step for computing, as the data representation fol-
lows natural forms. With the availability of such representations and
processes, electronic handbooks, textbooks, documents, journals, and
flyers can be realized. These electronic documents can be connected
seamlessly for performing calculations as if they were paper-based docu-
ments. From these various electronic library sources, knowledge can be
exchanged and combined, and more powerful, economical, and expedi-
tious computational procedures and systems can be developed.

29

Acknowledgments

The following companies have given permission to use their copyrighted
material, and the author is grateful to them:

l McGraw-Hill Book Co., New York, NY,

l Prentice Hall, Inc., Englewood-Cliffs, NJ,

l Iowa State University Press, Ames, IA, and

l John Wiley and Sons Inc., New York, NY.

30

References

Baumeister, Theodore, and Lionel S. Marks, eds. (1964). Mechanical Engineers’
Handbook, 7th ed., McGraw-Hill Book Co., New York, NY.

Coad, Peter, and Edward Yourdon (1991). Object-Oriented Analysis, 2nd ed.,
Yourdon Press Computing Series, Prentice Hall, Englewood Cliff, NJ.

Gartmann, Hans (1970). The DeLaval Engineering Handbook, 3rd ed., McGraw-
Hill Book Co., New York, NY.

Green, C. R. (1984). Technical Physics, Prentice-Hall, Inc., Englewood-Cliffs, NJ.

Karamchetty, Som D. (1997). “Natural Computing,” U.S. patent No. 5,680,557,
(October 21).

Karamchetty, Som D. (2000a). Natural Computing: Ifs lmpacf OH Software Develop-
menf, U.S. Army Research Laboratory, ARL-TR-2040.

Karamchetty, Som D. (2000b). Natural Computing: Annlysis of Tablesfor Computer
Representation, U.S. Army Research Laboratory, ARL-TR-2041.

Karassik, Igor J., William C. Krutzsch, Warren H. Fraser, and Joseph I? Messina
(1976). Pump Handbook, McGraw-Hill Book Co., New York, NY.

Keenan, Joseph, H., Frederick G. Keyes, Philip G. Hill, and Joan G. Moore
(1969). Sfeanz Tables: Thermodynamic Properties of Water Including Vapor,
Liquid, and Solid Phases, John Wiley and Sons Inc., New York, NY.

Shigley, Joseph E. (1977). Mechanical Engineering Design, 3rd ed., McGraw-Hill
Book Co., New York, NY.

Van Wylen, Gordon J., and Richard E. Sonntag (1965). Fundamentals of Classical
Thermodynamics, John Wiley and Sons Inc., New York, NY.

Vaughn, Richard C. (1974). Qualify Control, Iowa State University Press, Ames,
IA.

Wolfram, Stephen (1991). Mathemufica8, A System for Doing Mathematics by
Computer, 2nd ed., Addison-Wesley Publishing Company, Reading, MA.

31

Distribution

Admnstr
Defns Tech1 Info Ctr
Attn DTIC-OCP
8725 John J Kingman Rd Ste 0944
FT Belvoir VA 22060-6218

Oft of the Secy of Defns
Attn ODDRE (R&AT)
The Pentagon
Washington DC 20301-3080

Oft of the Secy of Defns
Attn OUSD(A&T)/ODDR&E(R) R J Trew
3080 Defense Pentagon
Washington DC 20301-7100

AMCOM MRDEC
Attn AMSMI-RD W C McCorkle
Redstone Arsenal AL 358985240

CECOM
Attn PM GPS COL S Young
FT Monmouth NJ 07703

Dir for MANPRINT
Oft of the Deputy Chief of Staff for Prsnnl
Attn J Hiller
The Pentagon Rm 2C733
Washington DC 20301-0300

TECOM
Attn AMSTE-CL
Aberdeen Proving Ground MD 21005-5057

US Army ARDEC
Attn AMSTA-AR-TD M Fisette
Bldg 1
Picatinny Arsenal NJ 07806-5000

US Army Info Sys Engrg Cmnd
Attn ASQB-OTD F Jenia
FT Huachuca AZ 85613-5300

US Army Natick RDEC
Acting Tech1 Dir
Attn SSCNC-T P Brandler
Natick MA 01760-5002

US Army Simulation, Train, & Instrmntn
Cmnd

Attn J Stahl
12350 Research Parkway
Orlando FL 32826-3726

US Army Soldier & Biol Chem Cmnd
Dir of Rsrch & Techlgy Dir&-t
Attn SMCCR-RS I G Resnick
Aberdeen Proving Ground MD 21010-5423

US Army Tank-Automtv Cmnd Rsrch, Dev, &
Engrg Ctr

Attn AMSTA-TR J Chapin
Warren MI 48397-5000

US Army Train & Doctrine Cmnd
Battle Lab Integration & Tech1 Dirctrt
Attn ATCD-B J A Klevecz
FT Monroe VA 23651-5850

US Military Academy
Mathematical Sci Ctr of Excellence
Attn MDN-A LTC M D Phillips
Dept of Mathematical Sci Thayer Hall
West Point NY 10996-1786

Nav Surface Warfare CtrA
Attn Code B07 J Pennella
17320 Dahlgren Rd Bldg 1470 Rm 1101
Dahlgren VA 22448-5100

DARPA
Attn S Welby
3701 N Fairfax Dr
Arlington VA 22203-1714

Palisades Inst for Rsrch Svc Inc
Attn E Carr
1745 Jefferson Davis Hwy Ste 500
Arlington VA 22202-3402

NASA Langley Rsrch Ctr
Vehicle Techlgy Ctr
Attn AMSRL-VT W Elber
Hampton VA 23681-0001

33

Distribution (cont’d)

US Army Rsrch Lab
Attn AMSRL-WM I May
Aberdeen Proving Ground MD 21005-5000

US Army Rsrch Lab
Attn AMSRL-RO-D C Chang
Attn AMSRL-RO-EN W Bach
PO Box 12211
Research Triangle Park NC 27709

US Army Rsrch Lab
Attn AMSRL-CI N Radhakrishnan
Aberdeen Proving Ground MD 21005-5067

US Army Rsrch Lab
Attn AMSRL-HR R L Keesee
Aberdeen Proving Ground MD 21005-5425

US Army Rsrch Lab
Attn AMSRL-VP R Bill
21000 Brookpark Rd
Cleveland OH 44135-3191

US Army Rsrch Lab
Attn AMSRL-SL J Wade
White Sands Missile Range NM 88002

34

US Army Rsrch Lab
Attn AMSRL-DD J Miller
Attn AMSRL-CI-AI-A Mail & Records Mgmt
Attn AMSRL-CI-AP Tech1 Pub (3 copies)
Attn AMSRL-CI-LL Tech1 Lib (3 copies)
Attn AMSRL-IS J D Gantt
Attn AMSRL-IS-CB L Tokarcik
Attn AMSRL-IS-CD P Jones
Attn AMSRL-IS-C1 B Broome
Attn AMSRL-IS-CS G Racine
Attn AMSRL-IS-D COL M R Kind1
Attn AMSRL-IS-D P Emmerman
Attn AMSRL-IS-D R Slife
Attn AMSRL-IS-E D Brown
Attn AMSRL-IS-TA J Gowens
Attn AMSRL-SE J Pellegrino
Attn AMSRL-SE-EP S Karamchetty

(30 copies)
Attn AMSRL-ST C I Chang
Adelphi MD 20783-1197

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Pubk reporting burden for this colfect~on of information is estimated to average 1 hour per response. including the frme for reviewing instructions. searching existing data SOUICBS.
gathering and maintaining the data needed. and complebng and reviewing lhe collection of information. Send comments regardmg this burden eslimate or any ofher aspect Of this
collection of mformation. including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for fnformation Operations and Reports, 1215 Jeffwwn
Davis HIghway. Suite 1204. Arfmgfon, VA 22202.4302. and to the Office of Management and Budget. Papenvork Reduction Project (0704-0188). Washington. DC 20503.

1. AGENCY USE ONLY fkave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

February 2000 Final, 1995-1997

4. TITLE AND SUBTITLE Natural Computing: Analysis of Graphs for Computer 5. FUNDING NUMBERS

Representation
DA PR: N/A

PE: N/A

6. AUTHOR(S) Som Karamchetty

7. PERFORMING ORGANIZATION NAME(S) AND ADDl?ESS(ES)

U.S. Army Research Laboratory
Attn: AMSRL- IS-C email: skaramch@arl.mil
2800 Powder Mill Road
Adelphi, MD 20783-1197

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-TR-2042

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS

U.S. Army Research Laboratory
2800 Powder Mill Road
Adelphi, MD 20783-l 197

10. SPONSORlNG/MONlTORlNG
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

ARL PR: N/A
AMS code: N/A

12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; 12b. DISTRIBUTION CODE

distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Some fundamental objects in practical documents have not been implemented in software so that
they can be used easily for calculation. One such object is the graph. A survey of practical graphs
found in a variety of real-world documents reveals that many of their useful features are not
captured in software. I describe the salient characteristics and features of graphs and propose da&
structures and computer representations for graph objects. Through the adoption of such
structures and representations, practical graph objects could be developed for use by domain
specialists. Such graphs embedded in electronic documents can be used in interactive
applications to retrieve data, but most importantly, they could be used as functional
representations for “cutting and pasting” in procedures and programs. Use of these graph objects,
together with other natural computing objects (such as equations, tables, and procedures), will
permit electronic documents like handbooks, textbooks, journals, and bulletins to be used
seamlessly for calculations by both domain specialists and naive users. Such developments will
reduce the lag between information availability and its use in calculations, encouraging the
further development of knowledge. The face of software development for computation will
change, and many of the software engineering costs will be contained.

14. SUBJECT TERMS

Natural computing, software engineering, object-oriented programming
15. NUMBER OF PAGES

43
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

h ISN 7540-01-280-5500 Standard Form 29.3 (Rev. Z-89)
Prescribed by ANSI Sld. X39-18
298-102

35

