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Abstract 

Some fundamental objects in practical documents have not been 
implemented in software so that they can be used easily for 
calculation. One such object is the graph. A survey of practical 
graphs found in a variety of real-world documents reveals that many 
of their useful features are not captured in software. I describe the 
salient characteristics and features of graphs and propose data 
structures and computer representations for graph objects. Through 
the adoption of such structures and representations, practical graph 
objects could be developed for use by domain specialists. Such 
graphs embedded in electronic documents can be used in interactive 
applications to retrieve data, but most importantly, they could be 
used as functional representations for “cutting and pasting” in 
procedures and programs. Use of these graph objects, together with 
other natural computing objects (such as equations, tables, and 
procedures), will permit electronic documents like handbooks, 
textbooks, journals, and bulletins to be used seamlessly for 
calculations by both domain specialists and naive users. Such 
developments will reduce the lag between information availability 
and its use in calculations, encouraging the further development of 
knowledge. The face of software development for computation will 
change, and many of the software engineering costs will be 
contained. 
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In another report (Karamchetty, 2000a), I described Natural Computing 
(Karamchetty, 1997) as an approach to software for computation that is 
based on the way people actually compute, using available information in 
a variety of formats, In a separate report (Karamchetty, 2OOOb), I described 
the use of tables in Natural Computing. This report builds on those 
previous discussions by examining one aspect of Natural Computing: the 
use of graphs. 

1. Introduction 

Before the invention of computers, most knowledge was captured in the 
form of books and other paper documents. (Books can be further classi- 
fied as textbooks, reference books, handbooks, and journals, based on the 
temporal nature of the information. More transient documents are flyers, 
brochures, and receipts.) Information was printed on paper for storage, 
retrieval, and communication. The paper-based information was read by 
the end user. By reading the information from one or more documents 
and by combining it with one’s own intuition, invention, and discovery, 
one generated new information and wrote (printed) it in the form of 
another paper document. 

In the paper-based universe, when we dealt with technical matter, do- 
main knowledge was captured in the form of text containing equations, 
tables, graphs, and pictures. Without pictures, descriptions of scenes were 
elaborate. As we recall, “a picture is worth a thousand words.” In techni- 
cal subjects, the pictures could be sketches, schematics, drawings, paint- 
ings, or photographs. Sketches stood for descriptions of parts and compo- 
nents in terms of shapes and sizes. Schematics and other diagrams 
showed the mutual relationships of components in a system and the state 
of the system and its temporal variations. 

Graphs, tables, and equations captured relationships among sets of 
variables. Graphs additionally provided a highly visual insight into the 
mutual dependency of the variables. 

Domain specialists read the text and concurrently used the included 
graphs, tables, and charts. They used note pads to make temporary notes 
and calculations. Simple calculations were done mentally. More compli- 
cated calculations required aids, such as log tables and slide rules. As new 
ideas, information, and knowledge were generated, the domain special- 
ists captured them in natural forms (such as equations, tables, graphs, 
and pictures), appended them to text, and communicated the new docu- 
ments to others in the field. In general, paper-based documents were 
subject to three principal types of uses: (1) reading and comprehension; 
(2) interactive calculations using the calculation features (namely, tables, 
equations, graphs, and pictures) found in the text; and finally, (3) devel- 
opment and recording of new functions (tables, equations, graphs, and 
pictures). Capturing these essential natural forms and processes in a 
computer software system is the goal of Natural Computing. 



2. A Textbook Example of Calculation Features 

Figure 1 shows a sample page from an engineering textbook describing 
mechanical springs (Shigley, 1977). The page consists of a sketch of a 
mechanical spring, text, and equations. Figure 2 shows another sample 
page with a graph, more equations, and more text. By reading the expla- 
nations on these pages, an engineer can understand the domain of me- 
chanical springs. By studying the graph on the page, the engineer can 
understand the trends. At any time, the engineer can obtain values given 
by the graphs-this is usually called reading IZ graph. While using these 
pages, the engineer starts with values of D and d, proceeds to calculate 
the value of the variable C from equation 8-l in figure 1, and reads the 
value of the Wahl correction factor K from the graph of spring index 
versus stress correction factor. This value of K and an input value of F 
(force) are next substituted into equation 8-4 (fig. 2), and the value of 
stress r is calculated. The engineer may next proceed to the page shown in 
figure 3 and read the values of A and m for a given material from the table 
8-2 (fig. 3). These values are substituted into equation 8-10 (fig. 3) for 
calculating the ultimate strength in tension of the spring material. 

This description shows how domain specialists present information in 
textbooks for others to use to perform calculations. Thus, textbooks are 
used both to explain the subject and to provide information in the form of 
text, sketches, equations, graphs, and tables for ready use in calculations. 
In paper-based documents, there is always more information than a 
particular calculation requires. A user can perform several alternative sets 
of calculations by selecting some equations, graphs, and tables and 
chaining them appropriately for the desired calculation at hand. 
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FIGURE 8-1 
(a) Axially loaded helical spring; (b) free-body diagram showing that the wire is 
subjected to a direct shear and a torsional shear. 

the hose in a straight line perpendicular to the plane of the coil. As each turn of 
hose is pulled off the coil, the hose twists or turns about its own axis. The flexing 
of a helical spring creates a torsion in the wire in a similar manner. 

Using superposition, the maximum stress in the wire may be computed 
using the equation 

(4 

where the term Tr/J is the torsion formula of Chap. 2. Replacing the terms by 
T = FD/2, r = d/2, J = nd4/32, and A = nd2/4 gives 

z= 8FD 4F 
-+nd” nd3 (6) 

In this equation the subscript indicating maximum shear stress has been omitted 
as unnecessary. The positive signs of Eq. (a) have been retained, and hence Eq. (b) 
gives the shear stress at the inside fiber of the spring. 

Now define spring index 

as a measure of coil curvature. With this relation, Eq. (b) can be arranged to give 

8FD 
~Z---- 

nd3 (c) 

Or designating 

Source: Joseph E. Shigley (1977). Mechmzical Engineering Design, 3rd ed., McGraw-Hill Book Co., 
New York, NY. 

Figure 1. A sample page containing text, sketch, and equations. 
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then z = Kls (8-3) 

6 8 10 12 14 76 

Spring index C 

FIGURE 8-2 
Values of the stress correction factors for round helical extension or compression 
springs. 

where K, is called a shear-stress multiplicationfactor. This factor can be obtained 
from Fig. 8-2 for the usual values of C. For most springs, C will range from about 
6 to 12. Equation (8-3) is quite general and applies for both static and dynamic 
loads. It gives the maximum shear stress in the wire, and this stress occurs at the 
inner fiber of the spring. 

Many writers present the stress equation as 

Z= 
K 8FD 

Ad3 (8-4) 

where K is called the Wuhl correctionfactor. * This factor includes the direct shear, 
together with another effect due to curvature. As shown in Fig. 8-3, curvature of 
the wire increases the stress on the inside of the spring but decreases it only 
slightly on the outside. The value of K may be obtained from the equation 

K=------ - 
4C - 1 + 0.615 

4c-4 c (8-5) 

or from Fig. 8-2. 
By defining K = K, K,, where K, is the effect of curvature alone, we have 

Kc=; (8-6) 
s 

Source: Joseph E. Shigley (1977). Mechanical Engineering Design, 3rd ed., McGraw-Hill Book Co., 
New York, NY. 

Figure 2. A sample page containing text, graph, and equations. 
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strengths for various wire sizes and materials.* But the availability of the scientific 
electronic calculator now makes such a tabulation unnecessary. The reason for 
this is that a log-log plot of the tensile strengths versus wire diameters is a straight 
line. The equation of this line can be written in terms of the ordinary logarithms of 
the strengths and wire diameters. This equation can then be solved to give 

S”, =$ (8-10) 

where A is a constant related to a strength intercept, and m is the slope of the line 
on the log-log plot. Of course such an equation is only valid for a limited range of 
wire sizes. Table 8-2 gives values of m and the constant A for both English and SI 
units for the materials listed in Table 8-l. 

Although the torsional yield strength is needed to design springs, sur- 
prisingly, very little information on this property is available. Using an approxi- 
mate relationship between yield strength and ultimate strength in tension, 

S, = 0.75s,, (8-11) 

and then applying the distortion-energy theory gives 

S,, = 0.5778, (8-12) 

and provides us with a means of estimating the torsional yield strength S,,. But 
this method should not be used if experimental data are available; if used, a 
generous factor of safety should be employed, especially for extension springs, 
because of the uncertainty involved. 

Variations in the wire diameter and in the coil diameter of the spring have an 
effect on the stress as well as on the spring scale. Large tolerances will result in 

l See, for example, the second edition of this book: Joseph E. Shigley, “Mechanical Engineering 
Design,” 2d ed., p. 362. McGraw-Hill Book Company, New York, 1972. 

Table g-2 CONSTANTS FOR USE IN EQ. (8-10) TO ESTIMATE THE TENSILE 
STRENGTH OF SELECTED SPRING STEELS 

Material 
Size r8nge. 
in 

Constant, A 
Size range, Exponent, 
mm m Lpi MPn 

Music wire’ 0.0040.250 0.10-6.5 0.146 196 2170 
Oil-tempered wireb 0.020-0.500 0.50-12 0.186 149 1880 
Hard-drawn wire’ 0.028-0.500 0.70-12 0.192 136 1750 
Chrome vanadiumd 0.032-0.437 0.8@12 0.167 169 .2000 
Chrome silicon’ 0.063-0.375 1.6-10 0.112 202 2000 

’ Surface is smooth, free from defects, and with a bright lustrous finish. 
b Has a slight heat-treating scale which must be removed before plating. 
’ Surface is smooth and bright, with no visible marks. 
’ Aircraft-quality tempered wire; can also be obtained annealed. 
’ Tempered to Rockwell C49 but may also be obtained untempered. 

Source: Joseph E. Shigley (1977). Mechanical Engineering Design, 3rd ed., McGraw-Hill Book Co., 
New York, NY. 

Figure 3. A sample page containing text, table, and equations. 



3. Usage of Graphs 
I 

Graphs are ubiquitous in books and paper documents of all types. Al- 
though graphs have been in use for centuries, research into graphs and 
their properties is nonexistent. In general, people use graphs quite intu- 
itively and very little instruction is ever provided on graphs. Yet children 
as young as six years old understand graphs when they see a graph (as 
shown in figure 4) depicting the trajectory of a baseball or the path of an 
arrow (Green, 1984). Originating with these simple beginnings, the 
structure of graphs can become very complex (as I show later in this 
report). Mature adults learn the structure, properties, and relationships of 
items in a graph by trial and error, supplemented by intuition. 

Figure 5 shows sample graphs with two simple curves. One curve* shows 
a linear or straight-line relationship between two variables. The x-axis 
represents time in seconds, and the y-axis shows velocity in feet per 
second. In the second curve, a curvilinear relationship is shown, where 
the x-axis represents time in seconds and the y-axis shows distance fallen 
in feet. A reader can use these curves to find out the velocity or the dis- 
tance fallen at any time between 0 and 10 s. Figure 6 is a sample of a 
slightly more complex graph in which the x-axis is represented by a log 
scale (Gartmann, 1970). 

From these sample graphs, the basic functionality of a graph can be 
discerned. A graph depicts a functional relationship between two vari- 
ables. Even more importantly from a calculation point of view, a graph 
allows a user to read a y-value for a given x-value. In that sense, a graph 
can be seen as a substitute for an equation or a table; this observation 
leads one to conclude that a graph represents a mathematical relationship 
between two (or more) quantities or variables. 

We can usually represent a graph as y =f (x), where y is the output value 
for a given x (input value), withf (. . .) representing some functional 

Figure 4. A simple 
graph showing path 
of an arrow. 

relationship. 

I 

Figure 3-14 

Source: C. R. Green (1984). Technical Physics, Prentice-Hall, Inc., 
Englewood-Cliffs, NJ. 

*In the literature, terms like graph, curve, and line are used with somewhat similar meanings. In this 
report, I use the term graph mostly to mean a complete graph consisting of a set of curves, the axes, and so 
on. However, the word graph is also used to mean a curve even when one is specifically referring to only 
one curve. The term cume is used to mean one item in a graph that may have many curves. A line is the 
same as a curve. 
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Figure 5. Samples of 
simple graphs. 

Figure 6. A sample 
graph with a 
logarithmic scale 
showing relationship 
between two 
variables. 

Time of 
fall s I 
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ft/s. milh I 

0; 0 
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64; 43.6 

96; 65.4 
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1024 
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d 1200 
= 
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8 800 

5 
E 400 
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Figure 3-11 Distance fallen and velocity as a function of time. The acceleration 
of gravity is taken as 32 ft/s* and any effect of air resistance is not considered. 

Source: C. R. Green (1984). Technical Physics, Prentice-Hall, Inc., 
Englewood-Cliffs, NJ. 
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Fig. 5-7 Average efficiency of multistage turbines based on quality factor. 

lource: Hans Gartmann (1970). The DeLavaZ Engineering Handbook, 3rd ed., 
McGraw-Hill Book Co., New York, NY. 
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Figure 7 shows an interesting sample graph; no curve or line connects the 
points, because this graph represents a relationship between variables in a 
discrete domain (Vaughn, 1974). The relationship between the X- and 
y-values ex is t s only at the points shown on the graph. In between these 
points, a relationship is nonexistent, invalid, and meaningless. This 
situation corresponds to tables of data in which interpolation between 
table values is not permitted. 

It is very important to distinguish between graphs that represent data in 
discrete and continuous domains. Figures 4 to 6 show continuous do- 
mains. In a continuous domain, the values between the points on a graph 
or curve can be obtained by interpolation, while in a discrete domain, 
such interpolation is not allowed and may be meaningless. 

In the days before slide rules, values of reciprocals, sine, cosine, tangent, 
sinh, cosinh, tanh, and so forth were laboriously calculated and graphs 
plotted (or tables developed) for later use by scientists and engineers in 
performing calculations. A graph can be represented best if a large num- 
ber of points are available. Graphs (a more appropriate term is lines or 
curves, as explained earlier in the footnote) are drawn through the calcu- 
lated points with best estimates (or least squares). Such graphs can be an 
alternative to tables of data for subsequent calculations. Especially when 
we are dealing with experimental data, graphs come in handy. As math- 
ematics (particularly algebra) progressed, people preferred to fit equa- 
tions and use them rather than relying on the plotted graphs or raw tables 
of data. At any rate, graphs, tables, and equations can be alternative forms 
for capturing functional relationships between variables in a given prob- 
lem. Of course, each form (graphs, tables, and equations) has its relative 
merits, demerits, and suitability for a given applkation. 

Figure 7. A sample 
graph showing a 

REGRESSION CONTROL CHARTS 85 
discrete relationship. 

Upper 
specification 

limit 

Nominal 

dimension 

Lower 
specification 

limit 

0 

I 1 1 I I I I 1 

I 2 3 4 5 6 7 8 9 

Time periods or batches of production units 

FIG. 6.1. Dimensional trend from tool wear. 

Source: Richard C. Vaughn (1974). Quality Control, Iowa State University Press, 
Ames, IA. 



Figure 8. A sample 
graph showing a 
number of parametric 
curves. 

Figure 8 shows a sample graph with seven curves (Baumeister and 
Marks, 1964). In this case, the relationship is between vapor temperature 
and pressure. Each curve represents this relationship for a different 
hydrocarbon. Each is labeled with the appropriate name. In using this 
graph, we begin with two quantities or variables (temperature and the 
hydrocarbon) and obtain values for the third (pressure). The advantage of 
a graphical representation is immediately obvious from the graph. A 
graph gives high visibility to data trends. First, figure 8 shows that the 
vapor pressure increases with temperature for every one of the hydrocar- 
bons. The shapes of the curves are also somewhat similar. The graph 
clearly shows which hydrocarbons have very high vapor pressures 
compared to others for a given temperature. The curves are continuous, 
thus allowing for interpolation along a curve. However, interpolation 
between curves is meaningless, because the types of hydrocarbons are 
discrete parameters.* 

The foregoing samples depict how graphs clearly show the relationships 
in the data. As the relationships get more complex or as more relation- 
ships are presented, graphs become complex, but they are essential to 
present this insight. For two centuries, thermal engineers dealt with 
steam charts obtained through laborious experimental work. Steam has a 
thermodynamic state that is defined in terms of a number of properties, 
i.e., pressure (p), temperature (I), specific volume (v), internal energy (i), 
enthalpy (h), and entropy (s). The state is completely obtainable if we 
know any two of these properties (Keenan et al, 1969). Historically, steam 
tables and steam charts, also called Mollier charts (fig. 9), have been the 
main means of representing the thermal states of steam. 

-280 -240 -200 -160 -120 -80 -40 0 40 I30 120 150 200 240 280 

Temperature, degrees F 

FIG. 31. Vapor pressures of pure hydrocarbons. 

Source: Theodore Baumeister and Lionel S. Marks, eds. (1964). 
Mechanical Engineers’ Handbook, 7th ed., McGraw-Hill Book Co., 
New York, NY. 

*The term parameter represents a variable other than the two primary variables represented on the x-axis 
and the y-axis. In a two-dimensional graph representation of data of the form y =,f(x, pl, p2, . . .), pl, p2, . . . 
are the parameters. Sometimes, these parameters are also called contours or isolines. 
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Source: Joseph H. Keenan, Frederick G. Keyes, Philip G. Hill, and Joan G. Moore (1969). Steam Tables: 
Thermodynamic Properties of Water Including Vapor, Liquid, and Solid Phases, John Wiley and Sons Inc., 
New York, NY. 

Figure 9. A sample of a complex graph: Mollier chart showing properties of steam. 
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Figure 10. Simple 
steam power plant 
schematic and 
temperature-entropy 
diagram. 

However, with the advent of high-performance digital computers, com- 
plex functional (algebraic) relationships or equations between these 
properties have been developed. A number of computer programs are 
now available that facilitate calculations for a steam plant operation 
without the use of the traditional steam tables or steam charts (Mollier 
charts). Although these computer programs can be used to obtain the 
properties of steam, they cannot match the visibility and intuition pro- 
vided by the steam tables and the steam charts. 

Figure 10 gives a sample of a highly visible presentation of the operation 
of a steam plant by means of a schematic diagram and a temperature- 
entropy (T-s) diagram (Van Wylen and Sonntag, 1965). The sketch and the 
graph together show all the components that make up the system and the 
representation of the states of the steam as it flows through the four 
components: boiler, turbine, condenser, and pump. Specific functional 
relationships apply to these states. Historically, the states (i.e., the prop- 
erty values) of the steam were calculated from the Mollier charts. The 
accuracy of these charts is limited by their scale. Steam tables were used 
instead to improve the accuracy of the calculations (at the expense of 
some visibility). With the advent of digital computers, software was 
developed to represent the thermal behavior of the steam. Unfortunately, 
such software is both complex and opaque, and its use in steam plant 
calculations made problem solving a “black box” process. The aim of 
Natural Computing is to restore to software programs this visibility 
feature while preserving the accuracy and efficiency of computers. 

I 
Boiler 1 

Pump a b cs 

Fig. 9.1 Simple steam power plant which operates on the Rankine cycle. 

Source: Gordon J. Van Wylen and Richard E. Sonntag (1965). Fundamentals of 
Classical Thermodynamics, John Wiley and Sons Inc., New York, NY. 
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4. Ends and Means 

In the last decade or so, traditional software has succeeded in represent- 
ing and generating tables and graphs. Text, graphs, equations, and pic- 
tures coexist in paper-based documents. Even so, these objects are gener- 
ated as ends (display or printed documents) and not as means for further 
continual computing. I will elaborate this distinction in the following. 

Computer programs are now readily available that generate graphs in 
vivid colors and multiple dimensions. Figure 11 is a graph generated by 
Mathematical software (Wolfram, 1991). While this graph looks excel- 
lent, it is meant to be displayed on a computer screen, but it is not meant 
to be used by another program in a continuum of calculations. 

Coad and Yourdon (1991) caution software practitioners that if the appli- 
cation of a software engineering “method” produces a monument of 
paper, then something is wrong--either in the method, in the application 
of the method, or perhaps both. They lament, “if we lose sight of people 
and begin producing charts, diagrams, and piles of paper as ends [italics 
added] unto themselves, we fail to effectively communicate.” Currently, 
most software methods generate graphs that can be used as records and 
not as dynamic relationships. Contrast this with the traditional use of 
graphs in books: A scientist can readily use a graph from a book (on 
paper) either to look at or to act as a relation in his or her calculation. But 
with the traditional computer software, the reuse of graphs is limited and 
circuitous, since computer tools are not presently available that treat 
graphs as relationships. 

Figure 11. An ltl[4]:= 
example graph 
generated by Plot3D[Sin[x] Sir@], {x, 0, 2Pi}, 6, 0, 2Pi}] 

Mathematical, useful 
for display only. 
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In an earlier report (Karamchetty, 2000a), I demonstrated that a functional 
relationship between a set of variables can be represented by an equation, 
a graph, a table, or a computer program. I also showed that graphs 
provide the greatest insight to a user. By developing data structures and 
methods to represent graphs as means, as well as ends, we will be able to 
facilitate their seamless reuse in computer systems. Graphs will then 
become computational means for communication among people, under- 
standing by people, and further generation of knowledge by people. 
Graphs could then be copied and pasted into new computer programs as 
part of a program development process. 
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5. Informal Survey and Analysis of Practical Graphs 

In this section, I provide a number of examples of graphs from textbooks, 
handbooks, brochures, and newspapers to demonstrate the richness and 
complexity of data, information, and functional relationship representa- 
tions in practical graphs. These examples allow me to identify and de- 
scribe characteristics and properties of graphs. 

As described in section 3, a graph represents some characteristics and 
values in a domain. A graph is usually displayed as a two-dimensional 
curve. A graph contains a set of characteristics (also called quantities or 
variables) that are represented along the abscissa and the ordinate. These 
names of two characteristics are usually used as labels for the X- and 
y-axes. The value sets are the coordinates of a point on the curve. Since 
the values are usually not measured in terms of the physical dimensions, 
they are interpreted by means of the X- and y-scales. Where there is more 
than one curve on the graph, parameter names (and values) are used to 
identify distinct curves. A specific graph can be identified by a caption 
that gives it a unique identity in the document. In documents, such as 
books, we find a list of graphs that brings together all the graph captions 
to one location (generally with the table of contents listing the appropriate 
page number). Thus, a simple graph will consist of a graph caption, 
X- and y-labels, a list of parameters, and x- and y-scales. The graph cap- 
tion is a string. The X- and y-labels and the parameters are all strings. In 
some instances, these strings also contain the units of the values. 

Figure 12 is a sample of a simple graph with its parts identified. Note that 
the graph caption, the x- and y-labels, and the X- and y-scales are combi- 
nations of numbers and strings that can be represented in the computer in 
conventional ways. However, the curve itself is a line that has no direct 
computer representation. A table of values can be used to represent a 
curve in a computer. In figure 12, the table of data labeled internal data 
storage can be used as a representation for the curve. The curve is usually 
drawn from a table of data, which can be stored in the computer. In other 
instances, a curve may be drawn by use of an equation, which can also be 
stored in the computer. In a third type of situation, where a curve is 
obtained as a result of a long procedure, a data table may be generated or 
an equation fitted to represent the curve (many sophisticated curve-fitting 
programs are available to satisfy this need). The important point here is 
that a curve is stored internally in the computer as a table or an equation 
or a procedure. If we consider the internal data storage table in figure 12, 
we can see that a table with a number of columns could be used to de- 
velop the data in figure 13 (Green, 1984). 
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Figure 13-17 Boiling point of water as a function of pressure. 

Figure 12. An anatomy of a simple graph. 

Figure 13. A sample 
graph with several 
parametric curves. 
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Source: C. R. Green (1984). Teclzrzica2 Physics, 
Prentice-Hall, Inc., Englewood-Cliffs, NJ. 
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Figure 14. A sample 
graph with 
logarithmic scales on 
both axes. 

In figure 8, given in section 3, the y-axis is not a linear scale but a logarith- 
mic scale. In contrast, both x- and y-scales in figure 14 are logarithmic 
(Baumeister and Marks, 1958). When the scales are logarithmic, the cursor 
position on the curve requires care in scaling. Special interpolation pro- 
cesses are needed to preserve the accuracy of calculations involving 
logarithmic scales. 

Figure 15 shows a sample graph containing a picture. Additionally, the 
graph also has text, which guides the reader toward “blunt fillets” and 
“sharp fillets.” In this example, the sketch and the text do not affect the 
calculations with the curves, but they improve the understandability of 
the information in the graph. 

Figure 16 shows how complex graphs can become (Karassik et al, 1976). 
This sample graph is rich with information that will be concealed if we 
replace it with a computer program. The graph shows three regions: the 
laminar region, the transition region, and the turbulent region. In the 
laminar region, the y-value depends only on the x-value. In the turbulent 
region, the y-value varies very little or only slightly with the x-value, but 
is dependent on the value of the parameter (the pipe roughness). When a 
hydraulic engineer does calculations and makes design choices, the 
region in which the flow is operating should be known. With a graph like 
that in figure 16, the region of operation is fully and readily evident. The 
use of a computer program in place of this graph would seriously sacri- 
fice such problem visibility. This example clearly shows that a graph 
contains a lot of information and illuminates the problem. The user’s 
attention is drawn to the opportunities and pitfalls in the problem. 

THERMODYXA~MICS OF FLOW OF COMPRESSIBLE FLUIDS 4-G 

0.06 

nn71 Monoxide+ 1 Carbon 

0.002 100 400 600 1000 2000 4oco 
Temperature, Degrees R. 

Fro. 38. Viscosity of gases. 

7 

Source: Theodore Baumeister and Lionel S. Marks (1964). 
Mechanical Engineers’ Handbook, 7th ed., McGraw-Hill Book Co., 
New York, NY. 
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Figure 15. A sample 
graph containing a 
picture. 

Figure 16. A sample 
of a complex graph. 

One could continue the survey and discover many other graph features in 
books. However, these examples are sufficient to draw the reader’s 
attention to the basic characteristics involved in computer representation 
of graphs. 

, I * 

0.4 1.0 1.5 2 3 4 56 

Sharpness uf fillet,? 

FIG. 11. FM, plate with fillets, in bending. 

Source: Theodore Baumeister and Lionel S. Marks (1964). 
Mechanical Engineers’ Handbook, 7th ed., McGraw-Hill Book Co., 
New York, NY. 

REnKLDS N”M)ER R s $ (Y IN FT/SEC. cl N FT. I IN FT~ISECI 

Fig. 28 Moody dingram. (V. L. Streeter, “Fluid Mechsnies,” 5th ed. Copyright 1971 by McGraw-Hill Book 
Company, New York) 

Source: lgor J. Karassik, William C. Krutzsch, Warren H. Fraser, and Joseph I? 
Messina (1976). Pump Handbook, McGraw-Hill Book Co., New York, NY. 
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6. Computer Representation and Usage of Graphs in 
Natural Computing 

Although most modern word processors allow graphs to be imported as 
displays, not one supports the use of graphs as functional relationships. 
In contrast, the focus in Natural Computing is on the use of graphs from 
the perspective of calculations rather than display. Therefore, this section 
emphasizes the representation of a graph as part of a document from the 
point of view of a calculation. 

6.1 Structure of a Graph 

The survey in section 5 of practical graphs found in books, newspapers, 
and brochures suggests a minimal structure for adopting such graphs for 
computer applications. The anatomy of a simple graph, shown in figure 
12, consists of a graph caption, X- and y-labels and parameter labels, 
X- and y-scales, types of scales, and a table or equation for storing data 
internally. 

In general, these and other attributes of a graph can be programmed into 
a graph class. The simple graph anatomy may form a base class, while 
other complex features can be programmed into derived classes. A basic 
class constructor can be designed to create a blank graph. A destructor 
will delete the object and its components and release the memory space 
back to the system. A number of operations on graphs can be pro- 
grammed into these classes. First, a set of filler operators can be devel- 
oped to perform functions connected with filling a (blank) graph with 
data. A set of editor operators can be developed to edit and modify the 
data in a graph. Display operators can be designed to display a graph on 
a monitor, or print it on paper, whether as a stand-alone display or as part 
of another object. Storage operators can store persistent data that can be 
used to reconstruct a graph at any time during its life. Interactive calcula- 
tion operators provide the capability for the graph to be used to provide 
results in the interactive mode. The program calculation operators allow 
the graph to be embedded into a procedure for use by that procedure. 
Overloaded arithmetic operators allow the graph to perform functions on 
itself. Examples of such operators include a “+” operator to add two 
similar graphs to create a third graph; a “-” operator that subtracts a 
graph from another (compatible graph) to create a third graph; a “*” 
operator that performs a scalar multiplication of a graph; and a “/” 
operator that performs a scalar division of a graph. A simple class ex- 
ample is shown in figure 17. 

Other sets of operations can be developed that would make graphs very 
effective in programming. For example, consider the seven curves in 
figure 8. In a particular application, a specialist may wish to eliminate 
some of the curves and leave only a subset of them. This can be done if an 
operator is available to the graph class that allows for the deletion of 
parametric curves and the creation of a graph that is a subset of a given 
graph. In reverse, by using an insertion operator, we may wish to add a 



Figure 17. A typical 
example of a simple 
graph class. 

II ----- A simple graph class 
class Graph { 
private: 

string caption; 
int nl=l; 
labels x-label, y-label, p_label[nl]; 
scale x-scale, y-scale; 
scale-type x-scale-type, y-scale-type; 
Column-header column-header ; 
Row-header row-header; 

Data-body data-body; 
boo1 Interpolatability; 

public: 
// constructor function(s) 

Graph0 0 

// destructor function(s) 

-Graph0 0 

II Graph functions 

Graph_blank(); 
Graph_edit(); 

II Overloaded operators 
Graph operator+ (Graph graph& Graph graph2); 
Graph operator+ (Graph graphl, Graph graph2); 
Graph operator* (Graph graphl, int mult); 

superset and subset functions 
Graph supergraph (Graph graphl, Graph graph2); 
Graph subgraph (Graph graph, int n, . . .); 
Other functions . . . 

new curve to an existing set of curves. The graphs still represent the same 
X- and y-labels, but the list of parameters and the values are changed. 
Such operations allow for the creation of superset graphs and subset 
graphs. Figure 18 illustrates the creation of a superset graph that com- 
bines two curves with temperature values of 100 “F and 200 “F as param- 
eter values. Given the data structure of the graph class, one can obtain 
this superset graph by adding the list of volume values corresponding to 
a list of pressure values with a new parameter with a value of (tempera- 
ture equal to) 200 “F. 

Mere addition or deletion of curves in a graph is thus straightforward. 
One can also develop graph operations that perform arithmetic manipu- 
lations on graphs. For example, a graph containing two curves, month IX 
income and month ZLS expenditure, can be manipulated to yield a month DS 
profit graph, if another curve is defined called profit, which is the differ- 
ence between the income curve and the expenditure curve (see fig. 19). 
Again, because of the data structure of the graph class, one can obtain the 
result graph by generating a list of profit values through subtracting the 
expenditure list values from the income list values. Thus, operations on 
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Figure 18. An example of creation of a superset graph. 
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Figure 19. Example showing an arithmetic operation on graphs to generate another graph. 
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graphs should be able to generate new graphs by addition and/or dele- 
tion of curves and by arithmetic manipulation. We can achieve this result 
by simply writing a functional relationship: 

result-graph = graph-1 + graph_2. 

If the income and expenditure curves are already part of a single graph, 
one can obtain the result graph by subtracting the corresponding curves 
on the same graph as shown in figure 20. Mathematical operations on 
graphs make graphs very valuable and highly useful. Subtraction, scalar 
multiplication, and division can constitute other operations on graphs. 
More complex operations can be defined by combinations of these basic 
operations. 

Some operators in a graph class work to endow features like “responsibil- 
ity” and “justification” to a graph object. For example, a graph class can 
check for consistency of units. In the calculation mode, the graph can 
check the units of the variables in the graph data and the units of the 
variables in the query. The justification operators can act to adjust the 
units, thus ensuring that unit errors do not occur with Natural Comput- 
ing objects. 
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Figure 20. Example 
showing an 
arithmetic operation 
on a set of curves in a 
graph to generate 
another graph. 
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Graph 2 = income curve - expenditure curve 

The graph class can possess this capability because like all Natural Com- 
puting features, graphs know that variables carry values and units. In 
general, all calculation features in Natural Computing work with a set of 
four items (characteristics): (1) a name of the item, (2) a variable repre- 
senting the item (called notation), (3) its value, and (4) its units. The 
characteristic belongs to or is an attribute of a system under discussion or 
calculation. A variable is a symbol chosen to represent the physical quan- 
tity or characteristic for brevity in writing relationships or equations. The 
characteristic has a definite value at a given state. Its value is given in 
some physical units. (In many documents, the relationships between the 
variables and their descriptions are often given in lists of notation or lists 
of symbols.) 

In the graph class, these four items are used in the following general 
ways. The X- or y-label of a graph contains a variable and/or its descrip- 
tion. The units for a quantity are either given in the graph data or are 
obtainable from the notation. Where the units are given in both the graph 
data and the notation, they should be checked for compatibility For 
example, a quantity like velocity can have units offeet per second and miles 
per hour. Ensuring that they are either the same or are compatible is a 
responsibility feature of a graph object. Converting them to a common set 
of units is a justification feature of a graph. When a graph is queried, the 
units in the query (input) and the units for the quantity in the graph 
should be compatible. Likewise, there must be compatibility between the 
units of a graph quantity and the units of the output quantity. By treating 
units and conversions simultaneously with functional manipulation in 
Natural Computing, one avoids the unit-related errors that have been the 
cause for much grief in traditional computer programs. 

Computer (software) system development and domain (knowledge) 
development are both intricate processes. System development consists in 
the development of the graph classes with operations in those classes. 
These classes (along with other Natural Computing objects) will be made 
available in the form of a Natural Computing software tool kit to domain 
specialists who can incorporate their graph information into the graph 
objects wherever they occur in their problem domain. 

21 



Use of a Natural Computing tool kit will allow a variety of domain 
specialists to incorporate their domain information into software, and 
robust domain growth will take place over time. As this process contin- 
ues, domain specialists will find that certain graph features are not avail- 
able in a version of the Natural Computing software tool kit. Computer 
software developers can then step in and enhance the capabilities of 
graphs by adding new classes that will accommodate new graph at- 
tributes and new graph operators. This new tool kit will allow representa- 
tion of more extensive domains. Thus, growth in domains and in the 
Natural Computing software tool kit will occur iteratively (see fig. 21). As 
domain specialists encounter or invent new graph features (structure or 
behavior), software developers will play a primary role in developing 
extended graph features. But once the tools are available, domain special- 
ists will take over and program the calculation procedures in their 
domains. 

6.2 Choice and Use of Graphs 

Just as word processors contain document manipulation tools and graph- 
ics packages contain picture manipulation tools, a Natural Computing 
software tool kit contains several graph tools for use by domain special- 
ists. One will select a graph template that best fits the needs of one’s 
application. Then, an instance of a blank graph is created. In the creating/ 
editing mode, all data and information are entered into a graph. The 
domain specialists are responsible for filling in the footnotes and other 
notes as appropriate. The graph object automatically develops a number 
of behavioral characteristics and presents them for the domain specialist’s 
review. For example, the limit values (minimum, maximum, and 
singularities) of a curve are recorded automatically (minimum and maxi- 
mum values of a variable prevent a naive end user from extrapolating a 
graph outside its allowable bounds). The graph object uses these limits to 
flag an error message when a user tries unallowable values. This feature 
was inspired by human usage of graphs. Such checks, which are often 
provided by domain specialists in real-world applications, are now given 
to the graph classes as responsibilities. 

Figure 21. Iterative 
cycle of graph 
development in 
Natural Computing 
system. -I Utilization 



A graph object will also have a set of input (or query) templates and 
output (result) templates (see fig. 22). Since a graph is a functional rela- 
tionship between quantities (characteristics) identified on the x- and 
y-axes and the parameters, given one set of these quantities, all others can 
be determined from the graph (in Natural Computing). One can use this 
functional relationship in generating query templates. The user can 
choose the appropriate input template and type in a value for the inde- 
pendent characteristic or variable and submit it to the graph object. The 
template also guides the user with the limits on the variable values. These 
guidance values in the templates protect a graph from invalid or out- 
of-range queries. A graph will return a result by means of the output 
templates. A graph with input and output templates can be likened to a 
hardware component, with its input and output sockets. These input and 
output templates are used to connect different functional objects into a 
procedure or program (see fig. 23). 

Since the curves on a graph are represented by tables or equations, using 
a graph for results is very simple. A query consists of an x-axis variable- 
value pair and a parameter value. The graph object returns the value(s) 
corresponding to the y-axis variable. 

6.3 Insight into Graph Data 

Educators criticize current software systems as “black boxes” because the 
solution method is incomprehensible from the software. The user learns 
nothing from using the software. For that matter, even the domain spe- 
cialists do not understand what is in the code once their domain informa- 
tion (actually, algorithms shorn of all explanatory information) is put into 
code by a software developer. With traditional media (paper, calculator, 
and pencil), a student’s learning improves proportionately with the 
number of problems solved. In contrast, with traditional computer soft- 
ware, a student’s learning does not improve with the number of problems 
solved. Graphs in Natural Computing, as described in this report, pre- 
serve explanatory information and show functional relationships between 
variables. A student can, therefore, realize opportunities available and 
watch out for pitfalls in the problem domain represented by each graph. 
Figure 16 (sect. 5) is an example of a graph with opportunities that a user 
will understand from the display. 

6.4 Testing a Graph in Isolation 

Testing is a key task in both software development and application 
development. In Natural Computing, a domain specialist can test each 
graph in isolation for a variety of inputs. Owing to the built-in justifica- 
tions, limits, behaviors, and responsibilities, a Natural Computing graph 
class can be effective in eliminating software and application bugs. By 
localizing and fixing errors, one can prevent their propagation to other 
objects to cause a chain reaction of errors. Isolated testing is a major step 
in very nearly guaranteeing the correctness of an entire application. 
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Figure 22. Interactive 
use of a graph along 
with input and 
output boxes. 

Figure 23. Program or 
procedure building 
using a graph. 
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6.5 Embedding Graphs in Text 

Just as in textbooks and other paper documents, Natural Computing 
graphs are embedded in text, similar to the sample in figure 24 (Shigley, 
1977). Readers can read a document and get a general idea of the informa- 
tion presented there, or they can choose to use graphs interactively by 
activating them. Such an interactive facility is useful for studying a graph 
and understanding trends in the domain, While developing a procedure 
or a program, a user can copy and paste a graph from the text into the 
procedure. The display aspects of a graph are seen in the graph object 
embedded in the text, while the calculation aspects of a graph object are 
accessible to the procedure object. Once set up into a procedure, a graph 
object is available to that procedure, which itself can be saved for subse- 
quent use. As described in the report on Natural Computing (Karam- 
chetty, 2000a), one can develop complex procedures by connecting several 
graphs, equations, tables, and procedures. Any and all Natural Comput- 
ing objects can be embedded in a Natural Computing document object 
and can be activated by a user as needed. 
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Figure 24. Text with 

embedded graph. 
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f?atii of free length to maan diameter, 1,/D 

FIGURE 8-5 
Curves show when buckling of compression coil springs may occur. Both curves are 
for springs having squared and ground ends. For curve A one end of the spring is 
compressed against a fiat surface, the other against a rounded surface. For curve 

B both ends of the spring are compressed against flat and parallel surfaces. 

and so the deflection is 
aU 8FD3N 

y=s= d‘%G (f) 

To find the spring constant, use Eq. (3-2), and substitute the value of y from 
Eq. (8-7). This gives 

d4G 
kc--- 

8D3N (8-8) 

The equations presented in this section are valid for both compression and 
extension springs. Long coil springs having a free length more than four times the 
mean diameter may fail by buckling. This condition may be corrected by mount- 
ing the spring over a round bar or in a tube. Figure 8-5 will be helpful in deciding 
whether a compression spring is likely to buckle. 

Machine half loop -open Raised hook 

FIGURE 8-6 
Short twisted loop Full twisted loop 

Types of ends used on extension springs. (Courtesy of Associated Spring 
Corporation.) 

Source: Joseph E. Shigley (1977). Mechanical Engineering Design, 3rd ed., 
McGraw-Hill Book Co., New York, NY. 



7. Example Usage of Natural Computing Graphs 

With the scheme for representing graphs in computers described in the 
foregoing, one can build documents containing a variety of graphs. Such 
graphs will manifest themselves in three basic forms: (1) graphs embed- 
ded in text, (2) graphs that are usable in an interactive mode, and 
(3) graphs that can be connected into procedures. Figure 24 shows a 
graph embedded in text; the menus available to manipulate the document 
as well as the graphs are not shown. When the user wishes to use the 
graph to obtain values, the graph is changed to an interactive mode, as 
shown in figure 25, where a highlighted sample graph appears with input 
and output boxes. When the user types in an input value, result values 
are output by the system. As stated earlier, this interactive mode is used 
to test a graph in isolation. An end user uses this mode to obtain values to 
see the trends or to use the result values in a series of calculations of a 
temporary nature. Finally, when a domain specialist wishes to incorporate 
a graph into a procedure, a procedure is invoked, and a graph is con- 
nected to that procedure (a procedure is another Natural Computing 
object, discussed in Karamchetty, 1997,200Oa). Figure 26 shows a proce- 
dure consisting of a number of Natural Computing objects. Once a graph 
is set into a procedure, it is embedded inside the procedure and calcula- 
tions can be carried out with the entire procedure. 

Figure 25. Activating 
a text-embedded 
graph object for 
interactive use. 
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spring loaded by the axial force f. 

portion replaced by the internal forces. Then, the cut 
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computed using the equation 
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II 
unnecessary. The positive signs 
retained, and hence Eq. (b) give 
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Now define spring index 
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I I 

I I 

Figure 26. An example Natural Computing screen showing a procedure consisting of a graph, a table, 
and equations. 
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8. Conclusions 

Graphs are ubiquitous functional relationships used freely in paper-based 
documents, such as textbooks, handbooks, journals, newspapers, and 
flyers. Although graphs are complex representations, people use them 
relatively effortlessly. I have explained in this report computer representa- 
tion of graphs for a similar use in a computer calculation system. 

The development of a base graph class and several derived classes is the 
appropriate method to represent and use graphs. I have analyzed and 
identified the components and structure of a graph. The uniqueness of the 
graph anatomy presented in this report is that it allows a variety of 
graphs to be handled. Data can be obtained from graphs by interpolation 
and extrapolation, where permissible. Display of graphs ensures the 
presentation to the user of opportunities with given data in a graph and 
warns the user of pitfalls in the data. The proposed representation and 
operations allow graphs to behave responsibly and justify their behavior. 

Representation and use of graphs in the manner described in this report 
would mark a giant step for computing, as the data representation fol- 
lows natural forms. With the availability of such representations and 
processes, electronic handbooks, textbooks, documents, journals, and 
flyers can be realized. These electronic documents can be connected 
seamlessly for performing calculations as if they were paper-based docu- 
ments. From these various electronic library sources, knowledge can be 
exchanged and combined, and more powerful, economical, and expedi- 
tious computational procedures and systems can be developed. 
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