
Derivation of Effective-Mass
Expressions for Electrons and

Holes in the Anisotropic
Multiband Semimetals Ar, Sb,

and Bi

ARL-TR-2152 August 2000

Frank J. Crowne 

 

Approved for public release; distribution unlimited.



The findings in this report are not to be construed as an
official Department of the Army position unless so
designated by other authorized documents.

Citation of manufacturer’s or trade names does not
constitute an official endorsement or approval of the use
thereof.

Destroy this report when it is no longer needed. Do not
return it to the originator.



ARL-TR-2152 August 2000

Army Research Laboratory
Adelphi, MD 20783-1197

Derivation of Effective-Mass
Expressions for Electrons and
Holes in the Anisotropic
Multiband Semimetals Ar, Sb,
and Bi
Frank J. Crowne 
Sensors and Electron Devices Directorate

Approved for public release; distribution unlimited.



Abstract

In this report, certain properties of the multicomponent plasmas present in
the group-V semimetals As, Sb, and Bi have been derived. Notable among
these properties is anisotropy of the effective masses of both electrons and
holes, which in turn leads to anisotropy in the plasma frequencies of these
materials. Because the systems of interest are particles in a host matrix
rather than bulk materials, it is likely that this anisotropy in the plasma
response will be averaged out in some way; however, this problem must be
examined in detail before such a conclusion is warranted.
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1. Introduction

The electrodynamic properties of the semimetallic group-V elements (ar-
senic, antimony, and bismuth) are complex and ill-understood in many
ways. This is primarily due to the complicated structures of their conduc-
tion and valence bands, which have many maxima and minima for the
Fermi surface to intersect, resulting in multiple “pockets” of electrons and
holes populated by carriers at all temperatures [1]. According to the Som-
merfeld theory of metals, each minimum or maximum should give rise to a
different species of electron or hole, so that the electrodynamic response of
the material resembles that of a multicomponent plasma. To make matters
worse, all these materials crystallize orthorhombically, so that their charge
carriers (both electrons and holes) have anisotropic effective masses.

When nanometer-size samples of these materials (so-called quantum dots)
are prepared, the resulting systems are expected to behave in unusual ways
when probed by electromagnetic radiation. A particularly easy way to cre-
ate such samples was discovered some 10 years ago, when researchers
found that under certain conditions low-temperature growth of GaAs by
molecular-beam epitaxy (MBE) resulted in material with large numbers of
ultramicroscopic inclusions of As, up to 1 percent of the host volume [2],
which arose from the aggregation of GaAs antisite defects (i.e., lattice sites at
which a gallium atom was replaced by an As atom). Although theories re-
garding their nature are still problematic, there are strong indications that
these inclusions, which are roughly spherical in shape, consist of metal-
lic arsenic. Similar behavior has been observed when InAs and GaSb are
grown in this way.

There is ample reason to believe that these materials could be useful in
device engineering. However, before this usefulness can be explored, the
individual nanoparticles must be properly modeled with regard to interac-
tions with electromagnetic waves. In this report, I derive an appropriate set
of constitutive equations that can be used with the Maxwell equations to
implement this modeling.
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2. Boltzmann-Equation Calculation of Fermi Velocities in Group-V
Semimetals

The most effective way to deal with metals and their interactions with
electromagnetic radiation (light, microwaves, etc) is to use the Boltzmann-
Vlasov equation to calculate momentum (k-space) distributions for the
metallic charge carriers [3]. For semimetals, this naturally leads to a gen-
eral multiband set of Boltzmann equations:

∂tfj + v(j)α (�k)∂αfj +
e

h̄
(∂αφ)

(
∂

∂kα
fj

)
= − 1

τj

(
fj −

n(j)

n
(j)
0

f
(j)
0 (�k)

)
, (1)

where f (j)(�k, �x, t) is the number distribution function for the jth carrier,
v

(j)
α (�k) is the semiclassical (hydrodynamic) velocity of such a carrier with

momentum k, τj is its particle-number-conserving relaxation time, and
φ(x, t) is any external (electrostatic) potential applied to the system. The
hydrodynamic approximation introduces a parameterization of the solu-
tions to these equations in terms of macroscopic variables such as density,
drift velocity, etc, which are determined self-consistently as moments of the
equations. If the particles are semiconducting with parabolic bands, we can
use Maxwell-Boltzmann functions for the perturbed carrier distributions:

f (j)(�k, �x, t) = 4π3n(j)(�x, t)
[
mlm

2
t

]−1/2
(

h̄2

2πkBT (j)(�x, t)

)3/2

exp
{
− 1
kT (j)(�x, t)

G(j)(�k, �x, t)
}
, (2)

where

G(j)(�k, �x, t) =
h̄2

2

(
�k − �k(j)

D (�x, t)− �k0j
)
α

[
m−1
j

]
αβ

(
�k − �k(j)

D (�x, t)− �k0j
)
β
. (3)

Here n(j)(�x, t) is the hydrodynamic density of carriers in the jth carrier
pocket, �k(j)

D (�x, t) is the hydrodynamic drift momentum of carriers in this
pocket, k0j locates the center of the pocket in k-space, m−1

j is the effective-
mass tensor of the jth carrier type with principal values ml and mt (as-
suming the pockets are spheroidal), kB is Boltzmann’s constant, T (j)(�x, t)
is the hydrodynamic temperature of the jth carrier type, and h̄ is Planck’s
constant. The corresponding unperturbed distributions are

f
(j)
0 (�k) = 4π3n

(j)
0

[
mlm

2
t

]−1/2
(

h̄2

2πkBT

)3/2

exp

{
− h̄2

2kT

(
�k − �k0j

)
α

[
m−1
j

]
αβ

(
�k − �k0j

)
β

}
, (4)
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where n(j)
0 is the equilibrium density of carriers in the jth carrier pocket,

and T is the usual lattice temperature. For metallic particles, the correct
distributions at low temperatures are perturbed Fermi distributions:

f (j)(�k, �x, t) = θ
(
εF (�x, t)− εPj −G(j)(�k, �x, t)

)
, (5)

where εF (�x, t) is a position-dependent Fermi energy (imref) measured from
some constant reference (e.g., vacuum), and εPj marks the minimum en-
ergy of the jth pocket. The corresponding equilibrium distribution is

f
(j)
0 (�k) = θ

(
εF − εPj −

h̄2

2

(
�k − �k0j

)
α

[
m−1
j

]
αβ

(
�k − �k0j

)
β

)
, (6)

where εF is the equilibrium Fermi energy. We can relate the density n(j)
0 to

εF by introducing the density-of-states mass µ =
[
m2
tml

]1/3 and the quan-
tity k2

Fj = 2µ∆εFj/h̄2, where ∆εFj = εF − εPj (i.e., the Fermi wave vector
of pocket j), and by integrating the distribution over k-space in the usual
way. This gives

n
(j)
0 =

k3
Fj

3π2
. (7)

We can likewise define the deviation from equilibrium in the usual way:

δf (j)(�k, �x, t) = f (j)(�k, �x, t)− f (j)
0 (�k) . (8)

By integrating only over k-space, we obtain the perturbed and unperturbed
hydrodynamic particle densities and their difference:

n(j)(�x, t) =
2

(2π)3

∫
d3kf (j)(�k, �x, t) ,

n
(j)
0 =

2
(2π)3

∫
d3kf

(j)
0 (�k) ,

δn(j)(�x, t) = n(j)(�x, t)− n(j)
0 . (9)

Note that these also enter into the number-conserving collisional relaxation
term and hence must be determined self-consistently. These equations cou-
ple to the Poisson equation in the usual way:

∇2φ =
1
ε

∑
j

ejδn
(j)(�x, t) , (10)

where the charge ej = +1 for holes, −1 for electrons.

Let us linearize the Boltzmann equations around the unperturbed
distributions:

∂tδf
(j) + v(j)α (�k)∂αδf (j) +

e

h̄
(∂αφ)

(
∂

∂kα
f

(j)
0 (�k)

)
= − 1

τj

(
δf (j) − δn

(j)

n
(j)
0

f
(j)
0 (�k)

)
, (11)
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where we neglect all spatial dependences to zero order. To solve these equa-
tions, we use the (wave) ansatz

δf (j)(�k, �x, t) = δf (j)
q (�k)ei(
q·
x−ωt) ,

δn(j)(�x, t) = δn(j)
q e

i(
q·
x−ωt) ,

φq = − 1
εq2

∑
j

ejδn
(j)
q . (12)

Then the equations for the perturbed system become

(
−iω +

1
τj

)
δf (j)
q (�k) + iqαv(j)α (�k)δf (j)

q (�k) = −ej
h̄

(iqαφq)
(
∂

∂kα
f

(j)
0 (�k)

)
+

1
τj

(
δn

(j)
q

n
(j)
0

f
(j)
0 (�k)

)
, (13)

which are easily solved:

δf (j)
q (�k) =

ej
h̄ (qβφq)

(
∂
∂kβ
f

(j)
0 (�k)

)
+ i

τj

(
1

n
(j)
0

f
(j)
0 (�k)

)
δn

(j)
q

ω + i
τj
− qαv(j)α (�k)

. (14)

We can now substitute this expression back into the density expression

δn(j)
q =

2
(2π)3

∫
δf (j)
q (�k) d3k (15)

to get

δn(j)
q =

ej
h̄

(qβφq)
2

(2π)3

∫ ∂
∂kβ
f

(j)
0 (�k)

ω + i
τj
− qαv(j)α (�k)

d3k +
i

τj

δn
(j)
q

n
(j)
0

2
(2π)3

∫
f

(j)
0 (�k)

ω + i
τj
− qαv(j)α (�k)

d3k , (16)

which can be written

δn(j)
q =

ej
h̄

(qβφq)�β1j +
i

τj

δn
(j)
q

n
(j)
0

�2j . (17)

The first term in this expression contains the vector coefficient

�β1j =
2

(2π)3

∫
d3k

∂
∂kβ
f

(j)
0 (�k)

ω + i
τj
− qαv(j)α (�k)

, (18)

while the second term contains the scalar coefficient

�2j =
2

(2π)3

∫
d3ξ

f
(j)
0 (�ξ)

ω + i
τj
− qαv(j)α (�ξ)

. (19)
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Since each k-space pocket in the semimetal is ellipsoidal, the hydrodynamic
velocities can be defined in terms of the effective mass tensors:

v(j)α (�k) = h̄
[
m−1
j

]
αγ

(
�k − �k0j

)
γ
≡ h̄

[
m−1
j

]
αγ
ξγ , (20)

where �ξγ is the deviation in k from the jth band minimum (or maximum).
Then the scalar term becomes

�β2j =
2

(2π)3

∫
d3ξ

f
(j)
0 (�ξ)

ω + i
τj
− qαh̄

[
m−1
j

]
αγ
ξγ
, (21)

and the vector term becomes

�β1j =
2

(2π)3

∫
d3ξ

∂
∂ξβ
f

(j)
0 (�ξ)

ω + i
τj
− qαh̄

[
m−1
j

]
αγ
ξγ
. (22)

Using the Fermi distributions

f
(j)
0 (�ξ) = θ

(
εF − εPj −

h̄2

2
ξα

[
m−1
j

]
αβ
ξβ

)
(23)

gives

∂

∂ξα
f

(j)
0 (�ξ) = −h̄2

[
m−1
j

]
αβ
ξβδ

(
εF − εPj −

h̄2

2
ξα

[
m−1
j

]
αβ
ξβ

)
. (24)

Then �β1j becomes

�β1j = −h̄ 2
(2π)3

∫
d3ξ

h̄
[
m−1
j

]
βγ
εγ

ω + i
τj
− qαh̄

[
m−1
j

]
αγ
ξγ
δ(εF − εξj) (25)

where

εξj = εPj +
h̄2

2
ξα

[
m−1
j

]
αβ
ξβ . (26)

We can now solve the density equation[
1− i

τj

�2j

n
(j)
0

]
δn(j)
q =

ej
h̄

(qβφq)�β1j , (27)

and insert the results into Poisson’s equation to get

φq = − e
2

εq2
φq

∑
j

[
1− i

τj

�2j

n
(j)
0

]−1
1
h̄
qβ�β1j . (28)

Note that e2j = e2 for solid-state systems. Equation (28) can only be true if

1 = − e
2

εq2

∑
j

[
1− i

τj

�2j

n
(j)
0

]−1
1
h̄
qβ�β1j , (29)
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where

qβ�β1j = −h̄ 2
(2π)3

∫
d3ξ

h̄qβ
[
m−1
j

]
βγ
ξγ

ω + i
τj
− h̄qβ

[
m−1
j

]
βγ
ξγ
δ (εF − εξj) . (30)

The roots of this equation define various dispersion relations for plasma
waves ω(s)(�q).

Because of the δ-function, it is possible to evaluate expression (30) analyti-
cally. Write [

m−1
j

]
αβ

= S̄αλDλνSνβ , (31)

where the matrix S is a rotation chosen to diagonalizem−1
j . Then

qβ�β1j = −h̄ 2
(2π)3

∫
d3ξ

h̄qβSβλDλνSνγξγ

ω + i
τj
− h̄qβSβλDλνSνγξγ

δ

(
∆εFj −

h̄2

2
ξβSβλDλνSνγξγ

)
, (32)

where ∆εFj = εF − εPj . Let xν = Sνγξγ , Qν = Sνγqγ . Then the Jacobian for
this transformation is 1, and so

qβ�β1j = −h̄ 2
(2π)3

∫
d3x

h̄QλDλνxν

ω + i
τj
− h̄QλDλνxν

δ

(
∆εFj −

h̄2

2
xλDλνxν

)
.

(33)

Now, since D is diagonal, we can easily define D = D1/2D1/2 as a scaling
transformation. If yν =

[
D1/2

]
νγ
xγ , Λν = h̄

[
D1/2

]
νγ
Qγ , then

qβ�β1j = −h̄
[
m2
tml

]1/2 2
(2π)3

∫
d3y

Λνyν
ω + i

τj
− Λνyν

δ

(
∆εFj −

h̄2

2
y2

)
, (34)

where the factor in front is the Jacobian of the scaling transformation. In
spherical coordinates, this expression becomes

qβ�β1j = − h̄

2π2

[
m2
tml

]1/2
∫ ∞
0
y2 dy δ

(
∆εFj −

h̄2

2
y2

) ∫ 1

−1
d(cos θ)

Λy cos θ
ω + i

τj
− Λy cos θ

, (35)

where

Λ =

[
h̄2

(
q2⊥
mt

+
q2z
ml

)]1/2

=
[
h̄2qα

(
m−1
j

)
αβ
qβ

]1/2

. (36)

Here, q⊥ and qz are components of q perpendicular and parallel to the c-axis
of the particle material in the principal-axis system of cylindrical coordi-
nates. I have used the fact that as a scalar |Λ|must be rotationally invariant.
Introducing the density-of-states mass µ =

[
m2
tml

]1/3 and the Fermi wave
vector k2

Fj = 2µ∆εFj/h̄2 for pocket j as we did above, we obtain

qβ�β1j = −µkFj
2π2h̄

∫ 1

−1
dξ

ξ

Γ− ξ , (37)
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where

Γ =
ω + 1

τj[
2∆εFj

(
qα

(
m−1
j

)
αβ
qβ

)]1/2
(38)

contains the tensor nature of the effective mass both explicitly and implic-
itly through the Fermi energy. The integral is trivial:

qβ�β1j =
µkFj
2π2h̄

{
2− Γ ln

(
Γ + 1
Γ− 1

)}
≡ µkFj
π2h̄

f1(Γ) . (39)

The quantity �2j can also be evaluated explicitly. Analysis similar to that
given above leads to the double integral

�2j =
1

2π2

[
m2
tml

]1/2
∫ ∞
0
y2 dyθ

(
∆εFj −

h̄2

2
y2

) ∫ 1

−1
d(cos θ)

1
ω + i

τj
− Λy cos θ

. (40)

Introducing the notation yF =
√

2∆εF
h̄2 and ε = cos θ as before, and using

the properties of the Fermi function, we can rewrite the above as

�2j =
1

2π2

[
m2
tml

]1/2
∫ yF

0
y2 dy

∫ 1

−1
dξ

1
ω + i

τj
− Λyξ

. (41)

Some algebra gives the following expression for this integral:

�2j =
3n(j)

0

2
(
ω + i

τj

) {
Γ2 +

(
1− Γ2

) Γ
2

ln
(

Γ + 1
Γ− 1

)}
≡ n

(j)
0

ω + i
τj

f2(Γ) , (42)

where Γ is the quantity introduced above.

Let us solve the plasma dispersion relation to lowest order in q, i.e., the
long-wavelength limit. To do so, we take the small-q limit of our explicit
expressions in equations (30) and (42), which corresponds to Γ→∞. Some
algebra shows that the function f2(Γ) defined in equation (42) goes to 1 in
this limit, so to lowest order

�2j =
1

ω + i
τj

∫
d3ξf

(j)
0 (ξ) =

n
(j)
0

ω + i
τj

. (43)

The same limit for qβ�β1j gives

qβ�β1j ≈
µkFj
π2h̄

{
− 1

3Γ2

}
= −2µkFj

3π2h̄




∆εFj
(
q2⊥
mt

+ q2z
ml

)
(ω + i/τj)

2


 . (44)
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But

−
2µ∆εFjkFj

3π2h̄




q2⊥
mt

+ q2z
ml

(ω + i/τj)
2


 = −h̄2 2µ∆εFj

h̄2

kFJ
3π2




q2⊥
mt

+ (q2z)
ml

(ω + i/τj)
2




= −h̄
k3
Fj

3π2



qα

[
m−1
j

]
αβ
qβ

(ω + i/τj)
2




= − h̄n(j)
0



qα

[
m−1
j

]
αβ
qβ

(ω + i/τj)
2


 , (45)

so that equation (29) becomes

1 =
e2

εq2

∑
j


1− i

τj

1
ω + i

τj



−1

n
(j)
0(

ω + i
τj

)2 qα
[
m−1
j

]
αβ
qβ . (46)

Assuming that the relaxation times are the same for all the pockets, we
obtain

1− e2

εq2
1

ω
(
ω + i

τ

)qα



∑
j

n
(j)
0

[
m−1
j

]

αβ

qβ (47)

or, introducing the unit vector q̂ = �q/ |�q|,

1− e
2

ε

1

ω
(
ω + i

τ

) ∑
j

{
n

(j)
0 q̂α

[
m−1
j

]
αβ
q̂β

}
= 0 . (48)

This expression, which is clearly in the form of a requirement that a
“Drude”-type conductivity for the system should vanish, defines the
“plasma frequency” of the multicomponent system as the sum in the nu-
merator. In general this sum will depend on the direction of q̂.

To derive an analogue of the linearized Thomas-Fermi equation and a cor-
responding screening length, we need to take these expansions to higher
order in q. Saving next-order terms in f1(Γ) and f2(Γ) gives

f1(Γ) ≈ − 1
3Γ2
− 1

5Γ4
, f2(Γ) ≈ 1 +

1
5Γ2

. (49)

Let us rewrite equation (29) as

1 = − e
2

εq2

∑
j


1− i

τj

f2 (Γ)
ω + i

τj


 µkFj
π2h̄

f1 (Γ) (50)

and note that
µkFj
π2h̄

=
3
2
n

(j)
0

∆εFj
. (51)
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Then equation (50) becomes

1 = − 1
q2

∑
j

λ2
j


1− i

τj

f2(Γ)
ω + i

τj



−1

f1(Γ) , (52)

where λ2
j is the Thomas-Fermi screening length for carriers in the jth pocket:

λ2
j =

3
2ε
n

(j)
0 e

2

∆εFj
. (53)

With these results, we can easily derive the expression

1 =
∑
j

n
(j)
0 e

2

εq2

qα
[
m−1
j

]
αβ
qβ

ω
(
ω + i

τj

)

1 +

6
5

∆εFj(
ω + i

τj

)2

(
1 +

2
3
i

ωτj

)
qα

[
m−1
j

]
αβ
qβ


 . (54)

The peculiar fraction (6/5) that occurs in this expression derives from
our linearization around a spatially independent zero-order distribution.
A more careful linearization is needed to recover the true hydrodynamic
value of this coefficient and, indeed, to recover any of the expressions en-
countered in classical fluid mechanics. This will be the subject of a subse-
quent report.
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3. Calculations of Sums Over k-Space Minima for High-Symmetry
Band Structures

3.1 Simple Cubic Band Structure

A simple cubic band structure is appropriate for elemental silicon (see fig.
1). In order to calculate the effective masses for this method, we assume
that the densities in the carrier pockets are the same, and that the principal-
axis projections are x̂x̂, ŷŷ, and ẑẑ. Since there are six pockets, each holds
1/6 of the electrons.

Let us write the effective masses as follows:[
m(1)

]−1
=

[
m(−1)

]−1
=

1
ml
x̂x̂+

1
mt

(ŷŷ + ẑẑ) ,
[
m(2)

]−1
=

[
m(−2)

]−1
=

1
ml
ŷŷ +

1
mt

(x̂x̂+ ẑẑ) , and
[
m(3)

]−1
=

[
m(−3)

]−1
=

1
ml
ẑẑ +

1
mt

(ŷŷ + x̂x̂) . (55)

Then the sum is simple:
∑
j

n
(j)
0

[
m−1
j

]
=

1
6
n0

(
1
ml

+
2
mt

)
2 [x̂x̂+ ŷŷ + ẑẑ] =

1
3
n0

(
1
ml

+
2
mt

)
↔
1 , (56)

where
↔
1 is the identity matrix. This shows that the mass required is just the

usual isotropic optical mass.

Figure 1. Conduction
band minima (pockets)
of silicon in k-space.
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3.2 (111) Cubic Pockets (Tetrahedral Band Structure)

A tetrahedral band structure is appropriate for elemental germanium (see
fig. 2). Here we have four pockets, at the vertices of a tetrahedron. The
effective-mass tensors are

[
m(1)

]−1
=

[
m(−1)

]−1
=

1
ml
ê1ê1 +

1
mt

(
ŝ1ŝ1 + t̂1t̂1

)
,

[
m(2)

]−1
=

[
m(−2)

]−1
=

1
ml
ê2ê2 +

1
mt

(
ŝ2ŝ2 + t̂2t̂2

)
,

[
m(3)

]−1
=

[
m(−3)

]−1
=

1
ml
ê3ê3 +

1
mt

(
ŝ3ŝ3 + t̂3t̂3

)
, and

[
m(4)

]−1
=

[
m(−4)

]−1
=

1
ml
ê4ê4 +

1
mt

(
ŝ4ŝ4 + t̂4t̂4

)
, (57)

where the vectors êi, ŝi, t̂i ≡ êi ⊗ ŝi mark the principal axes of the pocket
ellipsoids:

ê1 = 1√
3
(x̂+ ŷ + ẑ) , ŝ1 = 1√

2
(−x̂+ ŷ) , t̂1 = 1√

6
(−x̂− ŷ + 2ẑ) ;

ê2 = 1√
3
(−x̂+ ŷ − ẑ) , ŝ2 = 1√

2
(−x̂− ŷ) , t̂2 = 1√

6
(−x̂+ ŷ + 2ẑ) ;

ê3 = 1√
3
(−x̂− ŷ + ẑ) , ŝ3 = 1√

2
(x̂− ŷ) , t̂3 = 1√

6
(x̂+ ŷ + 2ẑ) ; and

ê4 = 1√
3
(x̂− ŷ − ẑ) , ŝ4 = 1√

2
(x̂+ ŷ) , t̂4 = 1√

6
(x̂− ŷ + 2ẑ) .

(58)

Figure 2. Conduction
band minima (pockets)
of germanium in
k-space.
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Then the dyadic products can be written in matrix form as follows:

ê1ê1 = 1
3


 1 1 1

1 1 1
1 1 1


 , ŝ1ŝ1 = 1

2


 1 −1 0
−1 1 0
0 0 0


 , t̂1t̂1 = 1

6


 1 1 −2

1 1 −2
−2 −2 4


 ;

ê2ê2 = 1
3


 1 −1 1
−1 1 −1
1 −1 1


 , ŝ2ŝ2 = 1

2


 1 1 0

1 1 0
0 0 0


 , t̂2t̂2 = 1

6


 1 −1 −2
−1 1 2
−2 2 4


 ;

ê3ê3 = 1
3


 1 1 −1

1 1 −1
−1 −1 1


 , ŝ3ŝ3 = 1

2


 1 −1 0
−1 1 0
0 0 0


 , t̂3t̂3 = 1

6


 1 1 2

1 1 2
2 2 4


 ;

ê4ê4 = 1
3


 1 −1 −1
−1 1 1
−1 1 1


 , ŝ4ŝ4 = 1

2


 1 1 0

1 1 0
0 0 0


 , t̂4t̂4 = 1

6


 1 −1 2
−1 1 −2
2 −2 4


 .

(59)

Performing the summation once more, we obtain

[
m(1)

]−1
=

1
3ml


 1 1 1

1 1 1
1 1 1


 +

1
mt


1

2


 1 −1 0
−1 1 0
0 0 0


 +

1
6


 1 1 −2

1 1 −2
−2 −2 4







=
1
ml




1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3


 +

1
mt




2
3 −1

3 −1
3

−1
3

2
3 −1

3

−1
3 −1

3
2
3


 ,

[
m(2)

]−1
=

1
3ml


 1 −1 1
−1 1 −1
1 −1 1


 +

1
mt


1

2


 1 1 0

1 1 0
0 0 0


 +

1
6


 1 −1 −2
−1 1 2
−2 2 4







=
1
ml




1
3 −1

3
1
3

−1
3

1
3 −1

3
1
3 −1

3
1
3


 +

1
mt




2
3

1
3 −1

3
1
3

2
3

1
3

−1
3

1
3

2
3


 ,

[
m(3)

]−1
=

1
3ml


 1 1 −1

1 1 −1
−1 −1 1


 +

1
mt


1

2


 1 −1 0
−1 1 0
0 0 0


 +

1
6


 1 1 2

1 1 2
2 2 4







=
1
ml




1
3

1
3 −1

3
1
3

1
3 −1

3

−1
3 −1

3
1
3


 +

1
mt




2
3 −1

3
1
3

−1
3

2
3

1
3

1
3

1
3

2
3


 , (60)
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and so

[
m(4)

]−1
=

1
3ml


 1 −1 −1
−1 1 1
−1 1 1


 +

1
mt


1

2


 1 1 0

1 1 0
0 0 0


 +

1
6


 1 −1 2
−1 1 −2
2 −2 4







=
1
ml




1
3 −1

3 −1
3

−1
3

1
3

1
3

−1
3

1
3

1
3


 +

1
mt




2
3

1
3

1
3

1
3

2
3 −1

3
1
3 −1

3
2
3


 . (61)

Each pocket holds 1/4 of the electrons. Then the total mass sum equals

∑
j

n
(j)
0

[
m−1
j

]
=

1
4
n0

{
1
ml

} 


4
3 0 0
0 4

3 0
0 0 4

3


 +

1
mt




8
3 0 0
0 8

3 0
0 0 8

3


 =

1
3
n0

(
1
ml

+
2
mt

)
↔
1 , (62)

which is again the isotropic optical mass.
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4. Calculations of Sums Over k-space Minima for the Band Structures
of Group-V Elements

The band structures of the group-V elements are described in detail by Lin
and Falicov [4] and Shapira and Williamson [5]. For the conduction band,
the pattern of ellipsoidal pockets shown in figure 3 is obtained; the angle
with z-axis θC is material-dependent. I assume here that the valence band
has a similar structure, although the actual Fermi surface of As is a single
multiconnected surface rather than a collection of pockets.

Let
σ = cos θC , τ = sin θC . (63)

Then the hexagonal symmetry in the basal plane motivates us to introduce
the quantities

α = 1/2 , β =
√

3/2 . (64)

This allows us to write the longitudinal-mass principal axis vectors as
follows:

ê1 = τ x̂+ σẑ ,
ê2 = ατx̂+ βτ ŷ − σẑ ,
ê3 = −ατx̂+ βτ ŷ + σẑ ,
ê4 = −τ x̂− σẑ ,
ê5 = −ατx̂− βτ ŷ + σẑ , and
ê6 = ατx̂− βτ ŷ − σẑ . (65)

Figure 3.
Conduction-band and
valence-band minima
(pockets) of As and Sb
in k-space. Upper
pockets are filled with
electrons, lower ones
with holes.
(a) Three-dimensional
view, and (b) view
down c-axis (z-axis in
(a)).

θC
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Then the other principal axes are

ŝ1 = ŷ , t̂1 = −σx̂+ τ ẑ ;
ŝ2 = −βx̂+ αŷ , t̂2 = ασx̂+ βσŷ + τ ẑ ;
ŝ3 = −βx̂− αŷ , t̂3 = −ασx̂+ βσŷ − τ ẑ ;
ŝ4 = −ŷ , t̂4 = −σx̂+ τ ẑ ;
ŝ5 = βx̂− αŷ , t̂5 = ασx̂+ βσŷ + τ ẑ ; and
ŝ6 = βx̂+ αŷ , t̂2 = ασx̂− βσŷ + τ ẑ .

(66)

As before, we find the projection operators

ê1ê1 =


 τ

2 0 στ
0 0 0
στ 0 σ2


 , ŝ1ŝ1 =


 0 0 0

0 1 0
0 0 0


 , t̂1t̂1 =


 σ2 0 −στ

0 0 0
−στ 0 τ2


 ;

ê2ê2 =


 α2τ2 αβτ2 −ατσ
αβτ2 β2τ2 −βτσ
−ατσ −βτσ σ2


 , ŝ2ŝ2 =


 β2 −αβ 0
−αβ α2 0
0 0 0


 , t̂2t̂2 =


 α2σ2 αβσ2 ατσ

αβσ2 β2σ2 βτσ

ατσ βτσ τ2


 ;

ê3ê3 =


 α2τ2 −αβτ2 −ατσ
−αβτ2 β2τ2 βτσ

−ατσ βτσ σ2


 , ŝ3ŝ3 =


 β2 αβ 0
αβ α2 0
0 0 0


 , t̂3t̂3 =


 α2σ2 −αβσ2 ατσ

−αβσ2 β2σ2 −βτσ
ατσ −βτσ τ2


 ;

ê4ê4 =


 τ2 0 στ

0 0 0
στ 0 σ2


 , ŝ4ŝ4 =


 0 0 0

0 1 0
0 0 0


 , t̂4t̂4 =


 σ2 0 −στ

0 0 0
−στ 0 τ2


 ;

ê5ê5 =


 α2τ2 αβτ2 −ατσ
αβτ2 β2τ2 −βτσ
−ατσ −βτσ σ2


 , ŝ5ŝ5 =


 β2 −αβ 0
−αβ α2 0
0 0 0


 , t̂5t̂5 =


 α2σ2 αβσ2 ατσ

αβσ2 β2σ2 βτσ

ατσ βτσ τ2


 ;

ê6ê6 =


 α2τ2 −αβτ2 −ατσ
−αβτ2 β2τ2 βτσ

−ατσ βτσ σ2


 , ŝ6ŝ6 =


 β2 αβ 0
αβ α2 0
0 0 0


 , t̂6t̂6 =


 α2σ2 −αβσ2 ατσ

−αβσ2 β2σ2 −βτσ
ατσ −βτσ τ2


 .

(67)

The dyadic sums are then

6∑
i=1

êiêi =


 4α2τ2+2τ2 0 2(1−2α)τσ

0 4β2τ2 0
2(1−2α)τσ 0 6σ2


 ,

6∑
i=1

t̂it̂i =


 4α2σ2+2σ2 0 −2(1−2α)τσ

0 4β2σ2 0
−2(1−2α)τσ 0 6τ2


 , and

6∑
i=1

ŝiŝi =


 4β2 0 0

0 4α2+2 0
0 0 0


 . (68)

Hence,

6∑
i=1

ŝiŝi + t̂it̂i =


 4β2+4α2σ2+2σ2 0 −2(1−2α)τσ

0 4α2+4β2σ2+2 0
−2(1−2α)τσ 0 6τ2


 . (69)

Note that because α = 1/2, this tensor is diagonal! Since β2 = 3/4, the above
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becomes
6∑
i=1

ŝiŝi + t̂it̂i =


 3(1+σ2) 0 0

0 3(1+σ2) 0
0 0 6τ2


 . (70)

Likewise, we have

6∑
i=1

êiêi =


 3τ2 0 0

0 3τ2 0
0 0 6σ2


 (71)

so that the averaged optical effective-mass tensor is

∑
j

n
(j)
0

[
m−1
j

]
=

1
6
n0




1
ml


 3τ2 0 0

0 3τ2 0
0 0 6σ2


 +

1
mt


 3

(
1 + σ2

)
0 0

0 3
(
1 + σ2

)
0

0 0 6τ2







=
1
2
n0




1
ml
τ2 + 1

mt

(
1 + σ2

)
0 0

0 1
ml
τ2 + 1

mt

(
1 + σ2

)
0

0 0 1
ml
σ2 + 1

mt
τ2


 . (72)

In keeping with our expectations, the effective mass tensor is somewhat
anisotropic. However, there is an angle at which it becomes isotropic; this
is

cos 2θC =
ml

mt −ml
. (73)

It is easy to show that the reported angles for the group-V materials do not
satisfy this criterion, so that anisotropy will be a real issue in any study of
their plasma response.
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5. Conclusions

In this report, certain properties of the multicomponent plasmas present in
the group-V semimetals As, Sb, and Bi have been derived. Notable among
these properties is anisotropy of the effective masses of both electrons and
holes, which in turn leads to anisotropy in the plasma frequencies of these
materials. Because the systems of interest are particles in a host matrix
rather than bulk materials, it is likely that this anisotropy in the plasma
response will be averaged out in some way; however, this problem must be
examined in detail before such a conclusion is warranted.
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In this report, certain properties of the multicomponent plasmas present in the group-V
semimetals As, Sb, and Bi have been derived. Notable among these properties is anisotropy of
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