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Abstract

A pinched-off high-electron-mobility transistor containing a perfectly con-
ducting two-dimensional electron gas (2DEG) is described mathematically
within an idealized two-dimensional geometry, so that conformal mapping
techniques can be used to compute internal fields at the transistor drain.
The field and charge distribution at the drain end of the 2DEG calculated
in this way suggest that the charge is a nonmonotonic function of position
in this region.
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1. Introduction

The physics of field-effect transistors (FETs) fundamentally differs from
that of bipolar transistors and heterojunction-bipolar transistors (HBTs),
in which currents flow perpendicular to layers of various materials. This
difference arises from the lateral geometry that underlies the operation of
FETs, i.e., the modulation of a “horizontal” current that arises from a drain-
to-source voltage by “vertical” electric fields generated by a gate electrode.
The FET geometry gives rise to internal electric fields that are compli-
cated and intrinsically two-dimensional (2D), so that the device terminal
characteristics (source, drain, and gate voltages and currents) become diffi-
cult to predict and dependent on many internal parameters. The geometry
makes the physics of 2D electron-gas (2DEG) FETs (high-electron-mobility
transistors—HEMTs) especially difficult to unravel, since the quantum-
mechanical nature of the electron dynamics in the 2D channel cannot easily
be disentangled from the electrostatic problem of finding the fields in the
neighboring dielectric materials.

A problem of particular interest to device designers is to determine what
happens to the 2DEG as it emerges from under the gate region. Because
the electric fields are no longer screened by the gate, the capacitance of the
electron gas per unit length with respect to the gate must change, since
field lines can now escape to infinity. This problem is made even more in-
teresting by the existence of plasma oscillations predicted by Dyakonov
and Shur in 1993 [1], which are profoundly different for a gated and an
ungated electron gas [2]. In this report, conformal mapping is used to com-
pute the change in field configuration of the electron gas in this situation,
with the extreme assumption of a perfectly conducting electron gas. The
finite-conductivity effects needed for the study of plasma oscillations will
be the subject of a subsequent report.

Figure 1 is a cross section of the device geometry near the drain. The 2DEG
is assumed to be a vertical distance h below the gate and to terminate
at a horizontal distance q beyond the drain end of the gate. Let us begin
with the symmetrized version of this geometry shown in figure 2 (resem-
bling that of a junction FET (JFET) [3]) and tailored for a treatment based
on complex-variable theory. The new geometry, which is embedded in the
complex plane z = x+ iy, has the following idealized features:

1. There are two gates separated by a distance h, with the 2DEG between
them along the x = Re z axis and ending at a point x = q > 0 on the
real axis.

2. The 2DEG is infinitely extended to the left.

3. The gates are both assumed to be infinitely thick, with vertical bound-
aries along the y = Im z-axis.
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4. All dielectric constants are set equal to one.

This idealized geometry will allow us to set up the conformal-mapping
problem discussed in the next section.

Figure 1. Cross section
of FET geometry on
drain side of 2DEF FET:
(a) real and (b)
idealized.

Gate

AlGaAs

GaAs

Ohmic

h

Gate

Gate

X = 0 X = q(a)

(b)

Figure 2. Physical (z)
plane for
Schwartz-Christoffel
mapping.

R

R

WV

U

T S

z = ih

z = –ih

z = q

z-plane

–π/2

–π/2

+π

+π

–π

2



2. Schwartz-Christoffel Transformation

Following standard procedures [4], I seek a complex-variable function that
will map the shaded area in figure 2 (the z-plane) into the upper half of a
new complex-variable plane, the w-plane. The special points R,S, T, U, V,
and W identify the right-hand half-space (R), the lower gate edge (S),
points deep inside the gated channel and below the 2DEG (T ), the end of
the 2DEG (U ), points deep inside the gated channel and above the 2DEG
(V ), and the upper gate edge (W ). The Schwartz-Christoffel recipe treats
this geometry as a seven-sided polygon with the point R at infinity. Be-
cause of the symmetry, we can assume that the points in the complex z-
plane other than R pair symmetrically in the w-plane; this results in the
following differential equation for the Schwartz-Christoffel mapping:

dz

dw
= A

w
√
w2 − c2
w2 − 1

, (1)

where A and c are to be determined. The function w(z) maps the points
R,S, T, U, V, andW in the z-plane into the points in figure 3 on the real axis
of the complex w-plane. The problem now reduces to

1. solving this equation,

2. finding values of A and c,

3. solving the Laplace equation in the w-plane, and

4. inverting the transformation to return to the z-plane.

Figure 4 shows the proper definition of the branch cuts for the function√
w2 − c2 : arg(w − c) ∈ [−π, π], arg(w + c) ∈ [−π, π].

Figure 3.
Schwartz-Christoffel
plane.
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Figure 4. Branch cuts for
w(z).

••

w-plane

–c +c

The differential equation is trivially solved for the function z(w):

z(w) = z0 +A

∫ w

c

√
ξ2 − c2
ξ2 − 1

ξ dξ = z0 +A




√
w2 − c2
c2 − 1

− tan−1

√
w2 − c2
c2 − 1


 , (2)

which we can rewrite as

z(w) = z0 +A




√
w2 − c2
c2 − 1

− 1
2i

ln




1 + i
√

w2−c2
c2−1

1− i
√

w2−c2
c2−1





 . (3)

Now, consider the action of this mapping from various regions of Rew to
the z-plane:

1. w ∈ [−∞,−c] (segment RW ): for large w, z ≈ z0 + A w√
c2−1

→ +i∞,
so that A = iB with B < 0. As w → c, the term in brackets vanishes;
since w = c must correspond to z = +ih in the physical z-plane, we
have z0 = ih. Then

z = ih+ iB




√
w2 − c2
c2 − 1

− tan−1

√
w2 − c2
c2 − 1


 . (4)

2. w ∈ [−c,−1] (segmentWV ): On this segment of Rew, we have
√

w2−c2
c2−1

=

i
√

c2−w2

c2−1
, with

√
c2−w2

c2−1
< 1, according to our choice of branch cut, so

we can rewrite z(w) as

z = ih+ iB


i

√
c2 − w2

c2 − 1
− 1

2i
ln




1−
√

c2−w2

c2−1

1 +
√

c2−w2

c2−1







= ih−B



√
c2 − w2

c2 − 1
− 1

2
ln




1 +
√

c2−w2

c2−1

1−
√

c2−w2

c2−1







= ih−B



√
c2 − w2

c2 − 1
− tanh−1

√
c2 − w2

c2 − 1


 . (5)
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From this we see that w → −1 ⇒ z → ih −∞, so long as B < 0 and
real. This takes care of segment WV .

3. w ∈ [−1, 0] (segment V U ): On this segment of Rew, we have
√

c2−w2

c2−1
>

1, so that the hyperbolic tangent is affected. Write

1
2

ln




1 +
√

c2−w2

c2−1

1−
√

c2−w2

c2−1


 =

1
2

ln




√
c2−w2

c2−1
+ 1

(−1)
(√

c2−w2

c2−1
− 1

)

 (6)

and pick the log branch cut such that ln(−x) = −iπ + ln(x). Then

z =
1
2

ln




1 +
√

c2−1
c2−w2

1−
√

c2−1
c2−w2


 +

iπ

2
= tanh−1




√
c2 − 1
c2 − w2


 +

iπ

2
(7)

and so

z = ih−B



√
c2 − w2

c2 − 1
− tanh−1




√
c2 − 1
c2 − w2


− iπ

2


 . (8)

Now, let us choose the point z = q, where q is real, to correspond to
w = 0. This will be true if B = −2h

π and

q =
2h
π


 c√

c2 − 1
− tanh−1




√
c2 − 1
c





 . (9)

This equation now determines c in terms of the real parameter q. Then

z =
2h
π




√
c2 − w2

c2 − 1
− tanh−1




√
c2 − 1
c2 − w2





 (10)

andw → −1⇒ z → −∞ (from the inverse hyperbolic tangent), while
w → 0⇒ z → q.

Let x =
√
c2−1
c . Then equation (9) becomes

1
x
− πq

2h
= tanh−1(x). (11)

The plot in figure 5 shows that there is an acceptable root x for every
q ∈ [−∞,∞], where the root x is always in the range [0, 1].

4. w ∈ [0, 1] (segment UT ): This is the same as w ∈ [−1, 0], since the
function depends on w2, but it runs backwards, and w → 1 ⇒ z →
−∞, w → 0⇒ z → q once more.

5. w ∈ [1, c] (segment TS): Here we have

z =
2h
π




√
c2 − w2

c2 − 1
− tanh−1




√
c2 − 1
c2 − w2





 . (12)
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Figure 5. Graphical
solution to equation for
c, which locates
mapping point q that
terminates 2DEG; x> is
root for πq/2h > 0, and
x< is root for πq/2h < 0.
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Since w > 1⇒
√

c2−1
c2−w2 > 1, we have

− tanh−1




√
c2 − 1
c2 − w2


 = −1

2
ln




1 +
√

c2−1
c2−w2

1−
√

c2−1
c2−w2




=
1
2

ln




(−1)
(√

c2−1
c2−w2 − 1

)
√

c2−1
c2−w2 + 1




=
1
2

ln




1−
√

c2−w2

c2−1

1 +
√

c2−w2

c2−1


− iπ

2

= − tanh−1




√
c2 − w2

c2 − 1


− iπ

2
. (13)

Then

z =
2h
π




√
c2 − w2

c2 − 1
− tanh−1




√
c2 − w2

c2 − 1


− iπ

2




= −ih+
2h
π




√
c2 − w2

c2 − 1
− tanh−1




√
c2 − w2

c2 − 1





 (14)

on this segment. Note that w → 1⇒ z → −ih−∞, as it should.

6. w ∈ [c,∞] (segment SR): On this segment we have
√

c2−w2

c2−1
= −i

√
w2−c2
c2−1

,
so that

tanh−1


−i

√
w2 − c2
c2 − 1


 =

1
2

ln


1− i

√
w2−c2
c2−1

1 + i
√

w2−c2
c2−1




= −1
2

ln


1 + i

√
w2−c2
c2−1

1− i
√

w2−c2
c2−1



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= −i 1
2i

ln


1 + i

√
w2−c2
c2−1

1− i
√

w2−c2
c2−1




= −i tan−1




√
w2 − c2
c2 − 1


 (15)

and

z = −ih+
2h
π


−i

√
w2 − c2
c2 − 1

+ i tan−1




√
w2 − c2
c2 − 1







= −ih− 2ih
π




√
w2 − c2
c2 − 1

− tan−1




√
w2 − c2
c2 − 1





 . (16)

Clearly, for large real w > 0, we have z ≈ −ih− 2ih
π

w√
c2−1

→ −i∞, which is
physically correct. Note that the Schwartz reflection principle implies that
if w = u+ iv and z is a function of w2, then

z({−u+ iv}2) = z({w∗}2) = z({w2}∗) = z∗(w2). (17)

Hence, moving to Rew < 0 in the upper half of the w-plane takes you to
the lower half of the z-plane.
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3. Perfectly Conducting 2DEG

Here V = 0 on the electrodes, and V = V0 on the 2DEG between them.
Then the complex potential is

V (z) =
V0

π
Im

{
ln

(
w(z)− 1
w(z) + 1

)}
≡ ImU(w(z)), (18)

which reproduces the expression given in Churchill and Brown [5]. The
electric field components are

Ex =
∂V

∂x
= Im

[
∂U

∂x

]
= Im

[
∂U

∂z

]
= Im

[
U ′(w)w′(z)

]
(19)

and
Ey =

∂V

∂y
= Im

[
∂U

∂y

]
= Im

[
i
∂U

∂z

]
= Re

[
U ′(w)w′(z)

]
. (20)

But
dw

dz
=

{
dz

dw

}−1

=
iπ

2h
w2 − 1

w
√
w2 − c2

(21)

and
∂U

∂z
=

2V0

π

1
w2 − 1

, (22)

so that

U ′(w)w′(z) =
2V0

π

1
w2 − 1

iπ

2h
w2 − 1

w
√
w2 − c2

=
iV0

h

1
w
√
w2 − c2

. (23)

Since |w| < c everywhere on the z-axis, we can write

Ex =
V0

h
Im

1
w
√
c2 − w2

,

Ey =
V0

h
Re

1
w
√
c2 − w2

, and (24)

|E| =
V0

h

∣∣∣∣ 1
w
√
c2 − w2

∣∣∣∣ .
A few things to note:

1. Ex = 0 for real w; i.e., the vector E is normal to the Re z axis, as it
should be for a perfect conductor.

2. The field has a |z|−1/2 singularity at the end of the 2DEG.

3. The field has |c± z|−1/3 singularities at the electrode corners.
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4. At large z, Re z > 0 (or large w, Rew > 0), the field goes as |z|−2, i.e.,
like a dipole. Hence, the electrode charges completely screen out the
2DEG charge at large distances.

5. For large z, Re z < 0, and Im z[−ih, ih] (or w → ±1), the field ap-
proaches a constant:

Ey = ±V0

h

1√
c(q)2 − 1

, (25)

where the sign is the same as that of Imz. This is also correct, since the
problem is x-independent in this limit. Since C = Q

V0
and Q = 2Ey

by Gauss’s law, we obtain the following nontrivial fringing capaci-
tance/length,

C =
2ε
h

1√
c(q)2 − 1

, (26)

associated with the termination of the gate.

Figure 6 shows a numerical calculation of the 2D density of a perfectly con-
ducting 2DEG using the expressions derived in this report and the param-
eter values q = 4, h = 1 (only their ratio enters in, so the units are arbi-
trary). Note that in a plasma-active device structure, the potential and den-
sity would be coupled in a complicated way, with both acting as degrees of
freedom, rather than having the potential as a constant. Despite the over-
simplification, however, the variation of the 2DEG density is highly non-
trivial, with a minimum about 80 percent of the way to the end of the gas.
This is presumably because the image fields from the sharp corners are try-
ing to hold the electrons within the region between the electrodes, which
competes with their natural tendency to accumulate at the end of the gas.
The fringing capacitance here is about 12.6 ε/h for this geometry.

Figure 6. Density
distribution of perfectly
conducting 2DEG. Note
divergence at endpoint
(z = 4).
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4. Conclusions

The predicted form of the charge density near the end of the gate suggests
that plasma oscillations that propagate to this point will see a depletion
region. This corresponds to a region of decreased Dyakonov-Shur plasma
velocity, which in turn suggests that plasma waves will see an impedance
mismatch between the gated and ungated regions over and above what
would be expected from their intrinsic dissimilarity. Because the central
assumption of the Dyakonov-Shur plasma model of a 2DEG FET is a spe-
cial set of boundary conditions at the gate and source, the existence of this
“natural” boundary condition may require that their assumptions be reex-
amined, and could perhaps explain why plasma oscillations have yet to be
observed in standard HEMTs.
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