Transitioning Model Potentials to Real Systems. II. Application to Molecular Oxygen

Report No. ARL-RP-13
Authors: Bembenek, Scott D.; Rice, Betsy M.
Date/Pages: September 2000; 15 pages
Note: Pub in the Journal of Chemical Physics v113 n6 pp2354-2359, 8 August 2000. Prepared in collaboration with the Department of Chemistry, Colorado State University, Fort Collins, CO.
Abstract: Recently, we introduced a novel computer simulation technique to determine the optimal set of parameters of an interaction potential for a simple monatomic liquid. This technique was used to obtain interaction potentials of the Lennard-Jones form that accurately describe argon over its entire liquid phase at a fixed pressure (S. D. Bembenek and B. M. Rice, Mol. Phys. 97, 1085 1999). Here, we extend this technique to a homonuclear diatomic molecular system, liquid oxygen. This technique was first applied to a system in which the oxygen molecules were treated as point masses interacting through a modified Lennard-Jones potential. Simulations using the resulting optimal set of potential parameters of this system predict densities that are within 0.25% of experiment over the entire liquid range of oxygen at a fixed pressure. However, the errors in the internal energy and the enthalpy were as large as 9.8%. The technique was then used to determine the optimal parameters for a system of harmonic molecules, in which each molecule has two interaction sites centered at the atomic nuclei. The intermolecular interaction is the sum of all site-site interactions described by a modified Lennard-Jones potential. Simulations using these parameters reproduce experimental densities with an error no greater than 0.80%. The predictions of the internal energy and enthalpy differ from experiment by no more than 3.0% for temperatures below 90 K; predictions at 90 K differ from experiment by no more than 4.11%. These results seem to suggest that our method for determining parameters for an interaction potential is also applicable to simple molecular systems.
Distribution: Approved for public release
  Download Report ( 1.000 MBytes )
If you are visually impaired or need a physical copy of this report, please visit and contact DTIC.
 

Last Update / Reviewed: September 1, 2000