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Abstract 

The effects of buried mine explosions in various soil media are investigated by 
numerical hydrocode simulations. Tabular equations of state (EOS) for dry and wet 
sand are constructed. These EOS are used in CTH calculations of a steel plate 
suspended over the detonation of a TNT explosive charge buried in both media. Wet 
sand imparts significantly higher momentum to the plate than dry sand. Calculations in 
both two and three spatial dimensions are compared. 
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1. Introduction 

Numerical simulation of the effects of buried mine explosions on armored 
vehicles is a topic of considerable interest to the U.S. Army Research Laboratory 
(ARL). Recent CTH hydrocode calculations by ARL personnel are discussed in 
the literature [l, 21. It has been discovered that a lack of good equations of state 
(EOS) for various soil types is a major cause of uncertainty in the calculated 
results. 

The present work was commissioned to support ARL personnel in their studies 
of this problem. One of the immediate needs of the ARL program is to simulate 
experiments that will be carried out at the Vertical Impulse Measurement Facility 
(VIMF) under development at ARL. VlMF will measure the loading of a steel 
plate suspended over mines exploded in various types of soil. The vertical 
momentum imparted to the plate is a quantity of particular interest, along with 
the plate distortion and rotation. 

The present study was preliminary and exploratory. The principal goals 
included the following. 

l Assist in setting up CTH input files [3-71 for simulating a VIMF test. 

l Develop preliminary EOS models for soil types of interest. 

l Make sensitivity studies of the CTH predictions to various aspects of the 
model. 

l Make recommendations for follow-on work, where appropriate. 

In Section 2, the material models used in the calculations are discussed. After 
some study of the existing models, we decided to use a recently-developed EOS 
table for fused quartz [8], together with the p-alpha porosity model [6, 71, to 
model dry sand. This table, existing models for water, and the PANDA code [9] 
were also used to construct a new EOS table for wet sand. 

In Section 3, CTH calculations of a buried mine explosion using the new EOS 
models are discussed. Calculations were made in both two and three spatial 
dimensions for varying zone sizes, and for both dry and wet sand. A mine 
buried in wet sand is much more lethal than one in buried dry sand; wet sand 
produced three times as much vertical plate momentum as dry sand. This result 
disagrees with previous calculations made with other soil models. 

The results of this work should be regarded as preliminary. Recommendations 
for additional studies are given in Section 4. 



2. Material Models 

In this section, we describe the equations of state and other constitutive model 
parameters used for the materials in this study-dry sand, wet sand, TNT, RHA 
steel, and air. 

. 

2.1 Dry Sand 

Sand is a porous aggregate of particles of various minerals, most commonly silica 
(fused quartz). The properties of sand can vary, depending on the degree of 
compaction, the minerals present, and the moisture content. In this study, fused 
quartz is assumed to be the only mineral present. A typical density for quartz 
sand is about 16g/cc; that corresponds to a porosity of 27.4%, assuming an 
initial density of 2.2g/cc for solid silica. 

The p-alpha model, together with a tabular EOS for the solid, or “matrix” 
material is used to model sand. Two E0S tables for the matrix material were 
considered-one available in the standard CTH database (EOS no. 7100 on file 
“seslan” [lo]), and a new EOS for fused quartz, which was recently developed 
for another application [8]. 

Figure 1 compares Hugoniots for the two EOS tables with experimental data [ll] 
for quartz sand; the initial densities were in the range l-58-1.65 g/cc. Our new 
fused quartz EOS (no. 7010) gives good agreement with the data; it gives the 
correct densiq at low pressures and reproduces the phase transition in the 
pressure range. The seslan table gives only fair agreement that is not as good as 
our new EOS table. 

Another problem with the seslan table is that it does not include the Maxwell 
constructions that are necessary to model vaporization behavior. CTH 
calculations using this table exhibited tie step problems, evidently due to 
problems in the tension/vaporization region, and would not run to completion. 
Most (but not all) of these problems were eliminated when we modified the table 
to include the Maxwell constructions. In this report, the calculations using the 
seslan table are not discussed. 

The p-alpha model was used to treat the porosity. The initial density was taken 
to be 1.6 g/cc. We used the default crush pressure (I’S = l.OE9 dynes/cmz) and 
did not include an elastic crush region. It may be desirable to improve upon this 
aspect of the model in future work; however, the details of the crushing behavior 
are of secondary importance in predicting the loading of the steel plate (see 
Section 3). 

. 



Figure 1. Hugoniot for sand, initial dens& 1.6 g/cc. Circles represent experimental data 
from van Thiel 1111; solid curve represents new EOS table no. 7010 for fused 
quartz; dashed curve represents seslan EOS table no. 7100 for sand. 

Because sand is so porous, it is not expected to support much elastic deformation 
or tension. Therefore, we used only nominal values for the material strength and 
fracture parameter -the elastic perfectly plastic model with a yield strength of 
LOE9 dynes/cm2 and Poisson’s ratio of 0.3, and a fracture strength of -1.OE6 
dynes/cmz. Here again, these features of the model can be improved in future 
work, but are of secondary importance now. 

2.2 Wet Sand 

For a porosity of 27.4%, fully-saturated wet sand would have a composition of 
85.5% silica/14.5% water by weight and a density of 1.87 g/cc. We constructed 
an EOS table for this composition using the PANDA mixture model [9]. The 
procedure was similar to that used for dry sand (fused quartz), except that water 
and hydrogen were added. Hence, the calculations included the following 
species: fused quartz, liquid quartz, stishovite, water, liquid silicon, molecular 
and atomic oxygen, and molecular and atomic hydrogen. 

Figure 2 compares the calculated Hugoniot for wet sand (EOS table no. 7011) 
with that for dry sand (EOS table no. 7010). While the Hugoniots for the two 
materials are not very different in the pressure-density plane, the porosity of dry 
sand has a significant effect on the Hugoniot energy. As shown in Figure 2, the 
energy of dry sand is 50-100% greater than for wet sand at the same shock 
pressure. For this reason, dry sand is able to absorb more of the explosive energy 
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Figure 2. Hugoniots for wet and dry sand. Both curves were calculated from the models 
described in the text. 

than wet sand in a buried mine explosion. As we will show in Section 3, an 
explosion in dry sand produces less acceleration of the steel plate than an 
explosion in wet sand. 

Because of its water content, wet sand is not expected to support significant elastic 
deformation or tension. Therefore, the yield strength was set to zero. Since the 
EOS does not have a tension region, except at very low temperatures, we have not 
allowed it to fracture. The p-alpha model was not used because the material is 
not porous. 

2.3 TNT Explosive 

The explosive was modeled using the default JWL EOS for TNT. It was detonated 
by programmed burn at the bottom center, with a detonation velocity of 4.93E.5 
cm/s [12]. 

2.4 RHA Steel 

The default SESAME tabular EOS was used for RHA steel. As shown by Kerley 
[13], this EOS treats the polymorphic and melting transitions in iron, and it gives 
very good agreement with shock wave and penetration experiments. We also 
used the same material strength and fracture parameters as Kerley [13]- 
the elastic-perfectly plastic model with a yield strength of 1.5ElO dynes/cm* and 
Poisson’s ratio of 0.285, and the Johnson-Cook fracture model with a fracture 
strength of -3.8ElO dynes/cmz. 
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2.5 Air 

The default SESAME tabular EOS [6] was used for air 

.3. CTH Calculations 

r 
To test the model and examine trends, both two-dimensional (2-D) and 
three-dimensional (3-D) versions of the following problem were considered. 

l The explosive was modeled as a disk of TNT, 30 cm in diameter and 8 cm 
in thickness, with no case. The initial explosive density was 1.63g/cc, 
giving a total explosive weight of 9217g (20.32 lb). 

l The top of the explosive charge was 16 cm (6.3 in) from the soil surface. 

l The RHA steel plate was 46 cm (18 in) from the soil surface. 

. In the 3-D problem, the center of the plate was offset 61 cm (24 in) from 
the center of the explosive charge. In the 2-D problem, the plate was 
positioned directly over the explosive. 

l In the 3-D problem, the plate was 244 cm (8 ft) square and 20 cm (8 in) 
thick. In the 2-D problem, the plate was a disk, 276 cm (9 ft) in diameter 
and 20 cm thick, giving the same mass as in the 3-D problem. 

Calculations were carried out with the February 99 version of CTH, except that a 
more recent version of routine SESESX was used. The modified routine had 
corrections to the p-alpha model, and so it could have some effect on the 
calculations reported here. (The modified routine has been provided to ARL.) 

Figure 3 shows snapshots of a 2-D calculation in dry sand six times from 
0 to 2 ms. The thickness of the sand layer between the explosive and the plate 
drops markedly as the porosity is crushed out and the explosive products 
expand. Only a thin layer of sand actually impacts the plate. For this reason, we 
believe that the explosive gases, not the sand, deliver most of the impulse to the 
plate. If so, the results should not be very sensitive to the properties of the thin 
sand layer. Therefore, details of the porosity crushing and fracture should be of 
secondary importance to the predictions. 

By contrast, the initial porosity of the sand is very important. As shown in 
Figure 2, porosity increases the Hugoniot energy at a given shock pressure, so 
that more porous soils will absorb more of the explosive energy. Note that the 
composition of the soil below the explosive will also have an important effect on 
impulse delivered to the plate. A rock layer, or even a wet sand layer, 
underneath the charge will reflect more of the explosive energy upward, giving a 
greater impulse. 
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In the calculations for wet sand, the soil layer does not thin down as it does in 
dry sand. One reason for this fact is that wet sand is not porous and therefore 
does not compress as much as dry sand when shocked. In that case, the sand 
makes a larger contribution to the impulse delivered to the plate. 

Figure 4 shows the vertical momentum delivered to the plate as a function of 
time for a calculation in dry sand. The predictions are compared for three 
different zone sizes-l, 2, and 3 cm. The results show that the very coarse 
zoning gives reasonable results at late times. The results at early times are most 
sensitive to the zone size. 

Figure 4. 

------- --- 2 pm m-s ------- --- 2 pm m-s 

.--.--.--.l.t.. 3 cm mne8 .--.--.--.l.t.. 3 cm mne8 

Effect of zone size on vertical momentum of plate. Calculations are for a 
buried mine in dry sand. Results are shown for three zone sizes. 

Figure 5 compares the predictions for 2-D and 3-D calculations in dry sand.* The 
same zone size, 3 cm, was used in both cases. The results show that the 2-D 
model is satisfactory for predicting the vertical momentum. Of course, 3-D effects 
would be more important for other quantities, especially those involving the 
rotational motion of the plate. 

* The 3-D calculation used an axis of symmetry at z = 0, y being the vertical direction, so only half 
of the plate was actually included in the calculation. The momentum calculated by the code had 
to be multiplied by a factor of two to account for the full mass of the plate. 
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Figure 5. Effect of geometry on vertical momentum of plate. Calculations are for a 
buried mine in dry sand. Zone size was 3 cm in both 3-D and 2-D 
calculations. 

Finally, Figure 6 compares the vertical momentum of the plate for dry and wet 
sand. Both calculations were made in 2-D geometry, with a zone size of 2 cm. 
The momentum for an explosion in wet sand is roughly three times higher than 
it is for dry sand. This difference is surprising because it is so much higher than 
has been predicted in earlier calculations with other soil models [l, 2]- It can be 
attributed, at least in part, to the following two factors. 

(1) As shown in Figure 2, the porous dry sand can absorb roughly twice as 
much energy of the explosive charge as the nonporous wet sand. 

(2) The sand layer in front of the expanding explosive reaction products is 
thicker for wet sand than it is for the porous dry sand, which compresses 
so much more once it is shocked. However, this result should be 
regarded as preliminary until additional studies are made. 



i 
I I rn I I I 

Figure 6. Effect of soil type on vertical momentum of plate. Calculations were 2-D, with 
zone size of 2 cm. 

4. Conclusions and Recommendations 

We constructed new EOS tables for dry and wet sand and then used these tables 
in calculations of buried mine explosions. Calculations were made of the vertical 
momentum imparted to a steel plate positioned over the exploding mine. It was 
shown that 2-D and 3-D versions of the problem give quite similar results for the 
vertical momentum. 

The calculations for wet and dry sand gave dramatically different results. The 
vertical momentum for the wet sand was about three times larger than it was for 
dry sand-a much greater difference than has been observed in previous 
calculations [I, 21. These results are preliminary, and further studies are needed 
to confirm them. 

The following matters should be investigated in future work. 

(1) The sand models should be tested further and improved, if needed. 
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(2) The densities and water contents of the soil samples should be checked 
against those to be used in the experiments and revised, if necessary. 

(3) Sensitivity studies should be made to identify what other factors in the 
numerical model are most important and where further improvements 
are needed. 

(4) EOS tables for additional soil types (e.g., dry and wet clay) should be 
constructed. 

(5) Further studies of the explosive model should be made-sensitivity tests 
to the detonation products EOS, an analysis of the effects of secondary 
reactions with air, and analysis of the effects of the case. 

(6) Comparisons with VIMF test data will. also indicate areas where the 
modeling needs improvement. 
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