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Abstract 

A key and often quoted metric associated with gun systems is impact point 
accuracy. The extent of impact dispersion is a complex function of a battery of 
parameters, including gun geometry and tolerances, the fire control system, projectile 
manufacturing tolerances, etc. The work reported here investigates potential impact 
point accuracy improvement for a penetrator-type projectile realized by replacing the 
rigid nose cone wind screen with a passive gimballed nose. By comparing the impact 
point dispersion of a rigid projectile with a similar gimballed nose projectile, it is shown 
that impact point accuracy can be significantly improved. For the example penetrator 
projectile considered, impact point dispersion is reduced by more than 50%. 
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1. Introduction 

The merit of a penetrator is often assessed by a relatively short list of metrics that 
typically includes parameters such as terminal velocity, penetrator weight, cost, 
system accuracy, etc. Of these parameters, system accuracy is usually near the 
top of the list in terms of importance, and it is of significant concern during 
weapon system development. Given two identical weapon systems with the 
exception of accuracy, the system with superior accuracy enjoys a distinct 
advantage on the battlefield. A system with improved accuracy can engage 
targets at a greater range and obtain the same probability of hit, providing the 
tankco mmander with increased flexibility during an engagement. Alternatively, 
a system with better accuracy will register more first-volley hits at the same 
range, reducing the counter fire threat. Furthermore, a gun system with superior 
accuracy ultimately requires fewer shots to achieve mission objectives, hence 
inducing less burden on the logistics pipeline. 

The initial state of a projectile as it exits the gun muzzle and enters free flight can 
be viewed as a random process. The random nature of the initial free flight state 
stems from many effects, but perhaps most notably from gun tube and projectile 
manufacturing tolerances combined with the resulting gun tube and projectile 
vibration. As the projectile flies down range, these uncertainties, along with 
aerodynamic disturbances along the trajectory, map into dispersion at the target. 
Designers can take two basic approaches toward improving accuracy; they can 
reduce the variability of projectile initial free flight conditions or reduce the 
sensitivity of the projectile trajectory to initial free flight conditions. One way to 
attack this problem using the latter approach is to replace the rigid wind screen 
with a passive gimballed nose. If the pivot point of the nose section is forward of 
the nose aerodynamic center, then the nose will tend to rotate into the relative 
wind and subsequently reduce aerodynamic jump caused by projectile normal 
force. A passive gimballed nose projectile is an attractive design modification 
because it is a relatively simple mechanism that requires no active electronic 
controls. Furthermore, for many penetrator designs, the nose cone is empty and 
could easily house the gimbal joint. 

Early in the development of controlled rockets, the notion of utilizing a moveable 
nose to actively control the trajectory of a projectile was established [l]. Goddard 
obtained a patent titled “An Apparatus for Steering Aircraft” which outlined the 
basic concept. More recently, Barrett and Stutts [Z] further developed this 
concept and subsequently developed and tested a gun-launched, actively 
controlled nose. The moveable nose concept has also been investigated in 
unguided projectile applications as well. Krantz [3] obtained a patent for a 
telescopic passive nose on a high velocity aerodynamic body. Schmidt and 
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Donovan [4] developed a simple closed form solution for an effective C,, and 
CMa for a moveable nose projectile configuration that is based on projectile 
linear theory [5]. A limited number of prototype projectiles were fired, and 
range data was reduced to estimate aerodynamic coefficients. The work 
reported herein extends the previous work mentioned by simulating the exterior 
ballistics of a gimballed nose projectile in atmospheric flight and subsequently 
comparing impact point dispersion statistics with a similarly-sized rigid 
projectile. The gimbaled nose projectile dynamic model includes the typical six 
degrees of freedom for the main body plus an additional three degrees of 
freedom for the rotation of the nose with respect to the main body. Impact point 
dispersion statistics are generated through Monte Carlo simulation of the initial 
pitch and yaw rates of the projectile. 

2. Gimbal Nose Projectile Dynamic Model 

A schematic of the gimballed nose projectile configuration is shown in Figure 1. 
The girnballed nose projectile consists of forward and aft projectile sections. The 
configuration possesses three position degrees of freedom, which are the inertial 
position components of the mass center of the composite body described in an 

Mass Center of 
Composite Body 

Figure 1. Schematic of the gimballed nose projectile configuration. 



A total of six degrees of freedom describe the aft and forward body orientation. 
The orientation of the aft projectile is obtained through a sequence of three 
body-fixed rotations. Starting from an inertial coordinate system, the aft body is 
successively rotated through Euler yaw, pitch, and roll angles to arrive at its final 
orientation in space. The forward body orientation is also obtained by a 
sequence of three body-fixed rotations. Starting from the aft body reference 
frame, the forward body is successively rotated through Euler yaw, pitch, and 
roll angles to arrive at its final orientation in space. With these definitions, a 
rigid projectile configuration is realized when the forward-body Euler angles are 
zero, & =0, =vF =O. 

As shown in equation 2, the velocity vector components of the mass center of the 
composite body are defined in the aft body reference frame. 

%/I = GA + vf:, + wtg . (2) 

With the definitions given in equations 1 and 2, the resulting translational 
kinematic differential equations are given by equation 3. 

(3) 

Equation 3 contains the transformation matrix from the aft body reference frame 
to the inertial reference frame, which is provided as equation 4. As shown in 
equation 5, the transformation from the forward body reference frame to the aft 
body reference frame takes on the same form as equation 4, except the angles are 
the nose angles. 

i 

ceA c~A s~AseAcwA -cQ~A c$,/eAcvA +s+As~A 

TV = ceAsswA SQeASvA +c4Ac~A c~AseAsvA -s4Ac~A - (4) 
-s 6 %% 1 %% 

CeF % s~FseFc~F - WswF c~FseFcvF + s#FsyF 
TF = CeFVF 1 s&seFsyF +C+FfyF CqjFsgFSyF -s#~c~~ . (5) 

The angular velocity vector expressions for the aft and forward bodies with 
respect to an inertial reference frame are provided in equations 6 and 7, 
respectively. 
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m,,, = pAFA + qAjA +rA.kA - (6) 

With these definitions, the rotational kinematic differential equations are given 
by equations 8 and 9. 

‘. (8) 

The translation dynamic equations for the mass center of the composite body are 
given by equation 10. 

In equation 10, the first term on the right hand side utilizes the aft body angular 
velocity components in the cross product operator since the composite body 
mass center velocity components are defined in the aft body reference frame. 
The total applied force vector components are given in the aft body reference 
frame. 

The rotational dynamics of the forward and aft projectile sections are derived by 
first splitting the system at the gimbal joint, which exposes the constraint forces 
and moments at the joint. As shown in equation 11, by subtracting the force 
balance of both bodies, the components of the constraint force in the aft body 
coordinate system can be written in terms of the rotational state variables and 
their derivatives. 

where 

PA 

qA 

‘A 1 +A, 

PF 

qF 

YF 

+ PAFIJ (11) 
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A = 
“AmF s 

A mA+mF PA' 

AF = mAmF T s 
F P/ mA+mF 

mF mA 

BAF = mAfmF mA+mF 

(13) 

(12) 

(14) 
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s = 
PF 

SN = 
PF 

0 

pFz 
-FF 

Y 

1 
0 

S 
WA 

= 
I 

rA 

L-qA PA ’ 1 

-P FF 
FZ 
0 -a; 

X 

pFx 
0 

-rA qA 

0 1 -PA J 

and 

s 
@F 

= 

(16) 

I , (17) 

(18) 

(19) 

The constraint moment at the gimbal joint is generated by friction in the joint and 
potentially by geometric interference between the nose and main projectile body 
when the total angle between the nose and projectile axes of symmetry exceeds a 
specific value. Gimbal joint friction is modeled as viscous damping. The gimbal 
joint friction constmi.nt moment is proportional to the difference in angular 
velocity between the two projectile body components. Geometric interference is 
modeled as a stiff linear torsion spring with dead band. The dead band region 
corresponds to the rotational envelope of the nose with respect to the main 
projectile body. The gimbal nose geometric interference constraint moment 
magnitude is proportional to the angle between TA and zF, denoted,as ag , and is 
computed using equation 20. 

ag = cos-’ (cosBF cos yF) . (20) 

The direction of this moment is perpendicular to the plane formed by FA and FF. 
Equation 21 provides an expression for the gimbal joint constraint moment. 
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sin2(OF) + ma (Q,) sin2 (y,) 

where 

-t 

0 ifag I a* 

Mg 
Kg(ag-a*) ifag > a*, 

(W 

and 

PA 

qA 

rA I - TF c 1 

The first term in equation 21 is the geometric interference constraint moment, 
while the second term represents the friction constraint moment. Notice that 
when TA and FF are aligned (a, = 0 ), the interference constraint moment is 
SiIlgUl~. Fortunately, this singularity is avoided since the gimbal joint 
interference constraint moment is zero in this case. 

The rotational dynamic equations of the aft and forward projectile bodies are 
given by equations 24 and 25, respectively. 

(24) 

By substituting the constraint force and moment expressions into equations 24 
and 25, the final form of the rotational dynamic equations is obtained and 
expressed in equation 26. 
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I& A 
A 
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TFSF A 
A 

F 

-5 
A 

TFIF + T 
F 

where 

and 

1 I gF = -TFSo IF 
F 

qF 

. rF 

C.’ ’ . 

PA g Ax 

qA g4 

YA g4 

PF = g, ’ 

A 
F & g, 

-/F, $5, 

(26) 

(27) 

(28) 

Collectively, equations 3, 8, 9, 10, and 26 constitute the gimbal nose projectile 
dynamic model. 

The total external load acting on the composite body is due to weight and steady 
aerodynamic forces on both the forward and aft body projectile components. 
The weight force components in the aft body reference frame is given by 
equation 29. 

- (29) 

The steady aerodynamic force on the aft body is provided by equation 30. 

XA 1’ yA E-i 

ZA 

(30) 
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Expressions for the forward body aerodynamic forces take on the same form as 
equation 30. Aerodynamic coefficients in equation 30 depend on local Mach 
number at the projectile mass center and are computed using linear interpolation 
from tabulated data. 

The right-hand side terms in equation 26 contain the external moments acting on 
each section of the projectile. These equations contain contributions from steady 
and unsteady aerodynamics. The steady aerodynamic moments are computed 
for each individual body with a cross product between the steady body 
aerodynamic force vector and the distance vector from the center of gravity to 
the center of pressure. The unsteady body aerodynamic moments provide a 
damping source for projectile angular motion and are given for the forward body 
by equation 31. 

where 

(31) 

9, =$p,’ +v2 +w2)rcD2. 

The expression for the aft section takes on similar form. Air density is computed 
using the center of gravity position of the projectile in concert with the standard 
atmosphere [6]. Finally, the total aerodynamic angle of attack of the aft section is 
defined in equation 32. 

a! -tan-l Jvz+wz 
A- 

t 1 

. (32) 
U 

The aerodynamic angle of attack of the forward body is computed in the same 
manner, except the velocity components are first converted to the forward body 
reference frame. 

3. Results 

The equations of motion for the nine degree-of-freedom gimbal nose projectile 
model discussed, and a six degree-of-freedom rigid projectile model [6] were 
numerically integrated to obtain simulated impact points at 1 km, 2 km, and 
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3 km. The equations of motion were integrated using a fourth-order Runge- 
Kutta scheme with a time step of 0.000001 s. The physical properties of the 
projectile are provided in Table 1. Table 2 shows the nominal launch conditions 
of the projectile. 

Table 1. Baseline configuration properties. 

Ga 2.00 

Gimbal Joint Location 0.38 m 

Figure 2,3, and 4 show position traces vs. time under baseline launch conditions. 
This trajectory is. typical for a cannon-launched tank projectile. Both the rigid 
and gimballed nose projectiles follow a similar path with small differences not 
notable when viewing the entire trajectory. Figure 5 plots the velocity of the 
mass center of the rigid and gimbal nose projectiles over the baseline trajectory. 
The total velocity decays from a launch speed of 5,590 ft/s to a speed of 
2,470 ft/s at 3-km range. The roll rate of the aft section of the gimbal nose 
projectile and the roll rate of the rigid projectile are shown in Figure 6. Because 
the aft body of the gimbal nose projectile has slightly lower roll inertia than the 
rigid projectile and the gimbal friction is zero, the rigid projectile roll rate is 
slightly less than the aft section of the gimbal nose projectile. The Euler pitch 
and yaw angles of the aft main projectile body are compared to the rigid 
projectile Euler pitch and yaw angles in Figures 7 and 8, while the Euler pitch 
and yaw angles of the nose section are plotted in Figures 9 and 10. Because the 
nose section inertia properties are smaller than the main projectile body, it 
oscillates at a notably higher frequency. Both the nose and main projectile 
sections angular motion is well behaved, with maximum oscillation under 1”. 

Dispersion at the target was created through Monte Carlo simulation of the 
initial pitch and yaw rate of the projectile. The initial pitch and yaw rates were 
modeled as independent Gaussian random variables with a mean of zero and 
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Table 2. Nominal initial conditions. 

Parameter 

X 

Value 

5.4 m 

Y 6.6e-6 m 

z -0.001 m 

u 1703.6 m/s 

V 0.13 m/s 

W -0.9 m/s 

VA 

@A 

@A 

PA 

qA 

PA 

WC 

3.0" 

5.0" 

0.0” 

0.0 deg/s 

60.7"/s 

-0.8"/s 

0.0” 

OF 
@F 
PF 

a, 

0.0” 
0.0” 

O.O”/s 

60.7"/s 

rF 
-0.8"/s 

standard deviation of 3 rad/s. A sample size of 50 simulations was used in 
computing impact point dispersion statistics. Figures 11-13 show the Monte 
Carlo simulation impact points for the baseline rigid and gimbal nose projectile 
configurations at a range of 1 km, 2 km, and 3 km, respectively. In all the charts, 
the large circles correspond to a region such that 66% of the shot impacts fall 
within the circle. The large dashed circle corresponds to the rigid projectile, 
while the small solid circle corresponds to the gimbal nose configuration. The 
dispersion circle radii for the rigid projectile at 1 km, 2 km, and 3 km is 1.1 m, 
2.2 m, and 3.3 m, while the dispersion circle radii for the gimbal nose projectile at 
1 km, 2 km, and 3 km is 0.5 m, 0.9 m, and 1.4 m, respectively. Notice that the 
mean impact point of the two projectile configurations is different. The ratio of 
the dispersion circle radius for the gimbal nose to rigid projectile configuration is 
0.43, and it is independent of range. Thus, for the example penetrator projectile 
equipped with a gimbal nose, dispersion at any range can be reduced by a factor 
of 0.43. 
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Figure 2. Range vs. time. 
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Figure 3. Cross range vs. time 
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Figure 4. Altitude vs. time. 
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Figure 5. Total velocity vs. time. 
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Time (set) 

Figure 6. Roll rate vs. time. 
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Figure 7. Euler pitch angle vs. time. 

14 



3.08 

3.06 

3.04 

B 
9 
a, 3.02 
P 

a 
3 

2 3 
.G 
13 

2.98 

2.96 

____. Gi&alNase(AftBody) 1 
I I I I I I I I I 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
lime(sec) 

Figure 8. Euler yaw angle vs. time. 
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Figure 9. Euler pitch angle of nose vs. time. 
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Figure 10. Euler yaw angle of nose vs. time. 

-84 

E -86 
N 

i6.5 

-87 

i7.5 

-88 L 
50 50.5 51 51.5 52 52.5 53 53.5 54 

Y 0-N 

Figure 11. Impact point dispersion at 1 km range. 
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Figure 13. Impact point dispersion at 3 km range. 
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The impact point charts shown in Figures 11-13 are for a nominal configuration. 
As shown in Table 1, the baseline gimbal nose configuration has a mass ratio of 
0.99, and the gimbal joint is frictionless. Figure 14 investigates how the nose 
normal force coefficient effects the dispersion radii previously discussed. When 
the lift coefficient of the nose is zero, the aerodynamic normal load on the 
projectile is only from the aft body. The impact statistics approach the rigid 
projectile case, which are shown as diamonds on the chart. A steady decrease in 
the impact dispersion is realized as the nose normal force coefficient C& is 
increased according to slender body theory CLA = 2. Figure 15 plots the effect of 
the mass ratio between the forward and aft projectiles section on impact point 
dispersion radii. Within practical design limit, the mass ratio between the 
forward and aft projectile sections does not effect impact point dispersion. 

-0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
Lift Coefficient of Fonnrard Section (CL) 

Figure 14. Impact point dispersion vs. nose lift coefficient. 
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Figure 15. Impact point dispersion vs. forward-to-tota mass ratio. 

Figure 16 shows the impact point dispersion radii at 1 km, 2 km, and 3 km range 
as a function of the friction constant C,. At 1 km and 2 km range, the dispersion 
radii is an essential constant for all values of C,. However, at range of 3 km, the 
dispersion rapidly increases. Since projectile velocity exponentially decreases 
with range, a critical combination of projectile velocity and damper constant 
combined to induce large impact point dispersion, which is in fact a much larger 
dispersion than a similar rigid projectile. The root of this problem is shown in 
Figures 17 and 18, which plot the position of the tip of the nose of the projectile 
with respect to the main projectile body. ln the case where the gimbal joint is 
frictionless (Figure 17), the nose initially rotates with relatively large angles and 
progresses toward a steady state limit cycle of low amplitude. ln the case where 
C, = 1.0 (Figure IS), the nose angle continuously increases as it approaches the 
interference limit of total nose deflection of ag = 5”. Hence, the rotational 
dynamics of the nose are unstable in this case. 
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Figure 16. Impact point dispersion vs. gimbal viscous friction coefficient. 
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Figure 17. Motion of nose tip with respect to the aft body (C, = 0.00). 
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. 

1 

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 
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Figure 18. Motion of nose tip with respect to the aft body (C, = 1.00). 

4. Conclusion 

A penetrator projectile equipped with a gimbal nose wind screen has the 
potential to drastically reduce impact point dispersion. By mounting the gimbal 
joint forward of the nose aerodynamic center, the nose tends to turn into the 
wind, reducing the sensitivity of the trajectory to launch disturbances. In the 
example case considered, impact point dispersion was reduced by more than 
50%. The mean impact point of the rigid and gimbal nose projectile 
configurations are different. This difference will require fire control system logic 
to be modified, depending on the particular projectile configuration being 
launched. Gimbal joint friction is an important design parameter that influences 
the effectiveness of the gimbal joint to reduce impact point dispersion. For 
sufficiently large friction in the gimbal joint, the impact point dispersion 
increases well beyond the dispersion encountered with a rigid body projectile 
because the nose rotational dynamics are unstable. Hence, the gimbal joint must 
be designed such that the joint does not degrade as the round sits in long-term 
storage. Impact point dispersion steadily increases as the nose aerodynamic 
normal coefficient decreases. Also, dispersion is essentially independent of the 
mass ratio of the nose and main projectile sections. 
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