
Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-TR-2556 August 2001

Using Loop-Level Parallelism
to Parallelize Vectorizable Programs

Daniel M. Pressel
Computational and Information Sciences Directorate, ARL

Jubaraj Sahu and Karen R. Heavey
Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.



Abstract

One of the major challenges facing “high performance computing” is the
daunting task of producing programs that achieve acceptable levels of
performance when nm on parallel architectures. Although many organizations
have been actively working in this area for some time, many programs have yet
to be parallelized. Furthermore, some programs that were parallelized were
done so for obsolete systems. These programs may run poorly, if at all, on the
current generation of parallel computers. Therefore, a straightforward approach
to parallelizing vectorizable codes is needed without introducing any changes to
the algorithm or the convergence properties of the codes. Using the combination
of loop-level parallelism and RISC-based shared memory SMPs  has proven to
be a successful approach to solving this problem.

ii



Acknowledgments

The authors would like to thank Marek Behr for permission to use his results in
this report. They would also like to thank the entire CHSSI CFD-6 team for their
assistance in this work as part of that team. They would like to thank their many
colleagues that have graciously assisted them in all aspects of the preparation of
this report. Additional acknowledgments to Tom Kendall, Denice  Brown, and
the Systems Staff for all of their help. They would also like to thank the
employees of Business Plus, especially Deborah Funk and Maria Brady who
assisted in the preparation and editing of this report.

This work was made possible through a grant of computer time by the DOD
HPCM Program. The time was spent at the ARL-MSRC, NAVO-MSRC,
NRL-DC, TARDEC-DC, and SPAWAR-DC along with smaller amounts of time
at other sites. Funding was provided as part of the CHSSI administered by the
DOD HPCM Program.

.  .  .
lu



iv



Contents

Acknowledgments

List of Figures

List of Tables

1 . Introduction

2 . Class  of Codes

3 . Symmetric Multiprocessors

4 . The Approach

5 . Results

6 . Tools

7 . The Effect of the NUMA Architecture

8. Related Work

9 . Conclusion

10. References

Glossary

Distribution List

Report Documentation Page

. . .
111

vii

ix

1

2

4

6

11

14

15

17

19

21

23

25

29

V



vi



List of Figures

Figure 1. Predicted speedup  for loops with various levels of parallelism. . . . . . . . . . . 10

Figure 2. The performance of the shared memory version of the F3D code
when run on a modern scalable SMP  (l-million grid point test case). . . . . . . . . . . . . 13

Figure 3. The performance of the shared memory version of the F3D code
when run on a modem scalable SMI? (59-million  grid point test case). . . . . . . . . . . 13

Vii



. . .
Vlll



List of Tables

Table 1. The minimum amount of work (in cycles) per parallelized loop
required for efficient execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

Table 2. The available amount of work (in cycles) per synchronization event
for a l-million grid point zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..f................................... 6

Table 3. Predicted speedup  for a loop with 15 units of parallelism. . . . . . . . . . . . . . . . . . . . . . 10
Table 4. Measured performance of the RISC-optimized shared memory

version of F3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Table 5. Systems used in tuning/parallelizing  the RISC-optimized shared

memory version of F3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

,

i x



INTENTIONALLYLEFTBLANK.



1. Introduction

One of the major challenges facing “high performance computing” is the
daunting task of producing programs that achieve acceptable levels of
performance when run on parallel architectures. In order to meet this challenge,
the program must simultaneously achieve three goals:

(1) Achieve a reasonable level of parallel speedup  at an acceptable cost.

(2) Demonstrate an acceptable level of serial performance so that moderate-
sized problems do not require enormous levels of resources.

(3) Use an algorithm with a high enough level of algorithmic efficiency that the
problem remains tractable.

Even though many organizations have been actively working in this area for
5-10  years (or longer), many programs have yet to be parallelized. Furthermore,
some programs that were parallelized, were done so for what are now obsolete
systems (e.g., SIMD’ computers from Thinking Machines and MASPAR),  and
these programs run poorly, if at all, on the current generation of parallel
computers. There has also been a problem that some approaches to
parallelization can subtly change the algorithm and result in convergence
problems when using large numbers of processors [ll. This is a common
problem, particularly when using “domain decomposition” with “implicit” CFD
codes. There are algorithmic solutions to this problem (e.g., multigrid codes or
the use of a preconditioner);  however, many of these solutions have problems in
their own right (e.g., poor scalability).

At the other end of the spectrum, there are those who champion automatic
parallelization. They expect to soon be able to parallelize production codes for
efficient execution on modem production hardware. Unfortunately, as a general
rule, this has not happened.

From discussions such as this, talks with numerous researchers, and the authors’
research at the U.S. Army Research Laboratory, the following can be concluded:

l Writing parallel programs is a challenge.

l Writing efficient serial programs on today’s RISC and CISC processors
with their memory hierarchies (i.e., cache) is a challenge.

l Requiring the program to show near-linear scalability out to hundreds or
thousands of processors greatly complicates matters.

‘All items in bold are defined in the Glossary.



l Requiring the program to show portable performance across all or most
modem parallel architectures greatly complicates matters.

l Modem processors are fast enough that for many problems that have
traditionally been considered to be the sole domain of supercomputers,
they may now be solvable using a moderate-sized system (e.g.,
W-100  GFLOPS of peak processing power) given a sufficiently efficient
algorithm and implementation.

Therefore, a straightforward approach to the parallelization of one or more
important classes of codes is needed. This approach meets the following
requirements:

l It works with a class of machines that has more than one member in it, but
it need not include the entire universe of parallel computers.

l It does not require an unreasonable amount of effort.

l The results achieved by using this approach must satisfy the needs of the
user community.

l The combined hardware and software costs must be acceptable.

l At least for small- to moderate-sized problems, it must be possible to
complete the project before the equipment is obsolete.

The remainder of this report begins by discussing an approach developed at the
U.S. Army Research Laboratory that was designed to meet all of these
requirements for a large and important class of codes. Following this, the results
of applying this approach to a specific production code are discussed. It
concludes by considering some issues in greater detail and with a discussion of
related work.

2. Class of Codes

For this project, the class of codes that was selected was the class of vector&able
codes. Of particular interest were those vectorizable codes that were considered
to be nonparallelizable. A representative code was selected (F3D,  an implicit
CFD code) 121.  The following factors make this class of codes particularly
interesting:

l From the mid-1970s to the mid-1990s,  the terms “vector computers” and
“supercomputers” were nearly synonymous (e.g., Cray C90).

2



l Many of the traditional vector&able  algorithms are known to be
computationally more efficient than the algorithms most frequently
associated with parallel computing.

l If one can efficiently tune one of these jobs to run on a parallel computer,
then any job that exhibits an acceptable level of performance when using
one processor of a C90 should exhibit an acceptable level of performance
when using a modest number of RISC processors.

l Problem sizes that are 10 times greater (that is, 10 times overall, not
10 times in each direction) are likely to exhibit an acceptable level of
performance when using a moderate-sized system (e.g., W-100  GFLOPS of
peak processing power).

l In recent years, SGI, SUN, Convex/HP, DEC/Compaq, and IBM have
produced SMPs  with this level of performance.

l It is our belief and experience that many of these systems are extremely
well suited for running programs that have been parallelized using ‘loop-
level parallelism” (e.g., OpenME).

l Since vectorization is a form of loop-level parallelism, there is reason to
hope that many vectorizable programs can be parallelized using this
technique. While it is not always clear that this will be the best approach to
parallelizing these programs, if one focuses on programs that are hard to
parallelize, that objection should be effectively eliminated.

Unfortunately, this is not the end of the story. It would be nice if things were this
simple, but they are not. Three important obstacles had to be conquered before
this project could get off of the ground:

(1) Sufficiently powerful SMPs  had to come onto the market. At the start of
this project, no one had yet produced a RISC-based SMP with a peak speed
of 10 GFLOES,  let alone 100 GFLOPS.

(2) All RISC processors  use caches, and these processors were generally
considered to be poorly suited to the needs of running scientific codes 131.

(3) Vectorization is normally applied to the innermost loop of a loop nest.
However, as will be seen in section 3, when using OpenMP  and similar
techniques, one is well advised to parallelize outer (or at least middle)
loops. In some cases, this necessitates the interchanging of loops in the
loop nest. It may also be desirable to perform other transformations such
as combining loops under a common outer loop.

3



3. Symmetric Multiprocessors

There are primarily four types of parallel computers in use today:

(1) Distributed memory systems. These are also sometimes referred to as
“shared nothing.” They are almost always programmed using a message-
passing library (in recent years, MPI has become the standard library).

(2)  Globally addressable memory. Cray Research frequently referred to the
Cray T3D and T3E as shared memory architectures. A more appropriate
description is globally addressable memory. While it is true that each
processor can access all of the memory associated with a job, there are some
important differences between these systems and true shared memory:

l The normal load and store instructions that are normally used to access
the local memory cannot be used to access the remote memory.

l While it is theoretically possible to use the same instructions to perform
loads and stores involving both local and remote memory, these
instructions are not cache coherent.

l The introduction of the synchronization events needed to replace
hardware coherency with software coherency can significantly interfere
with the performance of the code. Since this requires replacing an
automatic function of the hardware with a manual function of the code
writer, it can greatly complicate efforts to produce valid code.

(3) Master slave. There have been a wide range of these systems produced in
the past, including many of the SIMD-based systems. For the purpose of
this report, we will discuss only shared memory systems using this
organization. Their advantage was that this organization made it easy to
port a uniprocessor operating system to a parallel computer. Their
disadvantage was that their performance scaled very poorly. As a result,
few such systems are still being produced.

(4) Symmetric multiprocessor. While more than one type of system might
conform to this title, this report uses it only to refer to shared memory
systems in which most, if not all, critical sections of the operating system
can run on any of the processors (this is where the term symmetric comes
from) [4]. Furthermore, if the processors have one or more levels of cache
(as all RISC-based systems do, but which most vector-based systems lack),
the system is cache coherent (otherwise, this report would refer to it as
globally addressable).

4



Now consider the constraints that the choice of hardware places on the effort to
efficiently parallelize a program. When using loop-level parallelism based on the
use of compiler directives, there is no need to explicitly generate messages. The
data flows between processors and main memory (in some cases, it even flows
directly between two processors) as needed. (For the time being, questions of
efficiency in a NUMA or COMA architecture are ignored; section 7 discusses
these questions.) Therefore, the main cost of parallelization is assumed to be the
synchronization cost associated with exiting a parallel section of code. On
different machines and load factors, the synchronization cost (for scalable
systems) ranges from 2,000 to l-million cycles (or more). From the standpoint of
efficiency, it is preferable to keep these costs below 1% of the runtime.  Table 1
shows how many cycles of work must be associated with the loop when run on a
single processor in order to achieve this goal. It is important to keep in mind that
the synchronization cost is highly dependent on the system load and the design
of the memory system but is almost independent of the design of the processor.
Therefore, as the memory latency (when expressed in cycles) for a random
memory location continues to increase, the synchronization costs would also be
expected to increase.

Tablel.  The minimum amount of work (in  cycles) per parallelized  loop required for
efficient execution.

Number of
Processors Used

Hypothetical Synchronization Cost (in Cycles)

10,000 100,000 1,000,000

2 2,000,000 20,000,000 200,000,000

8 8,000,OOO 80,000,OOO 800,000,000

32 32,000,OOO 320,000,OOO 3,200,000,000

128 128,000,OOO 1,280,000,000 12,800,000,000

Two conclusions can be reached from Table 1:

(1) It is imperative to minimize the synchronization costs.

(2) Every effort should be made to maximize the amount of work per
synchronization event (see Table 2).

Table 2 clearly demonstrates the advantage of parallelizing primarily outer
loops. It also demonstrates the difficulty associated with the efficient
parallelization of boundary condition routines. As such, it is frequently desirable
to leave such routines unparallelized. However, for larger numbers of
processors, this may result in problems with Amdahl’s Law (too much time spent
executing serial code).



Table 2. The availtible  amount of work (in cycles) per synchronization event for a
l-million grid point zone.

Problem Grid No. of Loop Work Per Grid Point (in Cycles)

VPe Dimension Iterations 1n  I 1m-l I 1 .nnn

1-D 1,000,000 1,000,000 10,000,000 100,000,000 1,000,000,000

2-D 1,000 x 1,000 1,000

Inner loop 10,000 I 100.000 I 1.000.000
Outer loop 10,000,000 100,000,000 1,000,000,000

Boundary condition 10,000 100,000 1,000,000

3-D 100 x 100 x 100 100

Inner loop 1,000 10,000 100,000
Ih4iddle  loop I 100,000 I 1.000.000 I 10.000.0001
Outer loop 10,000,000 100,000,000 1,000,000,000

Boundary condition - inner loop 1,000 10,000 100,000

Boundary condition - outer loop 100,000 1,000,000 10,000,000

4. The Approach

Since this approach is predicated on the assumption that one can achieve the
desired level of performance when using modest-to-moderate numbers of
processors, the first step is to improve the serial efficiency of the code. As was
previously stated, the general consensus was that this would be difficult,
possibly even impossible, to achieve. However, our experience showed that this
need not be the case, which is not to say that the effort could be completed in a
few days. There were four main concepts used in this part of the effort.

(1) Use a large memory SMP, which was a key enabling factor for this part of
the effort. It is easier to perform serial tuning when working with serial
code.

(2) Use trad’ti1 onal techniques such as reordering of Ioops and/or array
indices, blocking, and matrix transpose operations to increase the locality of
reference.

(3) Reorder the work so that rather than streaming data into and out of the
processor, the code would  stress maximizing the amount of work per cache
miss.’

%-I this respect, implicit CFD codes have a definite advantage over explicit CFD codes, since
they do more work per time step.

6



(4) Adjust the size of scratch arrays so that they can be locked into cache. In
particular, there were two key loops in F3D that had dependencies in two
out of three directions. In order to vectorize these loops, the original
programmers had to process data one plane at a time. This meant that the
size of the scratch arrays were proportional to the size of a plane of data.
Clearly for large problems, these scratch arrays were unlikely to fit into
even the largest caches. However, since RISC processors do not rely on
vectorization to achieve high levels of performance, it was possible to resize
these arrays to hold just a single row or column of a single plane of data.
The arrays now comfortably fit in a l-Ml3  cache for zone dimensions
ranging up to about 1,000.

Therefore, one can see that while SMPs suffer from a larger memory latency
(relative to the memory latency of most workstations and MPPs),  the presence of
large caches can more than make up for this limitation.

Once most of the serial tuning had been completed, it was possible to parallelize
the code. Here, one of the strengths of loop-level parallelism really shined. With
both HPF and traditional message-passing code, one is generally left with an all
or nothing proposition. In other words, either all of the code must be
parallelized, or the program does not run at all. When using loop-level
parallelism in conjunction with an SMP, this is definitely not the case. Therefore,
it is possible to use profiling to find the expensive loops and then to parallelize
them one (or a few) at a time. This allows one to alternate between
parallelization and debugging, which, in most cases, greatly simplifies the
debugging process. It also allows one to better judge the effectiveness of what
has been tried. In many cases, this greatly simplifies the task of parallelization
compared to all-or-nothing approaches such as HPF or using message-passing
libraries (e.g., MPI). This is not a unique observation, a similar observation was
made by Frumkin  et al. [5],  as well as others.

As previously mentioned, vectorization is a form of loop-level parallelism.
Therefore, in theory, one should be able to use OpenMP  to parallelize
vectorizable code. In practice, there are four’ additional steps that need to be
taken if one is to achieve high levels of performance:

(1) Since vectorization deals with inner loops, it is generally desirable to
parallelize the outer loops, even though they are not involved in the
vectorization of the program (see example 1).

(2) It is frequently desirable to merge loops together (see example 2). It should
be noted that in some cases the merging of loops for purposes of
parallelization can be combined with the serial tuning technique of code
blocking.

7



CSdoacross  local (L,J,K)
DO 10 L=l,LMAX

DO 10 K=l,KMAX
DO 10 J=l,JMAX

Some computation with no dependencies in any
direction

10 CONTINUE

Example 1. ParaIIeIizing  an outer loop.

CSdoacross  local (L,J,K)
DO 20 L=l,LMAX

DO 10 K=l,KMAX
DO 10 J=l,JMAX

Body of the first loop
10 CONTINUE

DO 20 K=l,KMAX
DO 20 J=l,JMAX

Body of the second loop
20 CONTINUE

Example 2. Merging loops to reduce synchronization costs.

(3) In some cases, one can significantly improve performance by parallelizing  a
loop in a parent subroutine (in some cases, one has to first create such a
loop) (see example 3). It should be noted that in general this optimization
reduces the number of synchronization events by l-3 orders of magnitude!

(4) One has to be very careful when dealing with arrays that are parts of a
common block. When possible, it is desirable to move the arrays out of the
common blocks (in some cases, this has to be done during the serial tuning
as a first step in the resizing of those arrays).

Two things are important to remember:

(1) The more processors that are used, the harder it is to justify  the overhead
associated with the parallelization of boundary condition subroutines (as
well as other inexpensive subroutines).

(2) The more time is spent in serial code, the harder it is to show benefit from
using larger (e.g., 50+) numbers of processors.

Therefore, one is left with the problem of choosing between the lesser of two
evils:

(1) As the number of processors increases, the speed first peaks and then starts
to drop off (assuming that the synchronization costs are a function of the
number of processors being used).

(2) As the number of processors increases, the speed approaches an asymptotic
limit.

8



C
C

C
C

SUBA  batches up a 2-dimensional buffer for processing by
SUBB.

CALL SUBB(...)
C SUBB has a dependency in one direction, which requires
C processing a 2-dimensional buffer if the code is to be
C vectorizable.
10 CONTINUE

DO 10 J=l,JMAX
NOTE: We will assume that there are dependencies in the J
direction that inhibit parallelization.

CALL SUBA(...)

(a)  What the original code looked like.

CSdoacross  local (L,J)
DO 10 L=l,LMAX

DO 10 J=l,JMAX
CALL SUBA(...)

C SUBA  now batches up a l-dimensional buffer that easily fits
C in a large cache, for processing by SUBB.

CALL SUBB(...)
C SUBB has a dependency in one direction, but since we are no
C longer dealing with vector processors, this does not matter.
C Therefore SUBB can safely process the much smaller
C l-dimensional buffer,
10 CONTINUE

(b) The cache optimized parallelized code.

Example 3. Parallelizing a parent subroutine.

The net effect of this is that past a certain point, it is hard to show good speedup
when using loop-level parallelism. While the authors are familiar with a number
of researchers who felt that this limit would be around 4-16 processors, it is our
experience that one should be able to efficiently use 30-128  processors
(depending on the problem and the problem size).

Another related problem is that most people are used to thinking in terms of
problems that have a nearly infinite level of parallelism. In such cases, the ideal
speedup  is linear. However, with loop-level parallelism, one is frequently
dealing with parallelizing loops that have between 10 and 1,000 iterations. This
means that the available parallelism is in the range of lO-1,000.  When the
number of processors is within roughly a factor of 10 of the available parallelism,
the ideal speedup  is no longer linear. Instead, the curve shows a distinctly stair-
step shape. Both Table 3 and Figure 1 show where this shape comes from.

9



10

Table 3. Predicted speedup  for a loop with 15 units of parallelism.

Number of
Processors

1

Maximum Units of
Parallelism Assigned
to a Single Processor Predicted Speed Up

15 1.000

2 8

I 3 I 5

4 4 3.750

5-7 3 5.000

8-14 2 7.500

15 1 15.000

50
f 5 Units of Parallelism

- - - - 15 Units of Parallelism
---f-f- 25 Units of Parallelism

i

- - - - 35 Units of Parallelism i

-.----- 45 Units of Parallelism I
. !

40 -

%
m

8
I i

a 30 - I i

co I i

1
1 I !

. -
% 20-

i-f. ._.I -..+-..-.*-A

ii
r-&&---J

*-.. .*-f.

c lo-

*J*,LII
p==r-

10 20 30 40 50

Number of Processors
Figure 1. Predicted speedup  for loops with various levels of parallelism.



5. Results

We have been able to do serial runs on an SGI Origin 2000 for problem sizes
ranging from l- to 200-million grid points without a significant decrease in the
MFLOPS rate. This is the exact opposite of what was expected based on the
literature at the time [31. Furthermore, serial tuning on the SGI Power Challenge
resulted in a speedup  of more than a factor of 10. Attempts were made to
measure the speedup  on a Convex Exemplar SPP-1000. However, even though a
3-million  grid point problem was being used, the vector version of the code was
running so slowly that the job was killed before it had completed 10 time steps
(the way things were going, this would probably have taken the better part of a
day or more). The serial-tuned code completed 10 time steps in 70 min.

An interesting outcome from the parallelization of this code is that for larger
numbers of processors, the performance as a function of the number of
processors used is far from linear. Instead, the curve can best be described as a
stair step. (See section 4 for an explanation of this effect.) When using loop-level
parallelism with a three-dimensional code, there can be dependencies in one or
more directions for key loops. With a maximum loop dimension of M, the
available parallelism is roughly M. Therefore, one can expect to see jumps in
performance at M/5, M/4, M/3, M/2, and M processors. This effect is
demonstrated in Table 3 and Figure 1 and can be seen in the results in Table 4
and Figures 2 and 3 (e.g., the nearly flat performance between 48 and
64 processors for the l-million grid point test case and between 88 and
104 processors for the 59-million grid point test case).

Table 4 shows some representative results for the R12000-based  SGI Origin 2000
(128 processors, 300 MHz) and the UltraSPARC  II-based SUN HPC 10000
(64 processors, 400 MHz).” In reporting these results, there is the question of
what is the best metric to use. We prefer to avoid speedup,  since it fails to
describe the actual performance of the code and can actually favor poorly
performing codes (the lower the serial performance, the easier it is to show good
speedup). From the user’s perspective, what really matters are metrics such as
run time and turnaround time. However, as the number of processors approach
the available parallelism, the predicted run time should asymptotically approach
some low value, making it difficult to evaluate the performance of the code. Our
preferred metric is “time steps/hour,” since it allows the user to easily estimate

*On  the SGI Origin, the C$doacross directives were used. On the SUN HPC 10000, the SUN
specific PCF directives were used, since at the time, SUN did not support either SGI’s C$doacross
directives or the OpenMP directives.

1 1



Table 4. Measured performance of the RISC-optimized shared memory version of F3D.

Number of Problem Size Performance

Processors (Million Grid SUN HPC 10000 SGI R12000 Origin 2000
Used Points) Time Steps/Hr MFLOPS Time Steps/Hr MFLOPS

1 1s 138 1.80E2 181 2.37E2

32 1 T-----2,786 1 3.64E3  1 2,877 1 3.76E3  1
48 1 3,093 4.04E3 3l545 3.63E3
64 1 2,819 3.69E3 3,694 4.83E3
72 1 N/A N/A 4,105 5.37E3
88 1 N/A N/A 5,087 6.65E3
1 59b 2.1 1.63E2 2.3 1.79E3

32 59 45 3.5OE3 59 4.59E3

48 59 61 4.75E3 73 5.68E3
64 59 73 5.68E3 91 7.08E3
72 59 N/A N/A 101 7.86E3
88 59 N/A N/A 128 9.96E3

104 59 N/A N/A 131 1.02E4
112 59 N/A N/A 144 1.12E4
120 59 N/A N/A 150 1.17E4
124 59 N/A N/A 153 1.19E4

aThe  l-million grid point test case consists of three zones with dimensions of 15 x 75 x 70,
87 x 75 x 70, and 89 x 75 x 7 0 .

bThe  59-million grid point test case consists of three zones with dimensions of 29 x 450 x 350,
173 x 450 x 350, and 175 x 450 x 3 5 0 .

what the run time should be (not counting start-up and termination costs, which
have been eliminated from our results). This metric also has the advantage that
for problems with large amounts of parallelism, it gives the linear performance
curve that one normally equates with parallel programs. Another useful metric
that has been included in Table 4 is the delivered MFLOPS, which allows one to
determine not only the parallel efficiency, but also the serial efficiency of our
implementation. The peak speed of a processor on the SUN system is
800 MFLOPS and 600 MFLOPS on the SGI system. From the results, one can see
that the per processor delivered performance of the two systems is actually very
similar. This is probably the result of the two vendors taking different
approaches in designing their chips. Some vendors prefer to make the fastest
chips possible, even though they have a lot of hazards that can limit their
delivered performance, while other vendors prefer to make somewhat slower but
friendlier chips. Both approaches are valid and can result in a good product. But
as our results demonstrate, it is important to compare products based on their
delivered performance, not their peak performance.

12



8 0 0 0
SGI R12K Cb’iiin 2000 (126 p .  3W-MHz  system)
SUN HPC 10000 (64 p .  400.MHz  system)

7000 - HP V2500  (16~.  440.MHz  system) (Guide)

6000

& 5000 .*
**---•

a x
s 4'
gg 4000

.c

18 3000

2000

1000

0
0 10 20 30 40 50 60 7 0 80 90 100 110 120 130

Number of Processors

Figure 2. The performance of the shared memory version of the F3D  code when run on a
modern scalable SMP (l-million grid point test case).*

200 -
--*--

--*--
--*--

5 150 -

8
2
k
4
kl 100 -

;
z
8

?I 50 -

64 p SGI  Origin 2000 (195.MHz,  24 GB system)
126 p SGI  Origin 2000 (195.MHz)

SGI R12K  Ciigin 2000 (128 P. 300-MHz  system)

SUN HPC 1 OODO  (84 processor, 400.MHz  system)

,

0
0 1 0 20 30 40 50 60 7 0 80 9 0 100 110 120 130

NUMBER OF PROCESSORS

Figure 3. The performance of the shared memory version of the F3D  code when run on a
modem scalable SMP (59-million grid point test case).*

* The speeds have been adjusted to remove startup and termination costs.

13



6. Tools

In performing the serial tuning, the principal tools used were various profiling
tools. Initially, this meant using prof with and without pixie. Without pixie, prof
measures the actual run time for the individual subroutines. With pixie, prof
measures the theoretical run time for the subroutines, assuming an infinitely fast
memory system. By subtracting those two sets of numbers, one can then
estimate the cost of cache and TLB misses. Fortunately, most of today’s systems
come with tools that allow one to directly measure those values (on systems
lacking those tools, codes can be instrumented using PAPI,  which is being
developed at the University of Tennessee, Knoxville, TN, as a project for the
PTOOLS organization).

After tuning for cache and TLB misses, a few loops had a low cache/TLB miss
rate but were still expensive to run. Additional hand optimizations guided by
assembly code dumps were performed to achieve a higher data reuse rate at the
register level while eliminating unnecessary register spilling, pipeline stalls, and
low instruction issue rates from excessive numbers of loads and stores. A key
aspect of this phase of the tuning was to run the program on as wide a range of
RISC-based systems as possible to better understand which optimizations would
be of universal value. Table 5 contains a list of systems used in this effort. Using
this wide range of systems and compilers allowed tuning for a wider range of
TLB and cache sizes. It also allowed us to better anticipate what types of codes
current production compilers could handle without producing performance
problems.

Table5. Systems used in tuning/parallelizing  the RISC-optimized shared memory
version of F3D.

SGI R4400-based Challenge and Indigo 2

SGI R8000-  and RlOOOO-based  Power Challenges

SGI RlOOOO- and R12000-based Origin 2000s

SUN SuperSPARC-based SPARCCenter 2000

SUN Ultra  SPARC II-based HPC 10000

Convex HP PA-7100-based SPP-1000 and HP PA-ROO-based SPP-1600

I HP PA-8500-based V-Class I

.

Another key aspect of this effort was to validate the results [7]. There were
several stages to this effort, ranging from quick and dirty tests involving only a
few time steps, to more elaborate tests performed on fully converged solutions,
to finally a complete manual review of the code as part of a formal validation

14



and verification exercise. Unfortunately, when performing some of the
intermediate level tests, a mistake that had been introduced into the code would
sometimes be found. One of the most useful tools for locating these mistakes
was to update the version number of the code daily so that one could go back
and find which was the first version to have the bug. One could then use “diff’
to identify what the differences were between that version of the code and the
previous one. In most cases, this was sufficient in rapidly identifying and fixing
the bug (in all of the affected versions). One extreme example of applying this
technique occurred early on. In reordering the indices of several key arrays
throughout the program, changing almost every executable line of code in the
entire program became necessary. Furthermore, all of the lines had to be
changed at the same time. Unfortunately, the odds of getting this right proved to
be vanishingly small. Additionally, manual inspection of the code failed to find
the problems. Fortunately, after going through the entire exercise a second time,
we were able to diff the two modified versions of the code, locate the mistakes,
and get a code that produced the correct answers in about half the time as the
previous version of the code.

The principal tools used for evaluating the performance of the parallelized code
were various versions of profiling tools (e.g., Speed Shop on the SGI systems,
CXPERF  on the Convex and HP systems, and Loop Tool on the SUN HPC 10000).
The tools, in combination with simply timing the runs for various combinations
of problem sizes, numbers of processors, and systems, allowed us to identify the
issues that affected parallel speedup.  The single biggest issue was that since
parallelization was being done incrementally, we needed to know which loops
were expensive enough to justify being parallelized (both in terms of the effort
and additional overhead that would be introduced). Once this was well in hand,
the main remaining issue was to understand how the variable costs associated
with memory latency and bandwidth in a NUMA environment were affecting
the code performance. Unfortunately, experience indicated that not all NUMB
platforms were created equal, and these performance problems on the Convex
Exemplars were never satisfactorily solved. Fortunately, the results on the SGI
system and the SUN HPC  10000 were much better, in part due to all of the work
done to try to make the code perform better on the Convex Exemplar [6].

7. The Effect of the NUMA Architecture

With memory latencies ranging from 310-945 NS in a 12&processor  SGI Origin
2000 @I,  without using any form of out-of-order execution and/or prefetching,
one sees a range of usable per processor bandwidths of 412 MB/second down to
135 MB/second. Clearly for a shared memory program with a poor cache hit

15



rate and a high proportion of off node accesses, this results in a significant
performance problem. One potential solution is to make use of out-of-order
execution and/or prefetching to overlap cache misses in an attempt to achieve a
lower effective memory latency. Unfortunately, the maximum per processor
usable bandwidth for off node accesses is estimated to be only 195 MB/second,
which severely limits the effectiveness of this approach. Our solution to this
problem was to produce a highly tuned code with a low enough cache miss rate
that the NUMA nature of the Origin 2000 did not matter. According to the
output of Perfex when our code is run on a 180-MHz  RlOOOO-based  Origin 200
using a single processor, we have only 68 MB/second of memory traffic. Since
this is far less than the 135-195 MB/second of usable bandwidth for off node
accesses on the Origin 2000, we have been able to treat the Origin 2000 as though
it had Uniform Memory Access. Unfortunately, this approach did not work
nearly as well on the more heavily NUMA systems such as the Convex
Exemplar.

This is not to say that the memory systems on the SGI Origin 2000 and the SUN
HPC 10000 did not cause problems. The traditional shared memory systems
(e.g., the Cray C90 or the SGI Power Challenge) store data in small blocks or
lines, with successive blocks or lines being interleaved between multiple memory
banks. On some systems, the size of a block may be as small as a single word
(e.g., 8 bytes), while on most cache-based systems, a cache line would be treated
as a single block (e.g., 64 or 128 bytes). On systems that group memory and
processors into nodes (e.g., the SGI Origin 2000, the SUN HPC 10000, and the
hypernodes on the Convex Exemplar), the unit of interleaving becomes a page of
memory (e.g., 4-16 KB). In that case, one can easily have data from the same
page being shared by multiple processors. In extreme cases, this results in a
severe amount of contention with a resulting drop in performance. It is
important to note that no amount of page migration solves this problem-neither
does data placement directives. Data replication/caching can help. But the best
solution is to initially avoid the problem. It is also interesting to note that as far
as the authors know, there are no tools that identify this problem. The best way
to identify the problem now is to profile fixed size runs with varying numbers of
processors and look for subroutines that are consuming additional CPU cycles as
the number of processors increases. Using tools such as Perfex or Speedshop can
determine if the number of cache misses is remaining relatively constant. If this
is the case, then one almost certainly has a problem with contention. Example 4
illustrates the three cases (ideal, acceptable, and unacceptable) of concern. Please
note that even though Example 4c is using a STRIDE-N access pattern to batch
up the buffer, it can still have an acceptable cache miss rate. Unfortunately, the
process of batching up the buffer can result in an unacceptable amount of
contention on some of these systems. To confuse matters further, and for reasons
that the authors were never able to fully explain, the SGI Origin 2000 and the

16



DIMENSION A(JMAX,KMAX,LMAX)
CSdoacross local (J,K,L)

DO 10 L=l,LMAX
DO 10 K=l,KMAX

DO 10 J=l,JMAX
A(J,K,L) = . . .

10 CONTINUE

(a>  An example of the best possible access ordering.

DIMENSION A(JMAX,KMAX,LMAX)
CSdoacross local (K,J,L)

DO 10 K=l,KMAX
DO 10 L=l,LMAX

DO 10 J=l,JMAX
A(J,K,L) = . . .

10 CONTINUE

(b)  An example of an acceptable, but less desirable ordering.

DIMENSION A(JMAX,KMAX,LMAX), BUFFER(KMAX)
CSdoacross local (J,L,K,BUFFER)

DO 20 J=l,JMAX
DO 20 L=l,LMAX

DO 10 K=l,KMAX
BUFFER = A(J,K,L)

10 CONTINUE
DO 20 K=l,KMAX

Perform extensive calculations using BUFFER
20 CONTINUE

Cc>  An example 01 an unacceptable ordering.

Example 4. The effect of memory access patterns on contention.

SUN HPC 10000 exhibited this, problem under different conditions, thereby
making it necessary to eliminate all instances of this type of code from the
program.

8. Related Work

The simplest approach to using loop-level parallelism is to use an automatic
parallelizing compiler. Unfortunately, as Michael Wolfe (the author of “High
Performance Compilers for Parallel Computing,” Addison-Wesley, 1996) has
pointed out-“parallelizing compilers don’t work and they never will [9].”  A
slightly more sophisticated approach has been suggested by Dixie Hisley of the
U.S. Army Research Laboratory. This approach uses a combination of compiler
directives and hand tuning to parallelize those expensive loops that the
automatic parallelizing compilers are unable to handle on their own. The

1 7



remaining loops are left for the compiler to figure out. In some cases, this was
shown to increase the scalability of the code from 8 to 16 processors, with little or
no additional work over the use of compiler directives (e.g., CSdoacross)  and
hand tuning on their own. In contrast, using only an automatic parallelizing
compiler in this case actually produced parallel slowdown [lo].

An excellent comparison, using the combination of hand tuning, automatic
parallelization, and compiler directives, to the HPF and CAPTools  parallelization
tools was presented at SC98 [5]. It found that all three approaches had merit,
although none produced good results when used on a fully automatic basis. In
many cases, the results from using compiler directives (e.g., C$doacross  or
CAPTools  specific directives) were as good as those produced by hand
parallelizing the code using MPI.

Marek Behr attempted to parallelize the F3D  program on the Cray T3D using the
CRAFT programming model. Unfortunately, this effort had to be abandoned
due to poor levels of performance (something that was a common complaint
with this programming model) [ll].  He then proceeded to manually parallelize
the code using message passing calls (SHMEM on the Cray T3D,  Cray T3E,  and
SGI Origin 2000, and MPI on other platforms) to implement loop-level
parallelism. While this approach worked and produced a credible level of
performance, it was significantly more difficult to implement. Furthermore,
because many of the target platforms (e.g., the Cray T3D,  Cray T3E,  and IBM SP
with the Power 2 Super Chip) had caches ranging in size from 16 to 128 KB, it
was impossible to perform many of the cache optimizations that we performed
using caches with l-8 MB of memory [12].

An approach similar to the one we used in tuning and parallelizing F3D was
used by James Taft at NASA Ames Research Center to tune and parallelize the
ARC3D  code for the SGI Origin 2000 [13].  More recently, Mr. Taft has used
multiple levels of shared memory parallelism (MLP)-an  approach that he has
successfully demonstrated with the Overflow code and more recently, several
other commonly used codes at NASA Ames Research Center [14, 151.  Straight
loop-level parallelism and MLP appear to be complementary techniques, each
with their own strengths and weaknesses.

There is also a significant body of research involving the use of software
distributed shared memory [16]. Unfortunately, there is generally a significant
performance penalty when using these systems, which keeps them from being
widely accepted for production environments. One of the key problems is that
modem SMP and MPP systems usually have per processor memory bandwidths
ranging from 200 MB/second to over 1 GB/second, with memory latencies of
100-1,000  NS. In contrast, the communications bandwidth for most workstation
clusters and many MPPs  is rarely much better than 100 MB/second on a per
processor basis, with a latency that is frequently in the range of
50-100 microseconds for the better systems (Note that the primary exception to

18

c



this rule is the Cray T3E  when using SHMEM). Attempting to maintain
coherency with the 12%byte  granularity used in the SGI Origin 2000 with a
latency of 100 microseconds results in a per processor bandwidth for off node
accesses of 1.3 MB/second. For programs that are parallelized in more than one
direction and therefore inevitably have a high level of off node memory accesses,
this low level of performance is virtually impossible to overcome on today’s high
performance systems. Even in hardware implementations of a COMA
environment, keeping all of the processors for a single job on a single node is
highly desirable [17].

9. Conclusion

It was demonstrated that careful tuning at the implementation level can make a
significant difference in the performance of code running on RISC-based
systems. Furthermore, it was shown that there are two key enabling
technologies for this effort:

(1) Large caches.

(2) Access to a large amount of main memory, something that SMPs  excel at.

Additionally, it was shown that the use of loop-level parallelism can be of
significant benefit when trying to parallelize  certain classes of vectorizable code.
However, several limitations to this approach were discussed:

l The need for sufficiently large and powerful SMPs.

l The importance of tuning the code for a high level of serial efficiency.

l The limitations on scalability (overhead, Amdahl’s Law, and stair
stepping).

In summary, the combination of loop-level parallelism and SMPs  represents a
powerful tool for the parallelization of vectorizable programs. As long as
everyone understands the inherent limitations, it should have a most productive
future.

19



20



10. References

1 .

2.

3.

4 .

5 .

6 .

7.

8.

9.

Wang, G., and D. K. Tafti. “Performance Enhancement on Microprocessors
With Hierarchical Memory Systems for Solving Large Sparse Linear System.”
International Journal of Supercomputing Applications, 1997.

Steger, J. L., S. X. Ying, and L. B. Schiff. “A Partially Fhrx-Split  Algorithm for
Numerical Simulation of Compressible Inviscid  and Viscous Flows.”
Proceedings of the Workshop on CFD, Davis, CA, 1986.

Bailey, D. H. “Microprocessors and Scientific Computing.” Proceedings of
Supercomputing 93, Los Alamitos, CA, 1993.

Schimmel, C. “UNIX Systems for Modern Architectures, Symmetric
Multiprocessing, and Caching for Kernel Programmers.” Reading, MA:
Addison-Wesley, 1994.

Frumkin, M., M. Hribar, H. Jin, A. Waheed, and J. Yan. “A Comparison of
Automatic Parallelization  Tools/Compilers on the SGI Origin 2000.”
Proceedings for the SC98 Conference, Supercomp Organization, IEEE Computer
Society, and ACM, http:/ /www .supercomp.org/sc98/TecliPapers,  1998.

Pressel, D. M. “Results From the Porting of the Computational Fluid
Dynamics Code F3D  to the Convex Exemplar (SPP-1000 and SPP-1600).”
ARL-TR-1923, U.S. Army Research Laboratory, Aberdeen Proving Ground,
MD, 1999.

Edge, H. L., J. Sahu, W. B. Sturek, D. M. Pressel, K. R. Heavey, P. Weinacht,
C. K. Zoltani, C. J. Nietubiu, J. Clarke, M. Behr, and P. Collins. “Common
High Performance Computing Software Support Initiative (CHSSI)
Computational Fluid Dynamics (CFD) Project Final Report: ARL
Block-Structured Gridding  Zonal Navier-Stokes Flow (ZNSFLOW) Solver
Software.” ARL-TR-2084, U.S. Army Research Laboratory, Aberdeen
Proving Ground, MD, 2000.

Laudon,  J., and D. Lenoski. ‘The SGI Origin: A ccNUMA  Highly Scalable
Server.” Proceedings of the 24th Annual International Symposium on
Computer Architecture (ISCA  ‘97), Denver, CO, 2-4 June 1997, IEEE
Computer Society, Los Alamitos, CA.

Theys, M. D., T. D. Braun, and H. J. Siegel. ‘Widespread Acceptance of
General-Purpose, Large-Scale Parallel Machines: Fact, Future, or Fantasy?”
IEEE Concurrency Parallel, Distributed, and Mobile Computing, vol. 6, no. 1,
1998.

21



10. Hisley, D. M., G. Agrawal, and L. Pollock. ‘Performance Studies of the
Parallelization of a CFD Solver on the Origin 2000.” Proceedings for the 21st
Army Science Conference, Department of the Army, 1998.

11.  Oberlin, S. “Keynote Address at the International Symposium on Computer
Architecture (ISCA ‘99),”  1999. (At the time, S. Oberlin had been the Vice
President for Software at SGI, having previously been the Vice President for
Hardware.)

12. Behr, M., D. M. Pressel, and W. B. Sturek, Jr. “Comments on CFD Code
Performance on Scalable Architectures.” Computer Methods in AppZied
Mechanics and Engineering, vol. 190, pp. 263-277,200O.

13. Taft, J. “Initial SGI Origin 2000 Tests Show Promise for CFD Codes.” NAS
News, vol. 2, no. 25, NASA Ames Research Center, 1997.

14. Taft, J. R. “Shared Memory Multi-Level Parallelism for CFD, Overflow-MLP:
A Case Study.” Presented at the Cray User Group Origin 2000 Workshop,
Denver, CO, 11-13 October 1998.

15. Taft, J. R. “Achieving 60 GFLOP/S  on the Production CFD CODE
OVERFLOW-MLP.” Presented at WOMPAT  2000, Workshop on OpenMP
Applications and Tools, San Diego, CA, 6-7 July 2000.

16. Keleher, I’., A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. “TreadMarks:
Distributed Shared Memory on Standard Workstations and Operating
Systems.” Proceedings of the Winter 94 Usenix  Conference,
h t t p : / / -.cs.rice.edu/-willy/TreadMarks/papers.html,  1994.

17. Hagersten, E., and M. Koster. ‘WildFire:  A Scalable Path for SMPs.”
Proceedings of the 5th International Symposium on High Performance
Computer Architecture (HPCA),  Orlando, FL, 9-13 January 1999, IEEE
Computer Society, Los Alamitos, CA.

t

22



Glossary

Cache

CFD

CISC

COMA

DC

GFLOPS

HPF

MFLOPS

MIT

MPP

MSRC

NUMA

RISC

SIMD

SMP

T L B

A small high-speed memory that sits between the processor and main
memory, which is designed to store values that are likely to be
needed by the processor in the very near future.

Computational Fluid Dynamics

Complicated Instruction Set Computer

Cache Only Memory Architecture

Distributed Center

Giga  Floating-Point Operations Per Second

High Performance Fortran

Mega  Floating-Point Operations Per Second

Message Passing Interface

Massively ParalleI  Processor

Major Shared Resource Center

Non Uniform Memory Access

Reduced Instruction Set Computer

Single Instruction Multiple Data

Symmetric Multiprocessor

Translation Lookaside Buffer

23



I~NTI~NALLY  um mm.

24



NO. OF
COPIES ORGANIZATION

2 DEFENSE TECHNICAL
INFORMATION CENTER
DTIC OCA
8725 JOHN J KINGMAN RD
STE 0944
FL- BELVOIR VA 22060-6218

1 HQDA
DAMOFDT
400 ARMY PENTAGON
WASHINGTON DC 20310-0460

1 OSD
OUSD(A&T)/ODDR&E(R)
DRRJTREW
3800 DEFENSE PENTAGON
WASHINGTON DC 20301-3800

1 COMMANDING GENERAL
us ARh4Y MATERIEL CMD
AMCRDA  TF
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

1 INST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS AT AUSTIN
3925 W BRAKER LN STE 400
AUSTIN TX 78759-5316

1 DARPA
SPECIAL PROJECTS OFFICE
J CARLINT
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

1 US MILITARY ACADEMY
MATH SCI Cl-R EXCELLENCE
h4ADNMATH
MAJ HUBER
THAYER HALL
WEST POINT NY 109961786

NO. OF
COPIES ORGANIZATION

1 DIRECTOR
US ARMY RESEARCH LAB
Ah4SRLCIAIR
2800 POWDER MILL RD
ADELPHI  MD 20783-1197

3 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI LL
2800 POWDER MILL RD
ADELPHI  MD 20783-1197

3 DIRECTOR
US ARMY  RESEARCH LAB
AMSRL CI IS T
2800 POWDER MILL RD
ADELPHI  MD 20783-1197

ABERDEEN PROVING GROUND

2 DIR USARL
AMSRL CI LP (BLDG 305)

1 DIRECTOR
US ARh4Y RESEARCH LAB
AMSRL D
DRDSMITH
2800 POWDER MILL RD
ADELPHI  MD 20783-1197

25



NO. OF
COPIES ORGANIZATION

1 PROGRAM DIRECTOR
C HENRY
1010 N GLEBE RD STE 510
ARLINGTON VA 22201

1 DPTY PROGRAM DIRECTOR
L DAVIS
1010 N. GLEBE RD STE 510
ARLINGTON VA 22201

1 DISTRIBUTED CENTERS
PROJECT OFFICER
V THOMAS
1010 N GLEBE RD ST-E  510
ARLINGTON VA 22201

1 HPC CTRS PROJECT MNGR
J BAIRD
1010 N GLEBE RD STE 510
ARLINGTON VA 22201

1 CHSSI PROJECT MNGR
L PERKINS
1010 N GLEBE RD STE 510
ARLINGTON VA 22201

1 RICE UNIVERSITY
MECHANICAL ENGRNG &
MATERIALS SCIENCE
M BEHR MS 321
6100 MAIN ST
HOUSTON TX 77005

1 J OSBURN CODE 5594
4555 OVERLOOK RD
BLDG A49 RM 15
WASHINGTON DC 20375-5340

1 NAVAL RSCH LAB
J BORIS CODE 6400
4555 OVERLOOK AVE SW
WASHINGTON DC 20375-5344

1 WL FIMC
B STRANG
BLDG 450
2645FIFTHSTSTE7
WPAFB OH 45433-7913

1 NAVAL RSCH LAB
R RAMAMURTI  CODE 6410
WASHINGTON DC 20375-5344

NO. OF
COPIES

1

1

1

1

1

1

ORGANIZATION

ARMY AEROFLIGHT
DYNAMICS DIRECTORATE
RMEAKINMS2581
MOFFETT FIELD CA 94035-1000

NAVAL RSCH LAB
HEAD OCEAN DYNAMICS
& PREDICTION BRANCH
J W MCCAFFREY JR CODE 7320
STENNIS SPACE CENTER MS
39529

US AIR FORCE WRIGHT LAB
WLFIM
JJSSHANG
2645FIFTHSTSTE6
WFAFB OH 45433-7912

US AIR FORCE PHILIPS LAB
OLAC PL RKFE
CAPTSGWIERSCHKE
10 E SATURN BLVD
EDWARDS AFB CA 935247680

NAVAL RSCH LAB
CGDE 6390
DR D PAPACONSTANTOPOULOS
WASHINGTON DC 20375-5000

AIR FORCE RSCH LAB DEHE
R PETERKIN
3550 ABERDEEN AVE SE
KIRTLAND AFB NM 87117-5776

NAVAL RSCH LAB
RSCH OCEANOGRAPHER CNMOC
G HEBURN
BLDG 1020 RM 178
STENNIS SPACE CENTER MS
39529

AIR FORCE RSCH LAB
INFORMATION DIRECTORATE
R W LINDERMAN
26 ELECTRONIC PKWY
ROME NY 134414514

SPAWARSYSCEN D4402
R A WASILAUSKY
BLDG 33 RM 0071A
53560 HULL ST
SAN DIEGO CA 921523001

.

26



NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

1 USAE WATERWAYS
EXPERIMENT STATION
CEWES HV C
J I’ HOLLAND
3909 HALLS FERRY RD
VICKSBURG MS 39180-6199

1 US ARMY CECOM RSCH
DEVELOPMENT & ENGRNG CTR
AMSEL RD C2
B S PERLMAN
FT MONMOUTH NJ 07703

1 SPACE & NAVAL WARFARE
SYSTEMS CTR
K BROMLEY CODE D7305
BLDG 606 RM 325
53140 SYSTEMS ST
SAN DIEGO CA 92152-5001

1 DIRECTOR
DEPARTMENT OF ASTRONOMY
P WOODWARD
356 PHYSICS BLDG
116 CHURCH ST SE
MINNEAPOLIS MN 55455

1 RIcEuNrvERsITY
MECHANICAL ENGRNG &
MATERIALS SCIENCE
T TEZDUYAR MS 321
6100 MAIN ST
HOUSTON TX 77005

1 ARMY HIGH PERFORMANCE
COMPUTING RSCH  CTR
B BRYAN
1200 WASHINGTON AVE
s MINNEAPOLIS MN 55415

1 ARMY HIGH PERFORMANCE
COMPUTINGRSCHCTR
G V CANDLER
1200 WASHINGTON AVE
s MINNEAPOLIS MN 55415

1 UNIVERSITY OF TENNESSEE
COMPUTER SCIENCE DEFT
S MOORE
1122 VOLUNTEER BLVD
STE 203
KNOXVILLE TN 379963450

ABERDEEN PROVING GROUND

26 DIR USARL
AMSRL CI

N RADHAKRISHNAN
AMSRL CI H

c NIETUB1cz
W STUREK

AMSRL CI HC
D PRESSEL
D HISLEY
R NAMBURU
R VALISETTY
D SHIRES
R MOHAN
M HURLEY
I’ CHUNG
J CLARKE
C ZOLTANI
AMARK

AMSRL CI HS
D BROWN
R PRABHAKARAN
T PRESSLEY
T KENDALL
PMATTHEWS
KSMITH

AMSRL WM BC
JSm
K HEAVEY
P WEINACHT
J DESPIRITO
P PLOSTINS

AMSRL WT BF
HEDGE

1 NAVAL CMD CNTRL &
OCEAN SURVEILLANCE CTR
L PARNELL
NCCOSC  RDTE DIV D3603
49590 LASSING RD
SAN DIEGO CA 92152-6148

27



.

28



REPORT DOCUMENTATION PAGE Form A p p r o v e d
OMB No. 07044188

Public reporting  burden for this collection of information is sdimated  to  average  ?  how per response,  including Un time for mvimving  instructions, seachlng  exisffng  data  sources,
g a t h e r i n g  a n d  m a i n t a i n i n g  t h e  data  n e e d e d .  a n d  c o m p l e t i n g  a n d  mviwfng  t h e  cqkctfon  o f  informaWn. S e n d  ccenmwds  r e g a r d i n g  fhfs  b u r d e n  estfmate  o r  any  otheraspect  o f  t h i s
wlkdion  of informadon,  including +uggestfons  for reducing  this bwden.  to  Washington Hsadqwmn  Sewices,  Dtnctqnte  for Information Operations  and Reports, t2lS  Jefferron
Davis Hiqhw~,.  Suite <2W,  Minaton.  VA 22202-4302,  and 10  the Dffke  of Manaqement  and Budclef.  Pagework  Reduction P,o,ec,,g,0C0,88,.  Washinqton.  DC MM3.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

August  2001 Final, October 1999 - April 2001
4. TITLE AND SUBTITLE

Using Loop-Level Parallelism to Parallelize Vectorizable Programs

6. AUTHOR(S)

5 .  F U N D I N G  N U M B E R S

665803.73 1

Daniel M. Pressel, Jubaraj Sahu, and Karen R. Heavey

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS
U.S. Army Research Laboratory
AITN:  AMSRL-CI-HC
Aberdeen Proving Ground, MD 2 10055067

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-TR-2556

9. SPONSORlNGlMONlTORlNG  AGENCY NAMES(S) AND ADDRESS 10.SPONSORING/MONITORlNG
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a.  DlSTRlBUTlON/AVAlLABlLlTY  STATEMENT
Approved for public release; distribution is unlimited.

12b .  DlSTRlBUTlON  C O D E

I
13.  ABSTRACT(Maximum  200 w o r d s )

I
One of the major challenges facing “high performance computing” is the daunting task of producing programs

that achieve acceptable levels of performance when run on parallel architectures. Although many organizations have
been actively working in this area for some time, many programs have yet to be parallehzed.  Furthermore, some
programs that were parallelized were done so for obsolete systems. These programs may run poorly, if at all, on the
current generation of parallel computers. Therefore, a straightforward approach to parallelizing  vectorizable codes is
needed without introducing any changes to the algorithm or the convergence properties of the codes. Using the
combination of loop-level parallelism and RISC-based shared memory SMPs  has proven to be a successful approach to
solving this problem

14. SUBJECT TERMS 15. NUMBER OF PAGES

parallel programmin g , symmetric multiprocessor, loop-level parallelism supercomputer, 32
high performance computing 1 6 .  P R I C E  C O D E

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED
N S N  7540-01-280-5500

18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UL

29
Standard  Form  298 (Rev.  2-89)
Prescr ibed  by  ANSI  S td .  239 -18 298-102



30



USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to
the items/questions below will aid us in our efforts.

1. ARL Report Number/Author MU-TR-2556  (Pressel) Date of Report August 2001

2. Date Report Received

3 . Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be

4 . Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)
t

5 . Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs
avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization,
technical content, format, etc.)

CURRENT
ADDRESS

Organization

Name E-mail Name

Street or P.O. Box No.

City, State, Zip Code

g 7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old or
Incorrect address below.

Organization

OLD
ADDRESS

Name

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)



DEPARTMENT OFTHE ARMY

OFRCIAL  B U S I N E S S

POSTAGE WILL BE PAID BY ADDRESSEE

DIRECTOR
US ARMY RESEARCH LABORATORY
All-N AMSRL Cl HC
ABERDEEN PROVING GROUND MD 21005-5067


