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Abstract

A leaky waveguide antenna is investigated through a combination of the-
oretical analysis and numerical simulation. We developed a design proce-
dure based on the analysis of Goldstone and Oliner, for an aperture in the
narrow wall of a rectangular waveguide. We can phase scan the antenna
by adjusting the propagation constant of the guiding structure, and we can
frequency scan it by taking advantage of a frequency dispersive behavior.
A combination of frequency and phase scanning can be used to steer the
beam. We describe how the aperture illumination function is synthesized
for a constant width aperture and we present the design equations. We use
a numerical simulation of the leaky waveguide section to obtain the radia-
tion efficiency. We then calculate the realized gain to evaluate the frequency
scan range and radiation pattern characteristics. The results demonstrate
that the main beam position can be scanned in the range of 10◦ to 30◦ from
broadside over a narrow frequency range without corrupting the radiation
pattern.
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1. Introduction

A traveling wave antenna (TWA) is one for which the fields and currents
producing the radiation pattern may be represented by traveling waves.
The traveling wave phase velocity determines the angle of peak radiation
so that the TWA can be phase scanned by the adjustment of the propaga-
tion constant of the guiding structure. We can also frequency scan the TWA
by taking advantage of the frequency dispersive behavior of the guiding
structure. Source distributions can be synthesized to produce a prescribed
radiation pattern (e.g., pencil beam, sectorial, etc), and a combination of
frequency and phase scanning can be used to steer the beam. TWA design
then relates the source distribution to the phase velocity and tries to imple-
ment the desired distribution in a practical structure. A large scan range
is desired over a limited (e.g., 10 percent) source frequency bandwidth.
The physical structure considered is a rectangular waveguide, excited by
a transverse electric (TE)10-mode (or H10-mode), with a long slot in the
waveguide narrow wall radiating into a half-space (i.e., an infinite flange
approximation). The radiating aperture can be represented by an equiva-
lent magnetic current quasi-line source [1, p 47].

The perturbed waveguide supports an H-type hybrid mode constructed to
satisfy the required field variation as described in appendix A. The aper-
ture admittance is obtained by the variational technique for a parallel plate
waveguide radiating into a half-space as shown in appendix B. The equiv-
alent network model includes an internal susceptance to account for the
stored energy attributable to the aperture perturbation on the waveguide
[2]. A transmission line description in the transverse direction is then termi-
nated in this equivalent admittance. We use the transverse resonance tech-
nique, as described in appendix C, to determine the transverse wavenum-
ber and thus the perturbed waveguide complex propagation constant. The
slotted waveguide section then is a nonuniform, lossy transmission line in
which the energy is radiated along the transmission line direction. The fi-
nite element method (FEM) is used to solve the nonuniform transmission
line equations for the transmission and reflection coefficient of the slotted
section from which we calculate the antenna efficiency. This network model
characterizes the aperture illumination function and we obtain the radia-
tion pattern by direct integration of the source current. The basic numerical
routines to produce these calculations are included as appendix D. A thor-
ough understanding of the radiation by this type of dispersive waveguide
is required to develop a design procedure for electronically steered TWA
arrays fabricated in a rectangular waveguide.
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2. Leaky Wave Antenna

We consider a thin, rectangular aperture of width, d, and length, L, in a
terminated rectangular waveguide having width, a, and height, b, shown
in figure 1a as a leaky wave antenna structure. For narrow apertures, the
waveguide perturbation is small or rather, the aperture is loosely coupled,
so that the phase per unit length is slowly varying with position along the
guiding structure. The leaky waveguide continuously loses energy along
its length because of radiation, as shown in figure 1b. At a particular op-
erating frequency, f0 = c/λ0, the main beam appears at an elevation an-
gle, sin θ0 = (λ0/λg), from broadside, depending on the perturbed guide
wavelength, λg (see fig. 1a). The H10-mode power available from the in-
put waveguide, Pinc, is partially reflected by the slotted section with re-
flection coefficient, Γ10. Then the input power to the TWA depends on the
input impedance mismatch, Pin = Pinc − Preflect = Pinc(1 − |Γ10|2). We de-
fine the input efficiency, ηin = (1 − |Γ10|2), as a measure of the power lost
because of reflection, since Pin = ηinPinc, is the power fed into the slot-
ted section (see fig. 1b). The radiated power depends on the fraction of
power transmitted, |T10|2, through the slotted section (i.e., absorbed in the
matched load). If we assume that the power not transmitted is radiated,
then Prad = Pin − Ptrans = Pin(1 − |T10|2). Therefore, the radiation effi-
ciency, ηr = (1 − |T10|2), depends on the power lost in the load impedance.
We group other loss mechanisms into a single absorption coefficient, A10,
and define an efficiency as ηc = (1 − |A10|2). The total antenna efficiency,
η = ηinηrηc, is a measure of the power lost because of input reflection, dis-
sipation in the load impedance, and other losses, or Prad = ηPinc.

For a given available power, Pinc, corresponding to the input power, Pin,
in the leaky waveguide, we denote by P (y) the power radiated per unit
aperture length. By conservation of energy, the total power flowing at some
point, P0(y), within the waveguide extending from y0 ≡ −L/2 to y = L/2
can be written as

P0(y) = Pin −
∫ y

y0

P (ξ)dξ . (1)

Differentiating equation (1) with respect to y and defining the attenuation
per unit length by

αr(y) =
P (y)

2P0(y)
, (2)

one finds that P0(y) must satisfy the differential equation(
d

dy
+ 2αr(y)

)
P0(y) = 0 . (3)

A wave propagating down the guide then is continuously losing energy
through radiation [3]. We obtain the solution to equation (3) using the initial
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Figure 1. (a) Slotted
waveguide leaky wave
antenna oriented along
y-axis (not to scale) and
(b) general leaky wave
coupling structure
showing mail-beam
angle.
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condition, Pin = P0(y0). The result is

P0(y) = Pin exp
(
−2

∫ y

y0

αr(ξ)dξ
)
. (4)

Assuming no other losses (i.e., A10 = 0 or ηc = 1), the fraction of power
not radiated, q, will be completely absorbed by the termination at y = L/2.
Thus, we define

q ≡
P0

(
L
2

)
Pin

= 1 − 1
Pin

∫ L
2

y0

P (ξ)dξ (5)

The radiated power per unit length is proportional to the squared magni-
tude of the aperture illumination function, f2(y), which is proportional to
the aperture electric (E-) field. That is, P (y) = ζ f2(y), in which ζ is a con-
stant. Using equation (5), we find that this proportionality constant is

ζ =
(1 − q)Pin∫ L

2
y0

f2 (ξ) dξ
≡ ηrPin

I
, with I ≡

∫ L
2

y0

f2 (ξ)dξ , (6)

in which ηr ≡ 1 − q is equal to the previously defined radiation efficiency.
Once the magnitude of the aperture illumination function, |f(y)|, is chosen
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for the desired radiation pattern, we can calculate the required attenuation
function for the leaky wave antenna by substituting ζf2(y) into equation (2)
and using equation (6) to find

αr(y) =
1
2 f2(y)

I
ηr

−
∫ y
y0

f2(ξ)dξ
. (7)

This is an explicit solution for αr(y) in terms of the aperture illumination
function, which is chosen to obtain the desired radiation pattern charac-
teristics. Then equation (7) determines the attenuation function, which is
synthesized by means of an appropriate coupling structure. The fraction
of power absorbed in the load can be made small but not completely zero
since this would require an infinitely long antenna or an αr(y) too large to
be realized by physical structures.

For uniform illumination with y0 = −L/2, equation (7) takes a simple form

αr (y) =
1
2

L
ηr

− (y − y0)
. (8)

We normalize the aperture dimensions and the results to the free-space
wavelength, λ0. Using equation (8), the normalized attenuation, |αr(y)λ0|
(in Nepers) is shown in figure 2 for L = 20λ0, a uniform aperture illumina-
tion, and the radiation efficiency, ηr = 70, 80, and 90-percent (−1.5,−1 and
−0.5 dB), as a parameter. To obtain a uniform illumination, the correspond-
ing attenuation per unit length would require an aperture with flared width
profile so that the aperture width would increase with distance toward the
load. For a fixed aperture length, a larger width or flare per unit length in-
creases the radiation efficiency but does not significantly increase the input
reflection coefficient. That is, the total antenna efficiency is approximately
equal to the radiation efficiency shown in figure 2.

Figure 2. Normalized
attenuation (in Nepers)
for a uniform aperture
illumination function.
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Conversely, for a specified attenuation function, we can determine the aper-
ture illumination function as follows. Define X(y) = f2(y), and rewrite
equation (7) as

αr(y) =
1
2X(y)

1
ηr

∫ L
2
y0
X(ξ)dξ −

∫ y
y0
X(ξ)dξ

(9a)

which can be written as

X(y) = 2αr(y)
{
I

ηr
−

∫ y

y0

X(ξ)dξ
}
. (9b)

Differentiating equation (9b) with respect to y and using equation (9a) gives

dX(y)
dy

= X(y)
(
d

dy
lnαr(y) − 2αr(y)

)
. (10)

Solving equation (10) gives

X(y) =
X(y0)
αr(y0)

αr(y) exp
(
−2

∫ y

y0

αr(ξ)dξ
)
. (11)

Then in terms of αr(y), the magnitude of the aperture illumination function
is

|f(y)| =
√
Cαr(y) exp

(
−

∫ y

y0

αr(ξ)dξ
)

(12)

in which C = X(y0)/αr(y0) is an arbitrary constant.

For constant aperture width (normalized to waveguide height), d = b/30,
the attenuation is calculated as developed in the next section. The corre-
sponding normalized aperture illumination function, f(y)/f(y0), is shown
in figure 3, which indicates that for constant aperture width, the illumina-
tion function decreases along the aperture length. The results correspond
to a waveguide with ka = 4.25 in which k = 2π/λ0 is the wavenumber. For
a narrow aperture, the aperture length must be significantly increased to
obtain ηr > 90 percent. For a given aperture width profile, the aperture il-
lumination function is determined and the variation in the waveguide com-
plex propagation constant is calculated with an equivalent network model.
The basic leaky wave antenna design then simplifies to implementing the
required αr(y) in a slotted waveguide section. These leaky waveguide an-
tennas can be readily combined to form a two-dimensional planar array by
accounting for mutual interactions [4].

We determine the attenuation function for a section of leaky waveguide
from the aperture geometry with perturbed waveguide propagation con-
stant, γ = αr+jβ. In general, the attenuation constant is not independent of
the phase constant, but the waveguide cross section can be adjusted to keep
β = 2π/λg approximately constant while αr [2, p 190] is varied. Radiating
elements fabricated in the waveguide narrow wall allow the use of spe-
cialized waveguide types such as dielectric loaded or ridged waveguide,
which provide additional design flexibility. Typical examples are shown in
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Figure 3. Aperture
illumination function
for a constant width
aperture with radiation
efficiency as a
parameter.
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figure 4a for radiating elements in the narrow wall of a rectangular wave-
guide [1, p 282]. We have investigated tapered and flared transition sec-
tions as shown in figure 4b as a “discontinuity minimizer” to avoid exciting
higher order modes [1, p 284].

As an example, we consider an aperture with a constant width section,
d0 = b/40, and total length (normalized to waveguide width), L = 30a. We
include either a tapered input section or a flared output section of length
L1 = L/2 and L2 = L/2, respectively. For narrow apertures, the input re-
flection is small with ηin > 97-percent (−0.1 dB). Nevertheless, the phase
variation over the tapered section produced an antenna pattern with in-
creased side lobe level (SLL). Although not described in detail, the results
for variable aperture width demonstrated that tapered or flared sections
(see fig. 4b) are undesirable in terms of SLL. A flared output section pro-
vides a better approximation to a uniform aperture illumination, as can
be surmised from equation (12). However, the flared (or tapered) aperture
width corrupts the radiation pattern, as shown in figure 5. The tapered in-
put distorts the SLL below the main beam angle, θ0 (i.e., in the forward di-
rection), while a flared output affects the SLL above θ0 (i.e., toward broad-
side). By sacrificing efficiency (or increasing the aperture length), one can
make the taper (or flare) more gradual to improve the pattern characteris-
tics. This would be undesirable for most practical TWA structures, so we
consider only constant width apertures. Parametric studies of leaky wave
guides with constant aperture width are presented to develop a complete
design procedure for this type of antenna.
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Figure 4. (a) Perturbed
waveguide antenna
examples: TE long slot
and holey rectangular
waveguide showing
tapered transition
sections, and (b) an
aperture with a constant
width section and either
a tapered input or a
flared output section.

E

TE-excited waveguide

E

Load
Unperturbed

standard waveguide

(a)

Input terminal plane  (y = –L/2)

Constant width section

Output terminal plane (y = L/2)

d0

L

L1

d(y)

Symmetrically tapered input section

Constant width sectiond0

L2

d(y)

Symmetrically flared output section

(b)

Transition
region

Radiating
section

Figure 5. Radiation
pattern of a leaky
waveguide having an
aperture with tapered
input or flared output
sections.

0 10 20 30 40 50 60

20

15

10

5

0

–5

–10

–15

–20

Elevation angle θ°

H
-p

la
ne

 g
ai

n 
(d

B
i)

Tapered input
Flared output

d0 = b/40
Ltotal = 30a  

Equal length input
and output sections
with L1 = L2 = 15a

7



3. Perturbation Solution

Consider an aperture fed by a parallel plate waveguide radiating into a
half-space (i.e., an infinite flange approximation), as shown in figure 6,
where the origin is centered in the aperture. We consider radiation into a
half-space rather than free space in anticipation of constructing an antenna
array of leaky waveguides. In the direction transverse to the propagation
direction y, the medium parameters over each waveguide cross section are
constant so that a modal decomposition is possible. However, the wave-
guide fields in the presence of the aperture cannot be described by a single
TE or transverse magnetic (TM)-mode. We construct an alternate modal de-
composition to have the correct spatial variation and satisfy the boundary
conditions. Following the analysis of Goldstone and Oliner [5], the result is
a predominantly TE- or H-type mode, as shown in appendix A. For now,
consider an air-filled waveguide having free-space permittivity, ε = ε0 and
permeability, µ = µ0, propagating time-harmonic electromagnetic (EM)
fields with the time dependence, ejωt suppressed. Since there is no variation
of the waveguide in the direction of propagation, the wavenumber in this
direction is the same for all modes or kyn = βn = β. kt0 = kz0 =

√
k2 − β2

is the wavenumber in the transverse (to y) direction, and ZH0 = ωµ0/kz0
is the H-type mode characteristic (wave) impedance. We develop a com-
posite equivalent circuit to approximate the aperture of infinite length as
shown in appendix B. We use the transverse resonance method described
in appendix C to determine the transverse wavenumber for the transverse
transmission line terminated in this equivalent circuit.

Figure 6. A rectangular
waveguide-fed aperture
radiating into a
half-space.
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The transverse resonance solution provides the perturbed waveguide phase
constant with the leaky wave attenuation function (see sect. 2) to com-
pletely characterize the aperture source so that antenna gain can be cal-
culated. We then extend the result to the finite length aperture by using the
FEM to calculate the aperture radiation efficiency (see app D).

3.1 Parallel Plate Fed Aperture

A parallel plate transverse electromagnetic (TEM)-mode polarized along x
is incident on an infinitely long aperture of constant width radiating into
a half-space as shown in figure 7. In appendix A, we develop an alternate
modal decomposition that can represent the aperture perturbation on the
waveguide fields for H-mode or TE-excitation. In appendix B, we show
that energy propagation in the parallel plate region is equivalent to an
obliquely incident TEM wave on the aperture plane. An H-type modal de-
composition is used when the TEM fields are the modal fields transverse to
the direction of incidence (see fig. B-2). We derive a variational expression,
equation (B-38) for the radiation admittance of the parallel plate waveguide
by assuming a constant aperture field. We then extend this expression to
the case of a narrow aperture (i.e., when the aperture width is not the full
waveguide height). The variational expression is normalized to the char-
acteristic admittance of the propagating wave, which for an incident H10-
mode is that of the fundamental H-type mode, so from equation (A-16),

YH0 =
1

ZH0
=

kz0
ωµ0

. (13)

Figure 7. A parallel
plate waveguide
radiating into a
half-space.

b dE
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The variational result equation (B-29) derived in appendix B depends on
the E-field in the aperture. For a constant aperture field, one obtains the
approximation equation (B-30) to the variational expression. This result
was obtained by Marcuvitz using the variational method [3] and includes
only the susceptance outside the aperture, because it depends only on the
external E-field. Then under the same assumptions, equation (B-30) pro-
vides the external admittance of a narrow aperture by replacing b with d.
This is because the power per unit length radiated by the aperture is in-
dependent of the height of the feeding waveguide, as long as the aper-
ture field is unchanged [1]. For a constant aperture E-field, the normalized
input admittance of a parallel plate fed aperture of width d < b is from
appendix B:

yext
in ≡ Yin

YH0
=

kz0d∫
0

H
(2)
0 (ξ)dξ −H

(2)
1 (kz0d) +

2j
πkz0d

=
Gext

YH0
+ j

Bext

YH0
, (14)

in which H
(2)
ν is the Hankel function of the second kind, order ν. We use

the small argument form of the cylindrical Bessel functions [8, p 935] in
equation (B-38) to obtain a closed form approximation to the external con-
ductance and susceptance [3, p 184]

Gext

YH0
=
kz0d

2
, and (15)

Bext

YH0
=
kz0d

π
ln

[
πe

gkz0d

]
. (16)

The irrational number, e = 2.71828..., is the base of the natural logarithm
and g = ec = 1.781..., in which the irrational number c = 0.577..., is Euler’s
constant. This represents the “external” equivalent circuit parameters of a
waveguide-fed, narrow aperture radiating into a half-space.

We obtain the “internal” circuit by considering the aperture as a symmet-
rical capacitive iris oriented along the y-axis, as shown in figure 8a. The
internal fringing field of the aperture is accounted for by the internal sus-
ceptance of this symmetrical, zero-thickness “window.” The approach is to

Figure 8. A composite
circuit model for
parallel plate fed
aperture developed by
analog to a capacitive
iris: (a) a symmetrical,
capacitive iris in
rectangular waveguide,
a cross-sectional view,
(b) fringing field of an
iris, side view, and
(c) internal fringing
field of a parallel plate
fed aperture.
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consider the fringing fields on each side of the perforated surface as in-
dicated schematically in figure 8b. The equivalent circuit parameters for a
zero-thickness window are obtained by the equivalent static method for a
static aperture field attributable to incidence of the two lowest H-modes
[2, p 219]. The result is the capacitive susceptance given in equation (2a) of
The Waveguide Handbook, in terms of the guide wavelength in the direction
of propagation [2]. For our case of a narrow aperture, we have d � b, so
in this expression, the second term reduces to the function Q2 and the last
term vanishes. Furthermore, the waveguide height is small compared to
wavelength, or b � λg so that Q2 ∼ 0 and the second term is negligible.
Then for the transverse transmission line with guide wavelength, λgz , the
normalized iris susceptance is the leading term of equation (2a) [2, p 218]

Biris

YH0
=

4b
λgz

ln
[
csc

(
πd

2b

)]
, λgz =

2π
kz0

. (17)

By symmetry, we use one-half of this result for the iris in the closed wave-
guide to represent the internal susceptance of the aperture as indicated in
figure 8c.

The internal susceptance for the waveguide fed aperture is then

Bint

YH0
=
kz0b

π
ln

[
csc

(
πd

2b

)]
, (18)

reducing to a short circuit when d = 0. We combine the admittance inside
and outside the waveguide to obtain a composite equivalent circuit for a
transverse resonance analysis. The circuit parameters are the combination
of equations (15), (16), and (17), or

G

YH0
=
Gext

YH0
=
kz0d

2
, and (19)

B

YH0
=
Bext

YH0
+
Bint

YH0
=
kz0d

π
ln

[
πe

gkz0d

]
+
kz0b

π
ln

[
csc

(
πd

2b

)]
. (20)

The aperture admittance for this composite equivalent circuit model,
YA(kz0) = G + jB, then depends on the transverse wavenumber and the
aperture geometry. This approximation is only appropriate for the ideal-
ized case of zero wall thickness and an infinite waveguide flange but pro-
vides useful results for narrow apertures. A refined equivalent circuit to
account for the waveguide wall thickness could be developed but is not re-
quired at this point to obtain engineering results. However, the equivalent
circuit must be modified for an array of such leaky waveguide antennas,
including mutual interactions between nearby radiating elements [4].

The cross section of the physical structure shown in figure 9a is analyzed
with the transverse resonance technique that is described in appendix
C. We use the network representation shown in figure 9b to terminate
the transverse transmission line that propagates the fundamental H-type
mode. A transverse field modal decomposition in terms of rectangular
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Figure 9. An infinitely
long aperture in the
narrow wall of
rectangular waveguide
radiating into a
half-space: (a) a
waveguide-fed aperture
and (b) equivalent
circuit model for
transverse transmission
line.

G

x

a

γ = jkz0

b jB

Y0 = YH0

Short circuit

z

a

b d

(a) (b)

waveguide TE- and TM-modes would require a transmission line repre-
sentation for each mode that is then coupled by the aperture. An advan-
tage of the H-type modal representation is that the transverse transmission
line consists of one transmission line of characteristic admittance YH0, and
propagation constant jkz0. This transmission line is shorted at one end and
terminated in a lumped admittance at the other end. The transverse reso-
nance condition requires that at resonance, the input admittance “looking”
in each direction must sum to zero at any point along the line. We use the
coordinate system shown in figure 9a, so for any point 0 ≤ z′ ≤ a we have

←
Y in(z′) + .Yin(z′) = 0 , (21)

in which the arrows denote the input admittance looking to the left or right,
respectively [7, p 167].

At the aperture plane (z′ = a), the admittance looking to the right is YA
while that to the left corresponds to a short circuit located a distance “a”
down the line (i.e., at z′ = 0). The resulting network resonance equation at
this terminal plane is then [2, p 10]

−j cot(kz0a) +
G

YH0
+ j

B

YH0
= 0 , (22)

which generally requires numerical solution. An approximate analysis is
obtained by the perturbation method since the leaky waveguide propaga-
tion constant can be regarded as a perturbation on the propagation constant
of modes in the closed waveguide. This approach provides an analytical
approximation for the transverse wavenumber as opposed to a numerical
evaluation of equation (22). The result is an analytical approximation to
the perturbed fundamental mode propagation constant, γ0 = jβ, which is
useful in the study of leaky wave antennas.

The analysis assumes that the aperture perturbs the transverse wavenum-
ber from its value in the closed guide. Then for H10-mode propagation, the
transverse wavenumber is not much different than κ = π/a—the unper-
turbed wavenumber of the lowest mode. Then for a small perturbation, the
left side of equation (22) is approximated by two terms in a Taylor series

expansion
↔
Y (k) =

←
Y (kz0) + .Y (kz0), at some frequency corresponding to

12



the wavenumber, k. Then with ∆kz0 = kz0 − κ, we can write

.Y (k) = .Y (κ) +
d.Y (kz0)
dkz0

∣∣∣∣∣
kz0=κ

∆kz0 ≈ 0 , (23)

since for a small perturbation equation (22) will nearly vanish at resonance.
Substituting equation (22) evaluated at κ into equation (23), we have

∆kz0 = −
↔
Y (κ)

d
↔
Y (kz0)
dkz0

∣∣∣
kz0=κ

= − −j cot(κa) + .Y (κ)

aj csc2(κa) + d�Y (kz0)
dkz0

∣∣∣
kz0=κ

≈ j

a

.Y (κ) − j cot(κa)
csc2(κa)

. (24)

The approximation is valid over a wide range since the derivative term is
inversely proportional to the fourth power of the admittance magnitude
and so is neglected. With the same argument, the equivalent expression in
terms of impedance quantities is

∆kz0 ≈ j

a

.Z(κ) + j tan(κa)
sec2(κa)

. (25)

For a narrow aperture (i.e., d/b � 1), we take the first approximation
to kz0 as κ corresponding to the unperturbed waveguide propagating the
H10-mode. Then with κ = π/a, the perturbation to the transverse wavenum-
ber, ∆kz0, is calculated. The approximate result for such a perturbation
about a short circuit (i.e., the closed waveguide) is then

∆kz0 =
j

a
.Z =

j

a

(
G− jB

G2 +B2

)∣∣∣∣
kz0=κ

=
B′

a(G′2 +B′2)
+
j

a

G′

(G′2 +B′2)
(26)

in which the equivalent circuit parameters are evaluated at kz0 = κ = π/a,
or

G′ ≡ G(κ) =
πd

2a
and B′ ≡ B(κ) =

b

a
ln

[
csc

(
πd

2b

)]
+
d

a
ln

[
ae

gd

]
. (27)

The fundamental mode transverse wavenumber is then

kz0 = κ+ ∆kz0 =
π

a
+

B′

a (G′2 +B′2)
+
j

a

G′

(G′2 +B′2)
. (28)

The complex propagation constant of the fundamental mode, γ0 =√
k2 − k2

z0 = αr+jβ, can then be calculated with the root chosen so that the
attenuation is negative (αr < 0) for propagation in the positive y-direction,
or β = ky0. The propagation constant reduces to that of the closed wave-
guide when d = 0 since the equivalent network becomes a short circuit.
Note that the result often found in the literature for leaky wave structures
of this type [1, p 189] involves another approximation not used here. The
propagation constant is often approximated by a binomial expansion with
higher order terms neglected, or
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γ0

k
=

√
1 −

(
kz0
k

)2

≈ 1 − 1
2

(
kz0
k

)2

+O
(
k4
z0

)
. (29)

This approximation holds when the operating frequency is well above the
cutoff frequency of the unperturbed mode [5] and so does not provide the
correct behavior at low frequency. We prefer to calculate the complex prop-
agation constant from equation (29) without approximation since operation
near cutoff is often of practical interest.

3.2 Aperture in a Rectangular Waveguide

Now that γ0 for the parallel plate fed aperture can be calculated with suf-
ficient accuracy as a function of f0, consider the finite length aperture in
a rectangular waveguide. We assume that the waveguide width is suffi-
cient to allow the parallel plate guide analysis to apply to the rectangular
waveguide. This requires that higher order modes associated with the aper-
ture perturbation be rapidly attenuated so that a single propagating mode
can be used in the transverse resonance analysis. Such a leaky waveguide
supports H-type hybrid modes constructed to have the required spatial
variation (see app A). The approach is to allow for a longitudinal variation
in d(y) and thus variable γ0(y) over the total aperture length, L. The input
and output air-filled waveguide propagates a single H10-mode with prop-

agation constant β = β10 =
√
k2

0 −
(
π
a

)2 for the fundamental (m = 1, n = 0)
mode. The H10-mode characteristic impedance is Z10 = ωµ0

β10
, but when per-

turbed by the aperture, the characteristic impedance becomes that of the
H-type fundamental mode, ZH0 = ωµ0

kz0
. This leads to a nonuniform trans-

mission line representation along the aperture length

− d

dy
V (y) = jγ0(y)ZH0I(y) and − d

dy
I(y) = jγ0(y)YH0V (y) , (30)

which is solved numerically with the FEM with linear interpolation func-
tions [8, p 33]. The H-type mode impedance variation with y is neglected
since for the fundamental mode

d

dy
ZH0(y) =

d

dy

ωµ0

kz0(y)
= − ωµ0

k2
z0(y)

d

dy
kz0(y) ≈ 0 , (31)

because Re(kz0(y)) > 0 is a slowly varying function of position. Then the
transmission line voltage (and current) satisfies the differential equation

− d

dy

(
ς(y)

d

dy
V (y)

)
+ ζ(y)V (y) = 0 , (32)

in which ς(y) = −((γ0(y)ZH0(y))−1, and ζ(y) = γ0(y)/ZH0(y). The dis-
tributed discontinuity attributable to the (possibly variable) aperture width,
d(y), then causes a reflection in the input waveguide, as indicated in fig-
ure 10, where now the aperture extends from y = 0 to y = L. For con-
stant aperture width, the H-type fundamental mode impedance is con-
stant. However, there is an impedance mismatch at the terminal planes
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Figure 10. H10-mode
incident on a leaky
waveguide section with
matched termination.
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e–jγ
0
y

z
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y
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y = L

Γ10ejγ
0
y

where the transmission line impedance is Z10 so that ZH0(0) = ZH0(L) =
Z10. Transmission to the matched output waveguide is also obtained in the
FEM solution with the remaining power radiated by the aperture. For a
single incident mode with unit input voltage, the total voltage for y < 0 is
then

V (y) = e−jγ0y + Γ10e
jγ0y , (33)

in which Γ10 is the voltage reflection coefficient at the input terminal plane
of a finite length section of leaky waveguide. The boundary conditions at
the terminal planes are determined from the functional for the differential
operator in equation (32) [8, p 34]. Minimizing the functional establishes
the matrix equation to solve where the boundary terms can be cast in the
form of boundary conditions of the third kind (or mixed boundary con-
ditions). However, the derivative terms at the boundary y = 0 are taken
in the negative sense so that in general, boundary condition is written as
±ς(dV/dy) + χV = ρ. The negative sign is used at y = 0 so

−ς dV
dy

∣∣∣∣
y=0

=
−jγ0

γ0ZH0(y)

(
e−jγ0y − Γ10e

jγ0y
)∣∣∣∣

y=0

= − j

ZH0(y)

(
e−jγ0y − Γ10e

jγ0y
)∣∣∣∣

y=0

, (34a)

and we can identify

χ0 = − j

Z10
and ρ0 = − 2j

Z10
. (34b)

The subscript denotes the input terminal plane at y = 0 where ZH0(0) =
Z10. Similarly, for y > L, the voltage is V (y) = T10e

−jγ0y in which T10 is the
slotted waveguide transmission coefficient. Then at y = L, we have
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ς
dV

dy

∣∣∣∣
y=L

=
−jγ0

−γ0ZH0(y)

(
T10e

−jγ0y
)∣∣∣∣

y=L

=
j

ZH0(y)
T10e

−jγ0y

∣∣∣∣
y=L

. (35a)

Thus, we can identify

χL = − j

Z10
and ρL=0 (35b)

at the end of the finite length aperture where ZH0(L) = Z10. The trans-
mission line voltage, V (y) is obtained directly from the FEM solution once
γ0(y) is input from the transverse resonance result for a given aperture
width profile, d(y). The distributed impedance discontinuity in the leaky
waveguide section reflects some power to the input waveguide and trans-
mits some power to the output waveguide assumed to be terminated in a
matched load (or infinite in extent).

The transmission line model characterizes propagation on a nonuniform,
lossy transmission line by the variation in γ0(y) over the length of the
waveguide section (for variable d(y)). The power lost because of dissipa-
tion in the leaky waveguide is considered completely radiated. At y = 0,
the voltage is given by equation (33) so that γ10 = V (0) − 1. At y = L,
V (L) = T10e

−jγ0(L)L with γ0(L) = γ0(0) = β10 at each end of the leaky
waveguide section. The reflection and transmission coefficients are deter-
mined from the FEM voltage solution. We define the antenna efficiency as
the combination of the input efficiency (reflection loss), the radiation effi-
ciency (load dissipation) and other losses combined into ηc (typically dom-
inated by conductor losses)

η = ηinηrηc =
(
1 − |Γ10|2

) (
1 − |T10|2

) (
1 − |A10|2

)
(36)

with the absorption coefficient, A10, presently neglected or ηc = 1. We in-
vestigated the convergence of the FEM solution by increasing the number
of cells used per guide wavelength. The results showed that a FEM mesh
with more than 75 cells per guide wavelength is required for the solution
to converge. For the results presented, we used an FEM mesh with 100 cells
per guide wavelength to calculate η (see app D). A tapered transition region
to the constant width section does reduce Γ10, but the effect is insignificant
for a narrow aperture. For the finite length apertures considered, the effect
of tapered input and output transition sections on Γ10 is negligible but can
distort the radiation pattern as previously mentioned.
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4. Radiation Pattern

The radiated fields produced by arbitrary current distributions can be cal-
culated with the appropriate Green’s function, which is the radiated field of
an infinitesimal source [8, p 909]. For a rectangular aperture symmetrically
located in the coordinate system of figure 6 (also see fig. 1), the far fields in
free space are computed with

E(r) ≈




−jk
4πr e

−jkr×∫ L
2
y0

∫ d
2

−d
2

(cos θ sinφp̂ − cosφt̂)Ex(x′, y′)ej(k sin θ sinφ−β(y′))y′ejk sin θ cosφx′dx′dy′


 , and

(37a)

H(r) ≈




−jωε0
4πr e−jkr×∫ L
2
y0

∫ d
2

−d
2

(cos θ sinφt̂ + cosφp̂)Ex(x′, y′)ej(k sin θ sinφ−β(y′))y′ejk sin θ cosφx′dx′dy′


 (37b)

where t̂ and p̂ are unit vectors in the θ and φ directions, respectively. Here
Ex(x′, y′) is the aperture E-field and β(y′) is the perturbed waveguide phase
constant at each position y′. In the far zone, the EM fields are of the form

E(r) ≈ e−jkr

r

√
ξ0F(θ, φ) × r̂ and H(r) ≈ e−jkr

r

√
η0F(θ, φ) , (38)

in which ξ0 = 120π-ohm is the free-space impedance and η0 = 1/ξ0 is the
free-space admittance. The average power radiated per unit area is then

S = E × H∗ =
(F × r̂)∗ × F

r2
= r̂

|F(θ, φ)|2
r2

, (39)

so |F(θφ)|2 is the average power radiated per steradian. The directive gain
is the radiated power per steradian normalized to the total radiated power,

Ptotal =
∫∫

4π
|F (Ω)|2dΩ =

∫ 2π

0

∫ π

0
|F (θ, φ)|

2

sin θ dθ dφ (40)

averaged over all solid angles (i.e., 4π steradian). Therefore, the directivity
(or directive gain) is given by

G(θ, φ) =
4π

∣∣F (θ, φ)2
∣∣

Ptotal
(41)

in dB relative to an isotropic radiator (dBi) and is independent of amplitude
scale factors. The realized gain (or simply gain) includes the antenna effi-
ciency as calculated with the FEM (see sect. 3.2). The realized gain,Gr(θ, φ),
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includes losses such as the input impedance mismatch (ηin), the power dis-
sipated in the load (ηr), and other possible loss mechanisms such as con-
ductor or dielectric loss (ηc). The calculated results are presented as realized
gain, based on the total antenna efficiency, or Gr(θ, φ) = ηG(θ, φ).

The finite width rectangular aperture can be represented by an equivalent
rectangular sheet of current extending from x = −d/2 to x = d/2 and
y = −L/2 to y = L/2 (see fig. 1a). Since there are no transverse currents
excited for the assumed aperture E-field, the amplitude depends only on
axial position, Ex(x′, y′) = Ex(y′). Then even for variable aperture width,
d(y′), the integral in equation (37) along the x-direction simplifies to

∫ d(y′)
2

− d(y′)
2

Ex(x′, y′)ejk sin θ cosφx′dx′ = Ex(y′)
∫ d(y′)

2

− d(y′)
2

ejk sin θ cosφx′dx′ = Ex(y′)
sin(ux(y′))
ux(y′)

, (42)

in which ux(y′) = πd(y′) sin θ cosφ/λ0. However, we only consider narrow
apertures in which d(y′) � λ0/2 so ux(y′) = ux � 1 and the aperture
field in equation (37) reduces to a magnetic current line source as shown in
figure 11 where

M = −ẑ × E = −Ex(y′)ŷ . (43)

Then in equation (42), the radiation pattern is not modified by the finite
aperture width as long as it is small compared to wavelength (i.e., d < λ0/2)
[1, p 47].

For constant aperture width, ux(y′) = ux = πd sin θ cosφ/λ0, andEx(x′, y′) =
Ex(y′) The line source amplitude is the aperture illumination function mag-
nitude from equation (12), or

Ex(y′) ≡
∣∣f(y′)∣∣ ∫ d

2

−d
2

ejk sin θ cosφx′dx′ =
∣∣f(y′)∣∣ sinux

ux
∼=

∣∣f(y′)∣∣ (44)

Figure 11. A narrow
aperture represented by
a magnetic current line
source in spherical
coordinates.
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This aperture field has the phase variation of the perturbed waveguide
phase constant which is now independent of position in the aperture,
β(y′) = β. Here, we consider constant width apertures so that results for
variable aperture width are shown only in figure 5. For the narrow widths
of interest, the far fields in the upper half-space are from equation (37)

E(r) ≈
{

jk

2πr
e−jkr

∫ L
2

y0

(cos θ sinφp̂ − cos φt̂)Ex(y′)ej(k sin θ sin φ−β)y′
dy′

}
, and (45a)

H(r) ≈
{

jωε0

2πr
e−jkr

∫ L
2

y0

(cos θ sinφt̂ + cos φp̂)Ex(y′)ej(k sin θ sin φ−β)y′
dy′

}
. (45b)

These results are sufficient for radiation pattern calculations since the di-
rectivity from equation (41) is independent of amplitude scale factors.

We conduct a parametrical study to evaluate the influence of slot length
and width on the far field radiation pattern at fixed frequency. For the
waveguide and slot dimensions previously considered (ka = 4.25, b = a/2
and d = b/30), the H-plane (i.e., φ = π/2) realized gain pattern is shown
in figure 12 with aperture length as a parameter. The total efficiency is also
shown corresponding to η = −1.4,−0.8,−0.5, and −0.3 dB. The pattern
is as expected for an approximately uniform source distribution with SLL
∼ 13 dB. The beam appears at an angle that depends on the phase varia-
tion over the aperture, and this is completely determined from the variable
aperture width. The azimuthal beam angle, φ0 = π/2, remains fixed and
is referred to as the “forward” direction. For constant aperture width, the
elevation beam angle, θ0, is determined by the perturbed waveguide wave-
length. As the aperture width approaches zero, the elevation beam angle
approaches

θ0 = sin−1
(
λ0/λg0

)
∼ 42◦ (46)

in which λg0 is the guide wavelength for the unperturbed (i.e., closed)
waveguide. This is shown in figure 13 for fixed slot length, L = 20λ0, and

Figure 12. Realized gain
for a constant width
aperture in a waveguide
narrow wall with length
as a parameter.
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Figure 13. Realized gain
for a constant width
aperture in a waveguide
narrow wall with width
as a parameter.

15 20 25 30 35 40 45

20

0

–20

–40

–60

Elevation angle θ°

H
-p

la
ne

 g
ai

n 
(d

B
i)

d =    b/30 
d  =   b/300 
d  =  bb/3000 
d  = b/300000

L = 20 wavelengths
k0a = 4.25  

φ = π/2

decreasing slot width where the realized gain is reduced according to the
total efficiency.

Now consider a specific example of a constant width aperture in the narrow
wall of WR-284 waveguide where the interior dimensions are a = 2.84 in.
and b = 1.34 in. (which is not half-height waveguide). The aperture width
is constant at d = b/25 with length L = 30a ∼ 20λ0 at a frequency where
ka = 4.25. The calculated gain at this frequency is shown as a function of
the elevation angle and versus the azimuthal angle at fixed elevation. The
H-plane gain with φ0 = π/2 is shown in figure 14a where the main beam
angle, θ0 = 24.7◦.

The realized gain versus azimuth at this fixed elevation angle is shown in
figure 14b. The beam can be frequency scanned from broadside and re-
mains free of grating lobes. The main beam angle from broadside (or over-
head) when φ0 = π/2 is shown in figure 15 as a function of normalized fre-
quency. The realized gain for WR-284 slotted waveguide (with d = b/30) is
shown in figure 16 at three frequencies corresponding to ka = 4.0, 4.25, and
4.5, in which η = −0.9,−1.3, and −1.7 dB, respectively. The result indicates
that the pattern is stable over this frequency BW with less than a 2-dB gain
variation. The main beam can be positioned at a desired elevation angle by
adjusting the guide phase constant and then frequency scanning over about
20◦ (for 12 percent BW). The corresponding peak gain, Gr(θ0, π/2) and total
efficiency are shown in figure 17a and 17b, respectively. To obtain the radi-
ation pattern for a realistic aperture, the rectangular source distribution in
two dimensions is required as in equation (37). However, for the narrow
slots considered (without transverse currents), equation (45) is used since
the radiation by a rectangular aperture source is a negligible correction of
these line source results.
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Figure 14. (a) H-plane
realized gain for a
constant width aperture
in the narrow wall of
WR-284 and (b) realized
gain at the main beam
angle for a constant
width aperture in
narrow wall of WR-284.
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Figure 15. Main beam
angle scan range for a
constant width aperture
in narrow wall of
WR-284.
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Figure 16. Calculated
H-plane gain for an
aperture in narrow wall
of WR-284 waveguide.
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Figure 17. Results for a
constant width aperture
in narrow wall of
WR-284 waveguide: (a)
peak realized gain and
(b) total efficiency.
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5. Conclusion

Following Goldstone and Oliner [5], we have presented an equivalent cir-
cuit model for a narrow slot in a rectangular waveguide. The transverse
resonance technique is applied to the resulting transmission line descrip-
tion to provide the resonance condition. The transcendental equation is
then approximated by a perturbation solution resulting in the perturbed
waveguide propagation constant. The waveguide attenuation constant de-
termines the aperture distribution function that has the waveguide longi-
tudinal phase variation. The radiated EM fields are then obtained by nu-
merical integration over the aperture source, where the main beam angle
depends on the perturbed waveguide phase constant. It was shown that a
tapered (or flared) slot width corrupted the radiation pattern, so we con-
sider only constant width slots in detail. Parametric results were shown for
a constant width slot in WR-284 waveguide, which corresponds to a ta-
pered aperture illumination function. The TE-slotted waveguide TWA has
good radiation characteristics (i.e., η > 70 percent) over a frequency range
corresponding to ka = 4.0 − 4.5 or rather, ka = 4.25 ± 6 percent. Over this
12-percent frequency band (i.e., 2.65 to 2.98 GHz), the main beam scans 10◦

to 30◦ from broadside (or overhead). This scan range could be augmented
with electronic control of the waveguide phase constant in order to phase
scan the beam from broadside. In the sequel to (i.e., Part II) this report, di-
electric loaded waveguides are considered in which voltage-controlled di-
electric materials integrated into the antenna structure may allow efficient
phase scanning of the slotted waveguide TWA.
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Appendix A. Modal Decomposition in a Parallel Plate Region

Consider a parallel plate region of infinite extent with the coordinate sys-
tem shown in figure A-1, where we presently locate the origin on the bot-
tom plate. We desire a modal decomposition for electromagnetic (EM) fields
having an exponential phase variation, e−jβny in the propagation direction
for the nth-mode. A modal decomposition in terms of transverse to y elec-
tric (TE-) and magnetic (TM-) fields is possible, but ultimately, we desire
to include an aperture in the waveguide which perturbs the modal fields.
In a typical TE-TM mode decomposition, separate transmission lines in the
direction transverse to y are required to represent each mode, which are
coupled by the presence of the aperture. We indicate this schematically in
figure A-2, where an aperture fed by a parallel plate waveguide creates
fringing fields that have Ex- and Ez-components. The mode would also
have an Ey-component requiring a linear combination of TE- (or H-modes)
and TM-modes to represent the EM field. Single mode decomposition is
more attractive in order to obtain a single transverse transmission line rep-
resentation for an aperture in rectangular waveguide. To this end, we use
an alternate modal decomposition that will be helpful in the analysis of
leaky wave guiding structures such as that shown in figure A-3.

We desire to construct a transmission line description of waves propagating
in a direction transverse to the propagation direction, y in the parallel plate
guide (i.e., the z-direction operator ∇tz ≡ ∂

∂x x̂ + ∂
∂y ŷ. From the Maxwell

field equations, the EM fields must satisfy

−∂Etz

∂z
= jωµ

[
I +

∇tz∇tz

k2

]
· (Htz × ẑ) (A-1a)

−∂Htz

∂z
= jωε

[
I +

∇tz∇tz

k2

]
· (ẑ × Etz) (A-1b)

Figure A-1. An infinite
parallel plate region.
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Figure A-2. Parallel
plate fed aperture. x

z

y

Perfect
conductor

 

E

x = b

b

ε, µ

ε0, µ0

Figure A-3. An aperture
in narrow wall of
rectangular waveguide.
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in which I = x̂x̂ + ŷŷ + ẑẑ is the unit dyadic and

jωµHz = ∇tz · (ẑ × Etz) (A-2a)

jωεEz = ∇tz · (Htz × ẑ) . (A-2b)

In the parallel plate region, 0 ≤ x ≤ b, the medium has permeability, µ =
µ0µr and permittivity, ε = ε0εr, which are presently taken to be constants.

In the spirit of separation of variables, expand the transverse (to z) fields
in vector modal functions that are constructed to have the correct x and y
spatial variation,
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Etz(x, y, z) = Vn(z)en(x, y) (A-3a)

Htz(x, y, z) = In(z)hn(x, y) . (A-3b)

The Vn(z) and In(z) are the nth-mode amplitude functions that satisfy trans-
mission line equations in the longitudinal direction,

−dVn(z)
dz

= jkznZnIn(z) (A-4a)

−dIn(z)
dz

= jkznYnVn(z) (A-4b)

in which Zn = 1/Yn is the characteristic (wave) impedance and jkzn the
propagation constant along z corresponding to the nth-mode. When we
use equation (A-3) in equation (A-1) and take account of equation (A-4),
the transverse (to z) mode functions are

en =
ωµ

kznZn

[
I +

∇tz∇tz

k2

]
· (hn × ẑ) (A-5a)

hn =
ωε

kznYn

[
I +

∇tz∇tz

k2

]
· (ẑ × en) . (A-5b)

The transverse EM fields are then obtained from equation (A-3) in terms of
the transmission line voltage and current functions. With equation (A-3) in
equation (A-2), the “longitudinal” fields are

jωµHz = Vn(z)∇tz · (ẑ × en) (A-6a)

jωεEz = In(z)∇tz · (hn × ẑ) . (A-6b)

With en = hn × ẑ, the classical TE-TM modal decomposition could be ob-
tained. Instead, we define the en-mode function by

en = e−jβny cos
(
nπx

b

)
x̂ ≡ ψnx̂ . (A-7)

Substituting equation (A-7) into the right side of equation (A-5b), we obtain

hn =
ωε

kznYn

[
I +

∇tz∇tz

k2

]
· ŷψn

=
ωε

kznYn

[
ŷψn +

∇tz

k2

∂ψn

∂y

]
=

ωε

kznYn

[
ŷ − jβn∇tz

k2

]
ψn . (A-8)

With k2 = ω2µε and Ψn = e−jβny cos
(
nπx
b

)
, this becomes

hn =
1

kznYn

[
jβn
ωµ

(
nπ

b

)
sin

(
nπx

b

)
x̂ +

k2 − β2
n

ωµ
cos

(
nπx

b

)
ŷ

]
e−jβny . (A-9)

The normal component vanishes at x = 0 and x = b, as required by a
perfectly conducting boundary. To show that equations (A-9) and (A-7) are
mutually consistent, substitute equation (A-9) into the right side of equa-
tion (A-5a) to obtain
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ωµ

[
I +

∇tz∇tz

k2

]
· (hn × ẑ) = ωµ

[
I +

∇tz∇tz

k2

]
(A-10)

·
[
k2 − β2

n

ωµ
cos

(
nπx

b

)
x̂ − jβn

ωµ

(
nπ

b

)
sin

(
nπx

b

)
ŷ

]
e−jβny

kznYn
.

When we take derivatives and cancel terms, equation (A-10) becomes

ωµ

kznYn




[
k2−β2

n
ωµ cos

(
nπx
b

)
x̂ − jβn

ωµ

(
nπ
b

)
sin

(
nπx
b

)
ŷ

]
e−jβny

+ ∇tz
ωµk2

[
−k2

(
nπ
b

)
sin

(
nπx
b

)
e−jβny

]



=
1

kznYn

[
k2 − β2

n −
(
nπ

b

)2
]

cos
(
nπx

b

)
x̂e−jβny . (A-11)

Then the result in equation (A-11) must equal the left side of
equation (A-5a). This gives the condition

k2
zn = k2 − β2

n −
(
nπ

b

)2

(A-12)

on the wavenumber for the transverse (to y) transmission line. The nor-
malization factor is the characteristic impedance, chosen so that the y-
component of the hn mode function is simply ψn. From equation (A-9),
this requires that

k2 − β2
n

kznYnωµ
= 1 or Zn =

kznωµ

k2 − β2
n

. (A-13)

With this normalization, the electric mode functions are from equation (A-7)

en = cos
(
nπx

b

)
x̂e−jβny (A-14a)

and from equation (A-9), the magnetic vector mode functions are

hn =
[

jβn
k2 − β2

n

(
nπ

b

)
sin

(
nπx

b

)
x̂ + cos

(
nπx

b

)
ŷ

]
e−jβny . (A-14b)

The transverse fields are found from equation (A-3) and are simply the
transverse mode functions with transmission line amplitudes. The corre-
sponding longitudinal components are obtained when equation (A-14) is
used in equation (A-6) and when we take account of equation (A-4). The
result is

Hzn = −
(
βn
ωµ

)
Vn(z) cos

(
nπx

b

)
e−jβny (A-15a)

Ezn =
(

jωµ

k2 − β2
n

) (
nπ

b

)
In(z) sin

(
nπx

b

)
e−jβny . (A-15b)

This mode is a linear combination of a TE-mode and a TM-mode, often
referred to as an H-type hybrid mode. The H-type mode characteristic
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impedance is denoted ZHn, to have a clear distinction from the TE (or
H-mode) case. We find the fundamental mode impedance from equation
(A-13) using equation (A-12) with n = 0,

ZH0 =
k2
z0ωµ

k2 − β2
0

=
ωµ

kz0
. (A-16)

When n = 0 in equations (A-14) and (A-15), the H-type mode functions
degenerate into

e0 = x̂e−jβ0y , and (A-17a)

h0 = ŷe−jβ0y , with (A-17b)

H0n = −
(
β0

ωµ

)
V0(z)e−jβ0y (A-17c)

Thus, the fundamental H-type mode is equivalent to an H10-mode propa-
gating in the y-direction. The H-type mode decomposition is useful in the
analysis of leaky wave antennas such as an aperture in the narrow wall of
rectangular waveguide (see fig. A-3). The H-type mode decomposition in
the transverse direction has a fundamental mode that can represent an inci-
dent H10-mode. The aperture perturbation on this incident mode can then
be described as introducing higher order H-type modes.
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Appendix B. Equivalent Circuit Parameters for a Leaky H10

Rectangular Waveguide

We desire equivalent circuit parameters for a parallel plate waveguide fed
aperture radiating into a half-space as shown in figure B-1. To follow con-
vention, the origin is presently located on the bottom plate. The case of
interest is an aperture in the narrow wall of a rectangular waveguide when
excited by the H10- (or TE10-) mode. The unperturbed waveguide prop-
agates the H10-mode, but when the waveguide is perturbed by an aper-
ture, an H-type hybrid mode is appropriate as developed in appendix A.
The H-type modal decomposition in the transverse direction reduces to the
H10 case when n = 0 as shown in equation (A-17). Then, TE-excitation can
be viewed as a fundamental H-type mode incident on the aperture plane,
and the aperture perturbation produces higher order modes. Energy prop-
agation along y in the parallel plate region can be viewed as a TEM wave
incident at some angle, θ to the aperture (xy) plane as shown in figure B-2.

As in appendix A, take the z-axis as a propagation direction and consider
transverse field components incident on the xy-plane. The electric (E-) field
is polarized along the x-axis and is incident at an oblique angle to the aper-
ture plane (see fig. B-2)

Einc = x̂e−jky0y−jkz0z (B-1)

Figure B-1. TE-excited
aperture radiating into a
half-space (side view).
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Figure B-2. TEM-wave
incident at an oblique
angle.
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From Faraday’s Law, the incident magnetic (H-) field is

Hinc = ŷ
kz0
ωµ0

e−jky0y−jkz0z − ẑ
ky0
ωµ0

e−jky0y−jkz0z (B-2)

in which only the transverse (to z) component is required in this analysis.
For an air-filled waveguide, the components of the propagation constant
are jky0 ≡ jβ0 = jk cos θ and jkz0 = jk sin θ. The wavenumber magnitude
is then

k =
√
β2

0 + k2
z0 (B-3)

with longitudinal wavenumber, kz0, of the transverse (to y) transmission
line.

These incident electromagnetic (EM) fields correspond to the fundamental
(n = 0) mode of anH-type modal decomposition as developed in appendix
A. Using Einc from equation (B-1) in equations (A-1b) and (A-2b), the inci-
dent magnetic (H-) field is that of the fundamentalH-type mode equivalent
to equations (A-17b) and (A-17c), but propagating at some oblique angle to
the z-axis. This is because the mode amplitudes satisfy the transmission line
equation (A-4) so the fields that are transverse to the propagation direction
are related by the H-type mode characteristic (wave) impedance equation
(A-13). Then the transverse component in equation (B-2) can be written in
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terms of the fundamental mode wave impedance, ZH0 = ωµ0/kz0. Higher
orderH-type modes for the variation along x also satisfy the boundary con-
ditions on the perfectly conducting surfaces when kxn = (nπ/b). Since there
is no variation of the waveguide along y, the wavenumber in this direction
is the same for all n or βn = β0 ≡ β. For the nth-mode, the wavenumber
magnitude of the transmission line along the z-axis is thus

kzn =

√
k2 −

(
nπ

b

)2

− β2 . (B-4)

The transverse modal decomposition in appendix A showed in equation
(A-17) that the fundamental H-type mode degenerates to an H10-mode
propagating along y. Then the incident EM fields that are transverse to z
can be described by an H10-mode propagating along kinc (see fig. B-2). The
incident EM fields transverse to z can be written

Einc = x̂e−jβy−jkz0z , and (B-5a)

Hinc = ŷ
e−jβy−jkz0z

ZH0
(B-5b)

corresponding to a TEM wave incident at an oblique angle. These inci-
dent fields are partially reflected along the aperture with higher order
modes generated according to the aperture reflection coefficient, Γn, for
each H−type mode. The total EM fields within the waveguide are then a
superposition of the incident field and an infinite sum of reflected modes.
The total internal (i.e., z ≤ 0) E-field transverse to z is

Eint
tz = x̂

[(
e−jkz0z + Γ0e

jkz0z
)

+
∞∑
n=1

Γn cos
(
nπx

b

)
ejkznz

]
e−jβy . (B-6a)

The total transverse H-field is found with equation (A-5b) for the trans-
verse mode functions by the inclusion of the sum of reflected modes. The
result is as in equation (A-14b) for the hn-mode function or

Hint
tz =




ŷ (e−jkz0z−Γ0ejkz0z)
ZH0

−
∞∑
n=1

Γnejkznz

ZHn

[
jβ

k2
0−β2

(
nπ
b

)
sin

(
nπx
b

)
x̂ + cos

(
nπx
b

)
ŷ

]

 e−jβy . (B-6b)

where the wave impedance is that for the H-type waveguide mode

ZHn =
kznωµ0

k2 − β2
=

kznωµ0

k2
zn +

(
nπ
b

)2 . (B-7)

The longitudinal (z-) field components can be found with equation (A-6)
but are not required here.

For z ≥ 0, the total EM fields can be written as a superposition of complex
exponential functions corresponding to a Fourier integral with the trans-
form variable being the transverse wavenumber. With longitudinal and
transverse components of the k-vector, k = kz + kt, the radiated fields are
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Eext =
∫ ∞

−∞

∫ ∞

−∞
Ẽ (kt) e−jkxx−jkyy−j

√
k2
0−k2

x−k2
yz
dkxdky
(2π)2

, and (B-8a)

Hext =
∫ ∞

−∞

∫ ∞

−∞

k × Ẽ (kt)
ωµ0

e−jkxx−jkyy−j
√

k2
0−k2

x−k2
yz
dkxdky

(2π)2
. (B-8b)

The wavenumber along the aperture is that of the waveguide mode, ky = β
for all n or

Ẽ(kt) = 2πẼ(kx)δ (ky − β) . (B-9)

Then the external EM fields are found from equation (B-8) via the ampli-
tude coefficients in equation (B-9)

Eext =
e−jβy

2π

∫ ∞

−∞
Ẽ (kx) e−jkxx−jkzzdkx , and (B-10a)

Hext =
e−jβy

2πωµ0

∫ ∞

−∞
(kxx̂ + βŷ + kz ẑ) × Ẽ (kx) e−jkxx−jkzzdkx (B-10b)

where the longitudinal wavenumber magnitude is

kz =
√
k2 − k2

x − β2 or k2
x + k2

z = k2 − β2 . (B-11)

Since the component of the wavenumber along the aperture length, β, is
fixed, the amplitude coefficient can be written

Ẽ(kx) = Ex(kx)x̂ + Ez(kx)ẑ . (B-12)

Further, there is no component of E-field along the k-vector in the radi-
ation direction, k, so we can eliminate one component of the amplitude
coefficient by recognizing that k • Ẽ = 0 or

kxEx + kzEz = 0 so Ez = −
(
kx
kz

)
Ex . (B-13)

The cross product in equation (B-8b) is then

k × Ẽ = [Ezβx̂ + (kzEx − kxEz) ŷ − βExẑ]

=

[(
−βkx

kz

)
x̂ +

k2 − β2

kz
ŷ − βẑ

]
Ex . (B-14)

The external EM fields can be written in terms of this single component of
the Fourier transform variable, with the result

Eext =
e−jβy

2π
x̂

∫ ∞

−∞
Exe−jkxx−jkzzdkx −

e−jβy

2π
ẑ

∫ ∞

−∞
Ex
kx
kz
e−jkxx−jkzzdkx , and (B-15a)

Hext = −βe−jβy

2πωµ0
x̂

∫ ∞

−∞

kx
kz

Exe−jkxx−jkzzdkx

+
k2

0 − β2

2πωµ0
e−jβyŷ

∫ ∞

−∞

Ex
kz
e−jkxx−jkzzdkx −

βe−jβy

2πωµ0
ẑ

∫ ∞

−∞
Exe−jkxx−jkzzdkx . (B-15b)
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Then the external fields that are transverse to z are

Eext
tz =

e−jβy

2π
x̂

∫ ∞

−∞
Exe−jkxx−jkzzdkx , and (B-16a)

Hext
tz = −βe−jβy

2πωµ0
x̂

∫ ∞

−∞

kx
kz

Exe−jkxx−jkzzdkx +
k2

0 − β2

2πωµ0
e−jβyŷ

∫ ∞

−∞

Ex
kz
e−jkxx−jkzzdkx . (B-16b)

The boundary condition on the internal and external fields at the aperture
plane requires continuity of the tangential (i.e., transverse to z) field compo-
nents. Then equating equations (B-6) and (B-16) and omitting the common
factor e−jβy, we must have at z = 0

1 + Γ0 +
∞∑
n=1

Γn cos
(
nπx

b

)
=

1
2π

∫ ∞

−∞
Exe−jkxxdkx , (B-17a)

∞∑
n=1

jβ

k2
z0

(
nπ

b

)
Γn

ZHn
sin

(
nπx

b

)
=

−β
2πωµ0

∫ ∞

−∞

kx
kz

Exe−jkxxdkx , and (B-17b)

1 − Γ0

ZH0
−

∞∑
n=1

Γn

ZHn
cos

(
nπx

b

)
=

k2
z0

2πωµ0

∫ ∞

−∞

Ex
kz
e−jkxxdkx (B-17c)

using the relation, k2
z0 = k2 − β2. For the nth-mode we have

kzn =

√
k2
z0 −

(
nπ

b

)2

= −j
√(

nπ

b

)2

− k2
z0 = −j

√(
nπ

b

)2

− k2 sin2 θ (B-18)

Then using equation (B-18) along with equation (B-7), we find that equation
(B-17b) becomes

∞∑
n=1

nπ
b Γn√(

nπ
b

)
− k2 sin2 θ

sin
(
nπx

b

)
=

1
2π

∫ ∞

−∞

kx
kz

Exe−jkxxdkx . (B-19)

The aperture E-field at z = 0, ExA(x, 0), is the one-dimensional Fourier
transform that appears on the right side of equation (B-17a). We have the
Fourier transform pairs

ExA(x) =
1
2π

∫ ∞

−∞
Exe−jkxxdkx , and (B-20a)

Ex =
1
2π

∫
Ap

ExA(x′)ejkxx′dx′ (B20b)

in which the second integral extends only over the aperture. Using equa-
tion (B-7), we find that the condition equation (B-17c) becomes
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1 − Γ0 −
∞∑
n=1

ZH0

ZHn
Γn cos

(
nπx

b

)
=
kz0
2π

∫ ∞

−∞

e−jkxx

kz
dkx

∫
Ap

ExA

(
x′

)
e−jkxx′dx′

=
kz0
2π

∫
Ap

ExA

(
x′

)
dx′

∫ ∞

−∞

e−jkx(x−x′)√
k2
z0 − β2

dkx =
kz0
2

∫
Ap

H
(2)
0

(
kz0

∣∣x− x′
∣∣)ExA

(
x′

)
dx′ (B-21)

in whichH(2)
ν is the Hankel function of the second kind, order ν. An expres-

sion for Γn can be obtained from equation (B-17b), but this is not required
when one is using orthogonal mode functions.

We can take advantage of orthogonal functions to further simplify the
results. For now, assume that the aperture is the full waveguide open-
ing or d = b in figure B-2. Multiply both sides of equation (B-17a) by
cos(nπx/b), n ≥ 1 and integrate over the aperture width, b. The result is
an expression for Γn

b

2
Γn =

∫ b

0
ExA(x′) cos

(
nπx′

b

)
dx′, n ≥ 1 . (B-22a)

Taking the complex conjugate of equation (B-22a), we have also

b

2
Γ∗
n =

∫ b

0
E∗

xA(x′) cos
(
nπx′

b

)
dx′, n ≥ 1 . (B-22b)

By directly integrating both sides of equation (B-17a) with respect to x, we
obtain an expression for Γ0

(1 + Γ0)b =
∫ b

0
ExA(x′)dx′ . (B-23)

Now multiply equation (B-21) by the conjugate of the aperture field, E∗
xA,

and integrate with respect to x using equation (B-22b) to find

(1 − Γ0)
∫ b

0
E∗

xA(x)dx− b

2

∞∑
n=1

|Γn|2 ZH0

ZHn
=
kz0
2

∫ b

0
dx

∫ b

0
H

(2)
0

(
kz0

∣∣x− x′
∣∣)E∗

xA(x)ExA(x′)dx′ .

(B-24)

Dividing by
∫ b
0 E

∗
xA(x)dx and transposing terms, we have

(1 − Γ0) =

b
2

∞∑
n=1

|Γn|2ZH0

ZHn
+ kz0

2

∫ b
0 dx

∫ b
0 dx

′H(2)
0 (kz0 |x− x′|)E∗

xA(x)ExA (x′)
∫ b
0 E

∗
xA(x)dx

. (B-25)

Dividing equation (B-25) by equation (B-23) gives

1 − Γ0

1 + Γ0
=

b2

2

∞∑
n=1

ZH0
ZHn

|Γn|2 + kz0b
2

∫ b
0 dx

∫ b
0 dx

′H(2)
0 (kz0 |x− x′|)E∗

xA(x)ExA(x′)∣∣∣∫ b
0 ExA(x′)dx′

∣∣∣2 . (B-26)

38



The input admittance at z = 0 is defined in terms of the reflection coefficient
[3, p 14], or

Yin

YH0
=

1 − Γ0

1 + Γ0
(B-27)

in which YH0 = 1/ZH0 is the characteristic admittance. Using equations
(B-4) and (B-7) with n = 0, we also note that ZHn = kznωµ0/k

2
z0 so that

ZH0

ZHn
=

kz0
kzn

. (B-28)

Substitute equation (B-22a) for Γn in equation (B-26), and using equations
(B-27) and (B-28) we get

Yin

YH0
=

2
∞∑
n=1

kz0
kzn

∣∣∣∫ b
0 ExA(x) cos

(
nπx
b

)
dx

∣∣∣2 + kz0b
2

∫ b
0 dx

∫ b
0 dx

′H(2)
0 (kz0 |x− x′|)E∗

xA(x)ExA(x′)∣∣∣∫ b
0 ExA(x′)dx′

∣∣∣2
(B-29)

which is a variational expression for the input admittance. If we assume a
constant aperture field, ExA(x) = ExA, then the first term on the right side
of equation (B-29) vanishes and so an approximate expression for the input
admittance in this case (i.e., H10-excitation) is

Yin

YH0

∼= kz0
2b

∫ b

0
dx

∫ b

0
dx′H(2)

0

(
kz0

∣∣x− x′
∣∣) . (B-30)

In terms of the dimensionless variable χ = kz0x = kx sin θ, we have

Yin

YH0

∼= 1
2kz0b

∫ kz0b

0
dχ

∫ kz0b

0
dχ′H(2)

0

(∣∣χ− χ′∣∣) . (B-31)

This result is a Green’s function type integral in which the integrand de-
pends only on the absolute value of the difference parameter, η = |χ− χ′|,
so is an even function of η. In general, we are interested in an integral of the
form, I ≡

∫ b
0

∫ b
0 f (χ− χ′)dχdχ′ in a square parameter space 0 < χ < b and

0 < χ′ < b. Define the difference parameter as η = χ−χ′ and let ξ = χ′; then
as shown in figure B-3, the parameter space transforms to 0 < ξ < b and
−ξ < η < b − ξ. We integrate a strip over η in region 1 and region 2 where
η assumes positive or negative values, respectively. Referring to figure B-3,
the double integral becomes

I =
∫ b

0
f (η) dη

∫ b−η

0
dξ +

∫ 0

−b
f (η)dη

∫ b

−η
dξ =

∫ b

0
{f (η) + f (−η)} (b− η) dη . (B-32)

Thus if f(η) is an even function of η, then equation (B-32) reduces to

I = 2b
∫ b

0
f (η)dη − 2

∫ b

0
ηf (η)dη . (B-33)

Now with b = kz0b, let η = kz0(x − x′) so that f(η) = H
(2)
0 (kz0 |x− x′ |), is

an even function of η. Then with equation (B-33) with ξ0 = 120π Ω the free
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Figure B-3.
Transformation of
parameter space for
Green’s function type
integrals.
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space impedance, equation (B-31) can be written

Yin

YH0
=

ξ0ωε0

k2
z0b

{
kz0b

∫ kz0b

0
H

(2)
0 (η) dη −

∫ kz0b

0
ηH

(2)
0 (η) dη

}
. (B-34)

For cylindrical Bessel functions, Zν(ζ), we know that
∫

ζZν(ζ)dζ = ζZν+1(ζ)
and so∫ kz0b

0

ζ

kz0b
Zν (ζ) dζ =

ζ

kz0b
Zν+1 (ζ)

∣∣∣kz0b
0 = Zν+1 (kz0b) − lim

ζ→0

(
ζZν+1 (ζ)

kz0b

)
. (B-35)

Then using equation (B-35) to simplify the second term in equation (B-34),
we find

Yin

YH0
=

ξ0ωε0

kz0

{∫ kz0b

0
H

(2)
0 (η) dη − H

(2)
1 (kz0b) + lim

η→0

(
ηH

(2)
1 (η)

kz0b

)}
. (B-36a)

Where we use

lim
η→0

(
ηH

(2)
1 (η)

kz0b

)
=

2j

πkz0b
. (B-36b)

The normalized input admittance, yin, for the parallel plate guide radiating
into a half-space is thus from equation (B-36a) with equation (B-36b)

yin =
∫ kz0b

0
H

(2)
0 (η)dη − H

(2)
1 (kz0b) + j

2
πkz0b

. (B-37)

Expanding the Hankel functions into Bessel and Neumann functions,
H

(2)
ν (ζ) = Jν (ζ) − jNν (ζ), equation (B-37) is written in terms of the input

conductance and susceptance, normalized to the H-type mode admittance

gin =
G

YH0
=

∫ kz0b

0
J0(η)dη − J1 (kz0b) (B-38a)
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bin =
B

YH0
= −

∫ kz0b

0
N0(η)dη +N1 (kz0b) +

2
πkz0b

. (B-38b)

It is important to note that the expression (B-38b) in The Waveguide Handbook
includes a sign error in the first term [3, p 184, equation (2a)]. Now when
the aperture is not the full waveguide width, d < b, then the variational
expression can still be used to obtain equivalent circuit parameters. The
rationale for this approach is that with constant aperture field, the equiv-
alent circuit depends only on the external field. This can be seen from the
variational expression (B-29) where the first term that depends on the inter-
nal fields vanishes when ExA is constant. Then for a narrow aperture, the
equivalent circuit parameters are given by equation (B-38) with b replaced
by d.

The normalized circuit parameters in equation (B-38) represent the “exact”
solution as obtained by the variational method. A closed form approxima-
tion can be obtained with the small argument formulas for the Bessel func-
tions. From the series representations, we have

J0(z) = 1 +O
(
z2

)
, and N0(z) = − 2

π
ln

(
gz

2

)
+O

(
z2

)
(B-39a)

J1(z) =
z

2
+O

(
z2

)
, and N1(z) = − 1

π

(
z

2

)−1

+
z

π
ln

(
z

2

)
+
z

π

(
lng − 1

2

)
+O

(
z2

)
(B-39b)

in which g = ec = 1.781..., with the irrational number c = 0.577... being
Euler’s constant. Thus, when kz0d < 1, equation (B-38a) becomes (with b
replaced by d)

gin ≈
∫ kz0d

0
dη − kz0d

2
=
kz0d

2
. (B-40)

This small argument approximation for the equivalent conductance is the
same as the static result provided by Marcuvitz [3, p 184, equation (1b)].
The equivalent susceptance from equation (B-38b) becomes (with b replaced
by d)

bin ≈ − 2
π

∫ kz0d

0
ln

(
gη

2

)
dη +

kz0d

π
ln

(
kz0d

2

)
+
kz0d

π
ln

(
g − 1

2

)
. (B-41)

Integrating and simplifying, we get

bin ≈ kz0d

π
ln

(
2e
√

e
gkz0d

)
(B-42)

in which the irrational number e = 2.71828... is the base of the natural log-
arithm. On the other hand, Marcuvitz gives the static solution for the sus-
ceptance as [3, p 184, equation (2b)]

bin ≈ kz0d

π
ln

(
eπ

gkz0d

)
(B-43)
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which cannot be obtained from the truncated series representation of the
Neumann functions. A comparison of the variational result for the suscep-
tibility equation (B-38b) to the static result equation (B-43) and the small
argument approximation (B-42) is provided in figure B-4. The small argu-
ment approximation equation (B-42) is closer to the variational result for
kz0d < 0.5. For larger kz0d, the static result is a better approximation than
equation (B-42) although the difference is negligible for kz0d < 1, our case
of interest. Then equation (B-43) is used when a closed form approximation
is required; otherwise, the “exact” susceptance is calculated numerically
from equation (B-38b).

Figure B-4. Normalized
susceptance for a
parallel plate fed
aperture radiating into a
half-space.
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Appendix C. The Transverse Resonance Method

The electromagnetic (EM) fields within a hollow rectangular waveguide are
represented as an infinite number of modes that are propagating or attenu-
ating along the guide. The EM field of each mode can be factored into trans-
verse and longitudinal field components with respect to the direction of
propagation allowing a transmission line description for each mode. Even
with discontinuities, a waveguide can then be completely described by an
infinite number of transmission lines [3, p 6]. Following Marcuvitz, we first
summarize the conventional (i.e., transverse to y) mode decomposition for
the rectangular waveguide shown in figure C-1 with boundary surface S in
the cross-sectional plane. Next, we consider modes transverse to z with the
H-type mode decomposition derived in appendix A. We place the origin
as shown in figure C-1 so that a transverse transmission line analysis in the
cross-sectional plane corresponds to propagation along the positive z-axis.
We describe the transverse resonance method by applying the technique to
the closed waveguide. We then apply the method to a localized waveguide
discontinuity such as a zero-thickness aperture in the waveguide narrow
wall.

C.1 Rectangular Waveguide Modes

We only consider transverse electric (TE) or H-modes, characterized by
modal fields with Ey = 0 while Hy must satisfy a wave equation for prop-
agating or attenuating waves along the y-direction with longitudinal prop-
agation constant γ = jβ. When completely filled with a uniform dielec-
tric material having permittivity, ε = ε0εr, and permeability, µ = µ0µr,
the modal structure is the same as for the air-filled waveguide but with a
different guide wavelength and characteristic impedance. Referring to fig-
ure C-1, take the xz-plane as the transverse plane and define the transverse

Figure C-1. Hollow
rectangular waveguide
(with perfect condctor
walls) filled with a
uniform material.

x

z

x = b

0

Perfect conductor

z = z'y

z = a

ε, µ

µ

S
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(to y) Del operator, ∇ty ≡ ∂
∂x x̂ + ∂

∂z ẑ. Then, from the Maxwell field equa-
tions, the EM fields must satisfy

−∂Ety

∂y
= jωµ

[
I +

∇ty∇ty

k2

]
· (Hty × ŷ) , and (C-1a)

−∂Hty

∂y
= jωε

[
I +

∇ty∇ty

k2

]
· (ŷ × Ety) (C-1b)

in which I = x̂x̂ + ŷŷ + ẑẑ is the unit dyadic. The longitudinal fields are

jωµHy = ∇ty · (ŷ × Ety) , and (C-2a)

jωεEy = ∇ty · (Hty × ŷ) (C-2b)

This representation is equivalent to the Maxwell equations but allows sep-
aration of the transverse and longitudinal field variation [3, p 4]. In the
spirit of separation of variables, expand the transverse (to y) fields in vec-
tor modal functions that are constructed to have the correct x and z spatial
variation for each mode i,

Ety(x, y, z) = Vi(y)ei(x, z) , and (C-3a)

Hty(x, y, z) = Ii(y)hi(x, z) (C-3b)

in which i denotes a double index mn. The vector functions define the
cross-sectional form of the mode fields while the voltage and current func-
tions are the root mean square (rms) amplitudes of the transverse EM fields
at any point y along the propagation direction. Without discontinuities,
substituting equation (C-3) into equation (C-1) results in an infinite set of
transmission line equations

−dVmn(y)
dy

= jkymnZmnImn(y) , and (C-4a)

−dImn(y)
dy

= jkymnYmnVmn(y) (C-4b)

which define the longitudinal variation of the mode amplitudes. Eachmnth-
mode corresponds to a transmission line with Zmn = 1/Ymn the character-
istic (wave) impedance and jkymn the propagation constant along y. When
we use equation (C-3) in equation (C-1) and take account of equation (C-4),
the transverse (to y) mode functions are

emn =
ωµ

kymnZmn

[
I +

∇ty∇ty

k2

]
· (hmn × ŷ) , and (C-5a)

hmn =
ωε

kymnYmn

[
I +

∇ty∇ty

k2

]
· (ŷ × emn) . (C-5b)

The transverse EM fields are then obtained from equation (C-3) in terms of
the transmission line voltage and current functions. With equation (C-3) in
equation (C-2), the “longitudinal” field components are

jωµHy = Vmn(y)∇ty · (ŷ × emn) , and (C-6a)
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jωεEy = Imn(y)∇ty · (hmn × ŷ) . (C-6b)

With hmn = ŷ × emn and emn = ŷ × ∇tyψmn, the classical TE-modal
decomposition is obtained in terms of vector modes derivable from a
scalar mode function. The mode function satisfies the scalar wave equation,(
∇2

ty + k2
tmn

)
ψmn(x, z) = 0 subject to the boundary condition ∂ψmn

∂ν = 0, on
S for unit outward normal vector ν. Suitable vector modal functions, cho-
sen to be orthonormal over the waveguide cross section,

∫ a

0

∫ b

0
emn• e∗pqdxdz = δnpδmq =

{
1 for n = p and m = q
0 otherwise

(C-6c)

for all m =1, 2,... and n = 0, 1, 2,..., allow the cross-sectional dependence
to be eliminated from equation (C-1). The H-mode functions, emn, normal-
ized over the waveguide cross section are then derivable from the scalar
function

ψmn (x, z) =
√
ξmξnAmn cos

(
nπx
b

)
cos

(
mπz
a

)
π
√

m2b
a + n2d

b

,m = 1, 2, . . . and n = 0, 1, 2, . . .

with ξm =
{

1 m = 0
2 m �= 0

and ξn =
{

1 n = 0
2 n �= 0

(C-7)

in which Amn is the mnth-mode amplitude normalization factor and the
time dependence, ejωt, is suppressed. The wavenumber corresponding to
the angular frequency, ω is written in terms of longitudinal and transverse
components, k2 = β2 + k2

tmn. Then the mode function satisfies the scalar
wave (Helmholtz) equation with “cutoff” or transverse wave number

k2
tmn = k2 − β2 =

(
mπ

a

)2

+
(
nπ

b

)2

(C-8)

for the mnth-mode. When we use equation (C-7) in equation (C-5), we find
the vector mode functions are

emn(x, z) = ŷ ×∇tyψmn = −
√
ξmξnAmn

π
√

m2b
a + n2a

b

{
mπ

a
sin

(
mπz

a

)
x̂ − nπ

b
sin

(
nπx

b

)
ẑ
}
, and

(C-9a)

hmn(x, z) = ŷ × emn =
√
ξmξnAmn

π
√

m2b
a + n2a

b

{
nπ

b
sin

(
nπx

b

)
x̂ +

mπ

a
sin

(
mπz

a

)
ẑ
}
. (C-9b)

The H-field can be written in terms of the (transverse) mode function equa-
tion (C-7) as

Hmn =
jβZ0

jωµ
Imn(y)hmn(x, z) + ŷ

Vmn(y)
jωµ

∇2
tyψmn(x, z) (C-10)
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and ψmn satisfies the scalar wave equation, so the EM fields are

Hmn =
βZ0

ωµ
Imn(y)hmn(x, z) + ŷ

Vmn(y)
jωµ

k2
tmnψmn(x, z) , and (C-11a)

Emn(x, y, z) = Vmn(y)emn(x, z) (C-11b)

where the characteristic impedance is the ratio of the voltage to current
at any terminal plane. We also know that the transverse field components
propagate down the guide as plane waves. Then for propagation along y
we must have

ŷ × Emn = Z0Hmn, so Z0 =
Ez

Hx
= −Ex

Hz
. (C-12)

Then from equation (C-11), we see thatZ0 = ωµ/β is the waveguide charac-
teristic (wave) impedance for H-modes. The EM fields are thus expressed
in terms of completely transverse vector mode functions and longitudinal
modal “transmission line” voltage and current amplitudes. The voltage
and current mode amplitudes defined by equation (C-4) satisfy the one-
dimensional wave equation so are either propagating or attenuating waves
along y. For propagating waves, an impedance description using stand-
ing waves or a scattering description using traveling waves can be used to
represent the voltage and current mode amplitudes leading to a complete
description of the modal fields [3, p 9–13].

For the special case when m = 1 and n = 0 (i.e., the H10-mode), the funda-
mental (or principal) mode EM fields from equation (C-11) simplify to

E10 = −A10V10(y)
√

2
ab

sin
(
πz

a

)
e−jβyx̂ , and (C-13a)

H10 = A10

√
2
ab

{
k2
t10

jωµ
V10(y) cos

(
πz

a

)
ŷ + I10(y) sin

(
πz

a

)
ẑ

}
e−jβy .

(C-13b)

We assume that only the fundamental mode propagates so that from
equation (C-8) the transverse wavenumber is kt10 = π/a. For average or
rms field quantities, power flow is given by the Poynting vector, P10 =
Re (E10 × H∗

10) . The cross product from equation (C-13) is

E10 × H∗
10 = |A10|2

(
2
ab

) {
V10(y)I∗10(y) sin2

(
πz

a

)
ŷ − |V10(y)|2

(
π

a

)2 j

ωµ
sin

(
πz

a

)
cos

(
πz

a

)
ẑ

}
.

(C-14)

The mode amplitude is determined in terms of the power flowing at some
point y′ within the guide. The input power Pin(y′), at some reference plane
y′ is P10(x′, y′, z′) integrated over the waveguide cross section. Since equa-
tion (C-14) is independent of x, we have

Pin(y′) ≡ b

∫ a

0
P10(y′, z′)dz′ = |A10|2 Re

(
V10(y′)I∗10(y

′)
)
ŷ . (C-15)
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The fundamental mode amplitude is evidently then the normalization re-
quired to have |Pin(y′)| = Re(V10(y′)I∗10(y

′)) at some reference plane y = y′,
so A10 = 1 is a convenient normalization. The transmission line character-
ization of the mode is not unique, and different normalization constants
could be used [3, p 8]. However, absolute impedance comparisons are typ-
ically unnecessary so the mode description can be left in terms of a single
amplitude coefficient determined from an appropriate normalization.

We now summarize waveguide modes that are transverse to the z-direction,
as developed in appendix A. The vector EM fields Emp and Hmp are ex-
pressed in terms of the mode function,

ψp(x, y) = Ap cos
(
pπx

b

)
e−jβy (C-16)

with amplitude normalization factor Ap. This mode function satisfies the
scalar wave equation

(
∇2

tz + k2
tp

)
ψp(x, y) = 0 (C-17)

with transverse (to z) wave number for mode p, k2
tp = k2 − k2

zm, and ∇tz ≡
x̂ ∂
∂x + ŷ ∂

∂y . Now the wavenumber is decomposed into components with
respect to the z-direction, or

k2 = k2
tp + k2

zm = β2 +
(
pπ

b

)2

+ k2
zm . (C-18)

The propagation constant in the transverse direction, kzm, is unknown but
can be found via the transverse resonance technique by defining voltage,
Vp(z) and current, Ip(z) mode amplitudes for the z-directed transmission
line. These functions satisfy transmission line equations for propagation in
the transverse direction, or

−dVp(z)
dz

= jkzmZHpIp(z) , and (C-19a)

−dIp(z)
dz

= jkzmYHpVp(z) (C-19b)

where the characteristic impedance for the pth-mode is from appendix A

ZHp =
kzmωµ

k2 − β2
. (C-20)

The vector mode functions for the closed waveguide areH-type modes (see
app A)

hp(x, y) = −∇tzψp(x, y) , and (C-21a)

ep(x, y) = hp(x, y) × ẑ . (C-21b)
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Compared to equation (C-2) for standard H-modes propagating along y,
equation (C-21) yields hybrid modes in this direction. The vector EM fields
are

Emp = Vp(z)ep(x, y) , and (C-22a)

Hmp = Ip(z)hp(x, y) + ẑ
∇tz · (ẑ × Emp)

jωµ
= Ip(z)hp(x, y) + ẑ

k2
tp

jωµ
ψp(x, y)Vp(z) (C-22b)

where the amplitudes Vp(z) and Ip(z) can be found for the pth-mode in
terms of the voltage and current amplitude at a single point [3, p 9].

C.2 Uniform Waveguide

The closed waveguide in the transverse direction can be considered as the
junction of two shorted transmission lines as shown in figure C-2. For now,
let both lines have the same characteristic impedance Z0 = ZHp, and prop-
agation constant γz = jkzm. The transverse resonance condition requires
that at resonance the input impedance (or admittance) “looking” in each
direction must sum to zero at any point 0 ≤ z′ ≤ a [4, p 167]. That is

←
Z in(z′) + .Zin(z′) = 0, when 0 ≤ z′ ≤ a, or (C-23a)

←
Y in(z′) + .Yin(z′) = 0, when 0 ≤ z′ ≤ a (C-23b)

where the arrows denote the impedance (or admittance) in the decreasing
or increasing z-direction, respectively. At a point, z′ located a distance l
from the load impedance, Zl(l), the input inpedance for purely imaginary
propagation constant reduces to the well-known expression

Zin
(
z′

)
≡ Z

(
z′

)
= Z0

Zl(l) + jZ0 tan (kzml)
Z0 + jZl(l) tan (kzml)

(C-24)

where the load impedance and distance to the load on the left or the right
of z′ are to be used, for the input impedance looking to the left or right,
respectively. For z′ = 0, we have l = 0 so with Zl(0) = 0, we see from
equation (C-24) that the impedance looking to the left vanishes. Looking
to the right, the termination is also a short circuit or Zl(a) = 0, with l =
a− z′ = a. Then using equation (C-24) with Z0 = ZHp in equation (C-23a),
we find the resonance condition is simply

.Zin(0) = jZHp tan(kzma) = 0 (C-25)

which requires that kzm = (mπ/a). Thus, the transverse resonance method
applied to a uniform, closed waveguide (equivalent to a transmission line
with shorted terminals at z = 0 and z = a) yields kzm = (mπ/a) as
expected.
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Figure C-2. Waveguide
transverse transmission
line description as a
junction of two shorted
lines.

Short circuit

a

b

Z0 = ZHp

Short circuit

z = z'

Z0 = ZHp

Zin(z')Zin(z')

l = z' l = a - z'

For the closed rectangular waveguide, the wavenumber magnitude from
equation (C-18) is then

k =
√
k2
tp + k2

zm =

√
β2 +

(
pπ

b

)2

+
(
mπ

a

)2

. (C-26)

So with an H-type mode decomposition, the transverse resonance condi-
tion results in the Hmn-mode waveguide fields, as expected. The H-type
hybrid mode fields may also be of interest, and we show that the funda-
mental H-type mode reduces to the H10-mode. The magnetic vector mode
function from equation (C-21a) is

hp(x, y) = −Ap∇tz

(
cos

[
pπx

b

]
e−jβy

)
= Ap

{(
pπ

b

)
sin

(
pπx

b

)
x̂ + jβ cos

(
pπx

b

)
ŷ

}
e−jβy .

(C-27)

Then using this in equation (C-21b), we find

ep(x, y) = hp(x, y) × ẑ = Ap

{
jβ cos

(
pπx

b

)
x̂ − pπ

b
sin

(
pπx

b

)
ŷ

}
e−jβy (C-28)

which has both x- and y-components. Compared to the standard TE-TM
mode decomposition, these functions represent hybrid modes having both
Ey and Hy fields in the longitudinal (y-) direction. In the special case of
p = 0, equation (C-28) becomes

e0(x, y) = A0jβ e
−jβyx̂ . (C-29)

For a shorted transmission line, the voltage must vanish at each end so a
Fourier sine series could represent the transverse voltage

Vp(z) =
∞∑

m=1

Bmp sin
(
mπz

a

)
. (C-30)

The sum is over a possibly infinite number of modes, each with amplitude
Bmp, a complex constant. From the transmission line equation (C-19a), we
have

Ip(z) = −dVp(z)
dz

1
jZHpkzm

= −k2 − β2

kzmωµ

dVp(z)
dz

1
jkzm

= j
k2 − β2

k2
zmωµ

dVp(z)
dz

(C-31)

49



so that the pth-mode current is

Ip(z) = j
k2 − β2

ωµ

∞∑
m=1

(
mπ

k2
zma

)
Bmp cos

(
mπz

a

)
. (C-32)

The EM fields can now be found and for the case p = 0 the E-field is

Em0 = jβe−jβy
∞∑

m=1

Bm0 sin
(
mπz

a

)
x̂ . (C-33)

The normalization constant A0 is absorbed in the mode amplitude Bm0.
The H-field when p = 0 is

Hm0 = −
{
β

ωµ

∞∑
m=1

(
mπ

a

)
Bm0 cos

(
mπz

a

)
ŷ +

jβ2

ωµ

∞∑
m=1

Bm0 sin
(
mπz

a

)
ẑ

}
e−jβy . (C-34)

Then for the typical case of interest m = 1, the waveguide fields are

E10 = jβe−jβyB10 sin
(
πz

a

)
x̂ , and (C-35a)

H10 = −B10

{
π

a

(
β

ωµ

)
cos

(
πz

a

)
ŷ +

jβ2

ωµ
sin

(
πz

a

)
ẑ

}
e−jβy . (C-35b)

These H-type fields differ from the H10-mode fields equation (C-13) by a
complex constant. The amplitude, B10 is determined by requiring that the
average power, P10 = Re(E10 × (H∗

10), integrated across the waveguide is
the input power, Pin(y′). The cross product from equation (C-35) is

E10 × H∗
10 =

(
β3

ωµ

)
|B10|2 sin2

(
πz

a

)
ŷ +

(
β2

ωµ

)
π

a
|B10|2 sin

(
πz

a

)
cos

(
πz

a

)
ẑ (C-36)

which is purely real and independent of x, and with kt0 = β from equation
(C-26) we have

Pin(y′) = b

∫ a

0
P10dz =

(
bβ3

ωµ

)
a

2
|B10|2 ŷ (C-37)

The normalization constant is thusB10 =
√

2
ab

√
ωµ
β3 , so from equation (C-35)

the EM fields are

E10 = j

√
2
ab

√
ωµ

β
e−jβy sin

(
πz

a

)
x̂ , and (C-38a)

H10 = −
√

2
ab

√
β

ωµ

{(
π

βa

)
cos

(
πz

a

)
ŷ + j sin

(
πz

a

)
ẑ
}

e−jβy . (C-38b)

In comparison to the H10-mode fields in the previous section, we find that

A10V10(y′)
A10I10(y′)

=
−j
−j Z0 = Z0 (C-39)

or the longitudinal voltage and current amplitudes at some point y′ are re-
lated by the H10-mode impedance Z0. Thus, the fundamental H-type mode
degenerates to the H10-mode.
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C.3 Non-uniform Waveguide

The transverse resonance method can also be applied to the more general
case of a rectangular waveguide filled with different but uniform materials
as shown in figure C-3. The closed waveguide in the transverse direction is
now a junction of shorted transmission lines having different propagation
constants and characteristic impedance. As for the uniform guide, H-type
modes are used for the transverse mode decomposition in each region. The
characteristic impedance for the transmission lines along z to the left and
right areZ1

Hp andZ2
Hp, with propagation constant γ1zm = jk1zm and γ2zm =

jk2zm, respectively. We outline the transverse resonance method applied to
the non-uniform waveguide but omit the details as our interest here is in
an air-filled waveguide.

The transverse resonance technique that uses modes transverse to the z-
axis is used to determine the transverse wavenumber. To the left at a dis-
tance l = a0 away, the termination is a short circuit, or Zl(0) = 0, so that the
input impedance looking to the left at z′ = a0 is

←
Zin (a0) = Z1

Hp

Zl(0) + Z1
Hp tanh (jk1zma0)

Z1
Hp + Zl(0) tanh (jk1zma0)

= jZ1
Hp tan (k1zma0) . (C-40)

The transverse line to the right is also terminated in a short circuit at a
distance l = a − a0 away, or Zl(a) = 0. Then the input impedance looking
to the right at z′ = a0 is

.Zin (a0) = Z2
Hp

Zl (a) + Z2
Hp tanh (jk2zm (a− a0))

Z2
Hp + Zl (a) tanh (jk2zm (a− a0))

= jZ2
Hp tan (k2zm (a− a0)) . (C-41)

When the wavenumbers are purely real, the resonance condition at z′ = a0

requires

jZ1
Hp tan (k1zma0) + jZ2

Hp tan (k2zm (a− a0)) = 0 . (C-42)

Figure C-3. A closed
waveguide transverse
description as a junction
of different
transmission lines.

Short circuit

a

b

Z0 = ZHp
2

Short circuit

z' = a0

Z0 = ZHp
1

Zin(a0)Zin(a0)

l = a0 l = a - a0
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This transcendental equation is typically written in terms of dimensionless
variables since the wavenumber in one region can be written in terms of
the other. One equation for the two unknown propagation constants is ob-
tained by subtracting the wavenumber in each region. Applying the trans-
verse resonance condition equation (C-23a) at the material interface, z′ = a0

provides another equation. Simultaneous solution then determines the al-
lowed values of the transverse wavenumber for two possible cases, k2zm

purely real and k2zm purely imaginary, which are treated separately. The
corresponding waveguide mth-mode longitudinal phase constant, β, then
determines the phase per unit length in the propagation direction which
completes the solution.

For the nonuniform line created by geometric changes in the transverse di-
rection, the approach is slightly modified. The discontinuity is lumped at a
terminal plane, z = a0 + l1, and represented by a discontinuity reactance,
jXD as shown in figure C-4. The input impedance looking to the right is
then a composite impedance formed by the parallel combination of the dis-
continuity impedance and the input impedance of the transmission line to
the right terminated in load impedance, Zl. The input impedance, looking
to the right at this location, is

.Zin(a0 + l1) = Z2
Hp

Zl(a) + Z2
Hpj tan (k2zm (a− a0 − l1))

Z2
Hp + Zl(a)j tan (k2zm (a− a0 − l1))

. (C-43)

Then at z′ = a0 the transmission line to the left is terminated with the
combined impedance

Z̃l(a0 + l1) =
jXD

.Zin(a0 + l1)
jXD + .Zin(a0 + l1)

(C-44)

which can be readily calculated, given the discontinuity reactance. The
transverse resonance condition applied at z′ = a0 then proceeds as before
with the input impedance to the left unchanged but to the right we have

.Zin(a0) = Z1
Hp

Z̃l(a0 + l1) + Z1
Hpj tan(k1zml1)

Z1
Hp + Z̃l(a0 + l1)j tan(k1zml1)

. (C-45)

The resonant condition then yields the system of equations to solve for the
transverse wavenumber in each region. The details are omitted, but the
approach as outlined again demonstrates the versatility of the transverse
resonance method.
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Figure C-4. Waveguide
transverse description
with a discontinuity
represented by a
reactance.

Short circuit discontinuity

reactance

z  = a0

z = az =0 

Zin(a0) Zin(a0)
b

a

jXDZ0 = ZHp1 Z0 = ZHp2

Load impedance

z = a0 + l1

l2 = a – a0 – l1

Zin(a0 + l1)

l = a0 l = a – a0

Zl

C.4 Waveguide Discontinuities

The transverse resonance method can also be applied to the general case of
a rectangular waveguide having a localized (i.e., zero thickness) disconti-
nuity in the transverse direction. The discontinuity could be an aperture in
the waveguide narrow wall at z = a or any other zero-thickness structure
that can be represented by an equivalent circuit. In many cases, the discon-
tinuity is characterized by its admittance, YD, that terminates a transmis-
sion line with characteristic admittance Y0 = YHp for each of the p possible
modes. The transverse resonance condition equation (C-23b) is applied to
the input admittance at some point a0 as shown in figure C-5. The transmis-
sion lines could have different parameters but for now, we let Y 1

Hp = Y 2
Hp,

and γ1zm = γ2zm = jkzm, corresponding to a uniform waveguide with a
localized discontinuity.

To the left, the termination at distance l = a0 away is a short circuit, or
Yl(0) = ∞, so that the input admittance looking to the left at z′ = a0 is

←
Y in (a0) = YHp

Yl(0) + YHp tanh (jkzma0)
YHp + Yl(0) tanh (jkzma0)

= −jYHp cot (kzma0) . (C-46)

The transverse line to the right is terminated at distance l = a − a0 away
in the discontinuity admittance, or Yl(a) = YD. Then the input admittance
looking to the right at z′ = a0 is

.Yin (a0) = YHp
YD + YHpj tan (kzm (a− a0))
YHp + YDj tan (kzm (a− a0))

. (C-47)

The resonance condition equation (C-23b) applied at z′ = a0 requires

−jYHp cot(kzma0) + YHp

YD + YHpj tan (kzm (a− a0))
YHp + YDj tan (kzm (a− a0))

= 0 . (C-48)

We can calculate the transverse voltage and current functions for mode p
by finding the voltage reflection coefficient at z = a0. To the right for mode
p

Vp(z) = A sin [kzm(z − a)] for a0 ≤ z ≤ a (C-49)
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Figure C-5. Waveguide
transverse description
with a discontinuity
represented by a
termination admittance. Short circuit

discontinuity

admittance

z' = a0

Y0 = YHp

YD

z = az = 0 
Yin(a0) Yin(a0)

Y0 = YHp

l = a0 l = a – a0

a

b

and from the transmission line equation (C-19a) the current modes are

Ip(z) = jAYHp cos [kzm(z − a)] for a0 ≤ z ≤ a . (C-50)

The transmission line on the left is terminated at z = a0 with the input
admittance looking to the right equation (C-47). The reflection coefficient
to the right, for each mode p is then

.Γp(a0) =
YHp − .Yin

YHp + .Yin

. (C-51)

The voltage and current to the left of a0 include reflected waves from z =
a0, or

Vp (z) = B
[
e−jkzm(z−a0) + Γp (a0) ejkzm(z−a0)

]
for 0 ≤ z ≤ a0 (C-52)

since the reference is at z = a0, where Γp(a0) is known for each mode. The
pth-mode current is

Ip(z) = BYHp

{
e−jkzm(z−a0) − Γp(a0)ejkzm(z−a0)

}
for 0 ≤ z ≤ a0 . (C-53)

The boundary condition at z = a0 requires continuity of the current and
voltage or

A sin [kzm(a0 − a)] − B {1 + Γ(a0)} = 0 , and (C-54)

jA − B {1 − Γ(a0)} = 0 . (C-55)

Nontrivial solutions of this system of equations are possible only if the de-
terminate (det) of coefficients vanishes, or det = 0. This condition has al-
ready been satisfied by the transverse resonance condition, and the condi-
tion for resonance can be derived by setting det = 0 in the above system. The
final result for the voltage and current modes depends on a single constant
(the mode amplitude) so let B = 1, then from equation (C-55)

A =
1 − Γ(a0)

j
= j (Γ(a0) − 1) (C-56)
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The voltage and current amplitude for each mode p are then determined;
thus, the structure of the waveguide fields can be evaluated.

We are interested in the case when a0 = a, with fundamental H-type mode
propagation in the transverse (z-) direction or p = 0. So for an H10-excited
waveguide, we use m = 1 and have a reflection coefficient at the plane
containing the discontinuity (e.g., an aperture) given by

.Γ0(a) =
YH0 − .Yin

YH0 + .Yin

=
YH0 − YD

YH0

YH0 + YD
YH0

=
YH0 − yD
YH0 + yD

(C-57)

in which yD is the normalized discontinuity admittance. The resonant con-
dition equation (C-48) becomes

−j cot(kz1a) +
YD
YH0

= 0 , or (C-58a)

kz1 =
1
a

cot−1 (−jyD) (C-58b)

which would require numerical solution. The voltage and current ampli-
tudes to the left are the transverse mode amplitudes throughout the wave-
guide, or

V0(z) = j (Γ − 1) sin [kz1 (z − a)] , and (C-59a)

I0(z) = (1 − Γ)YH0 cos [kz1(z − a)] = (1 − Γ)
kz1
ωµ

cos [kz1(z − a)] (C-59b)

with Γ = Γ0(a) as given by equation (C-57) and kz1 =
√
k2 − β2, given by

equation (C-58b). The fundamental mode fields throughout the waveguide
with localized discontinuity at z = a are then

E10 = A0(1 − Γ)β sin [kz1(z − a)] e−jβyx̂ , and (C-60a)

H10 = A0 (1 − Γ)Y0 {jkz1 cos [kz1(z − a)] ŷ + β sin [kz1(z − a)] ẑ} e−jβy (C-60b)

in which Y0 = β/ωµ is the H10-mode characteristic admittance and A0 is
the mode amplitude. Of course, these EM fields are perturbed near the dis-
continuity, but for a “small” discontinuity or at sufficiently large distances,
the perturbation would be negligible. This represents the complete solu-
tion as obtained by the transverse resonance method for this special case of
interest.
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Appendix D. Numerical Routines

The numerical calculations presented were accomplished with MATLABTM.
The routines as implemented in the form of “m-files” are included for com-
pleteness. Minor modifications of these files may be required to produce all
the results shown. The subroutine for the FEM calculations is included at
the end of the main routine.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% NOTAPER.m (CONSTANT WIDTH SLOT)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%FOR PROPAGATION IN WG PERTURBED BY NARROW-WALL SLOT

%COMPUTES COMPLEX PROPAGATION CONSTANT VS. DISTANCE.

%TE10-MODE PROPAGATION IN THE INPUT AND OUTPUT WAVEG-
UIDE

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% METHOD OF SOLUTION:

%COMPLEX PROPAGATION CONSTANT BY PERTURBED TRANSVERSE
WAVE

%FOR NARROW SLOTS PERTURB ABOUT SHORT CIRCUIT (see ECE
239 5/2000).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%FEM FOR INPUT REFLECTION (TRANS) COEFF.:

%PROVIDES ANTENNA EFFICIENCY AS 1 - R2 - T2 FOR REALIZED
GAIN
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% REMARKS:

%WAVEGUIDE CROSS-SECTION: a = WIDE DIM. ALONG X,

%HALF-HEIGHT WG: HEIGHT: b = NARROW WALL ALONG Y (E-aperture)

%NARROW-WALL SLOT WIDTH: d ¡¡ b/10; PROPAGATION ALONG Z

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% PLOT OUTPUTS:

% 1) SLOT: ALPHA & CURRENT VS NORMALIZED DISTANCE

% 2) PHASE: BETA/BETA10 VS NORMALIZED DISTANCE

% 3) FIELD: FARFIELD PATTERN (Hθ and Hφ)

% 4) RADIATION: REALIZED GAIN (H- and E-plane)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 2) PERTURBATION SOLUTION FOR NARROW SLOTS ONLY

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% WOC/27 JULY 2000

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tic;

%MM=input(’Input number of FEM cells per guide wavelength: ’);

MM=100; delta=1e-10;
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%.......Free space parameters....................

e=exp(1); g=1.781;

mu=4e-7*pi; c=3e8;

%.......Waveguide parameters ....................

a=2; b=a/2;

% SET WAVENUMBER FOR OPERATING FREQUENCY

k0=4.25/a; lam=2*pi/k0;

omega=k0*c;

lg10=lam./sqrt(1-(lam/2/a).2);

beta10=sqrt(k0.2-(pi/a)2);

Z10=120*pi*lg10./lam;

%Standard sphereical coordinates theta from z and phi from x

%Current along y-axis with endfire angle theta=phi=pi/2

Nth=200; Nph=100;

thmax=60*pi/180; phmax=pi;

dph=phmax/Nph; dth=thmax/Nth;

th=delta:dth:thmax-delta;

ph=delta:dph:phmax-delta;

%.......Slot parameters ....................

’Input uniform slot maximum width :’
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d0=input(’normalized to wg height : ’);

d0=d0*b;

%%%%%%%SLOT LENGTH NORMALIZED TO WG WIDTH

’Input length of slotted section in wavelengths :’

L=input([’Total slot length normalized to wavelength : ’]);

L=L*lam;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

M=MM*ceil(L/lg10);

N=M+1; dy=L/(N);

y=delta-L/2:dy:L/2;

%%%STEP 1: Uniform slot width vs axial position

d=d0*y./y; dmax = max(d);

%%%STEP 2: Narrow slot width perturbation formulation at each d(y)

G=pi.*d/a/2;

B=(b*log(csc(pi.*d/2/b))+d.*log(a*e/g./d))/a;

A=G.2+B.2; R=G./A; X=B./A;

kx0=pi/a + B./A/a + j.*G./A/a;

beta0=sqrt(k02-kx0.2);

%%......TEST RESULT TO ENSURE NEGATIVE ATTENUATION CONSTANT.....

for mm=1:N;
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if imag(beta0(mm))¿0; beta0(mm)=beta0(mm)-2*i*imag(beta0(mm));

end; end;

alpha=-imag(beta0);

%%%STEP 3: Call FEM code for solution with TE10 at each end

beta0(1)=beta10; beta0(N)=beta10;

%%%%%H-type hybrid mode impedance (see ECE297 3/99)

ZH=omega*mu./real(beta0);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[phi]=onedfem(beta0,M,dy,Z10,ZH);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%STEP 4: CALCULATE REFLECTION, TRANSMISSION & ATTENU-
ATION

RR=((phi(1))-1);

TT=((phi(N))*exp(i*beta0(N)*L));

prad=1 - abs(RR)2 - abs(TT)2;,

eff = ceil(prad*100);

%%%STEP 5: CALC AMPLITUDE DISTRIBUTION FROM ALPHA

for mm=1:N;

temp(mm)=alpha(mm); a0=alpha(mm);

F2(mm)=a0*exp(-2*dy*sum(temp));
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end; M0=sqrt(F2);

%%%STEP 6: CALCULATE FAR-FIELD FOR UNIFORM ILLUMINATION
F(y) = 1

for n=1:Nth; for m=1:Nph;

ARG=k0*sin(th(n))*sin(ph(m))-real(beta0);

I2=abs(dy*sum(M0.*exp(i*y.*ARG)))2;

% Hth2(n,m)=cos(th(n))2*sin(ph(m))2*I2;

% Hph2(n,m)=cos(ph(m))2*I2;

H2(n,m)=cos(th(n))2*sin(ph(m))2*I2...

+ cos(ph(m))2*I2;

end;

%%%%%%%%%%%%Factor of four included for integration limits

phiint(n)=dph*sum(H2(n,:))/pi;

end;

denom=dth*sum(phiint.*sin(th));

%%%%%STEP 7: CALCULATE DIRECTIVE GAIN (prad FOR REALIZED
GAIN)

Gp=10*log10(2*L/lam);

[’Expected gain (2L/lamda) ’,’ is ’, num2str(Gp,3)]

%%%%PATTERN FROM NUMERICAL INTEGRATION OF CURRENT%%%%

D = prad*H2/denom; clear H2;

G = 10*log10(D); clear D;
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maxG=max(G(:,Nph/2));

for n=1:Nth;

if G(n,Nph/2)==maxG; bw0=n; end; end;

[’Integrated peak gain (in dBi) is ’, num2str(maxG,4)]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

th=th*180/pi; ph=ph*180/pi;

amax = max(alpha/k0);

bmin = min(real(beta0)/beta10);

%%%%...........plot output.............

figure(1);

subplot(2,1,1), plot(y/L,alpha*lam);

axis([-.5 .5 0.8*amax, 1.2*amax]);

text(-.3,1.15*amax,[’Slot radiation efficiency = ’, num2str(eff),’

text(-.25,1.05*amax,[’ k0a = ’, num2str(k0*a),’ with a = ’,num2str(a),’ m.’]);

text(-.2,0.9*amax,[’Total slot length = ’, num2str(L/lam,3),’ wavelengths.’]);

title(’Slotted waveguide alpha (in Nepers/wavelength).’);

ylabel(’Normalized loss (alpha*lamda)’)

subplot(2,1,2), plot(y/L,M0/max(M0));

text(-.25,1/2,[’Maximum slot width = ’, num2str(dmax,3), ’ m. ’]);

text(.3,1/2,[’L = ’, num2str(L/a),’a ’]);

63



title(’Current amplitude versus normalized distance.’);

xlabel(’Normalized distance (y/L)’);

ylabel(’Normalized current’);

figure(4);

plot(th,G(:,Nph/2),’k-’);

xlabel(’Elevation angle, theta (degrees)’);

ylabel(’Realized gain (in dBi)’);

title(’H-plane gain for a slotted waveguide antenna.’);

text(25,1.1*maxG,[’Numerical realized gain = ’, num2str(maxG,4),’ dBi.’]);

text(35,maxG,[’On boresight phi = ’, num2str(ph(Nph/2),3),’ degrees.’]);

figure(5);

plot(ph,G(bw0,:));

xlabel(’Azimuthal angle, phi (degrees)’);

ylabel(’Realized gain (in dBi)’);

title(’E-plane gain for a slotted waveguide antenna.’);

text(25,1.1*maxG,[’Numerical realized gain = ’, num2str(maxG,4),’ dBi.’]);

text(35,maxG,[’At main-beam-angle, theta0 = ’, num2str(th(bw0),3),’ degrees.’]);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[’Total clock time is ’, num2str(toc/60,3),’ minutes.’],

%ONEDWAVE is a non-uniform t-line code using FEM as in Jin
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%INPUT AXIAL PROPAGATION CONSTANT AND FEM PARAMETERS

% 4/00 function [phi]= onedfem(beta0,M,dz,Z10,ZH);

%Uses onedfem to solve for TE wave propagation (Jin p.54)

%for non-uniform T-line in axial direction w/o sources so f=0

%Using M finite element cells and linear interpolation N=M+1;

%Element lengths constant mesh l=ones(M,1)*dz;

%BVP parameters for non-uniform T-line propagation alpha=-1./beta0./ZH;
beta=beta0./ZH;

%B.C. from T-line eqs for reflection and transmission at terminal planes

gammaL=-i/ZH(N); qL=0;

gamma0=-i/Z10; q0=-2*i/Z10;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Solves a 1-D BVP using FEM for M elements using Jin notation

%Solution (phi=V or I) Subject to mixed (or Neuman) B.C. at

%at z=0 -alpha*dE/dx+gamma*E=q and at z=L alpha*dE/dx+gamma*E=q

%Setup interaction matrix size NxN

K(1)=alpha(1)/l(1) + beta(1)*l(1)/3;

K(N)=alpha(M)/l(M) + beta(M)*l(M)/3;

for n=2:N-1;

K(n)= alpha(n-1)/l(n-1) + beta(n-1)*l(n-1)/3 + ...
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alpha(n)/l(n) + beta(n)*l(n)/3;

end

for m=1:N-1;

C(m)=-alpha(m)/l(m) + beta(m)*l(m)/6;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for k=1:N; b(k)=0; end;

%Enforce Mixed (or Neuman) B.C. at x=0

K(1)=alpha(1)/l(1) + beta(1)*l(1)/3 + gamma0;

b(1)=q0;

%Enforce Mixed (or Neuman) B.C. at x=L

K(N)=alpha(M)/l(M) + beta(M)*l(M)/3 + gammaL;

b(N)=qL

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Solve system for V(z): slash uses Gaussian Elimination for k = 2:N;

K(k) = K(k) − (C(k − 1)2/K(k − 1));

b(k) = b(k) -(C(k-1)*b(k-1)/K(k-1));

end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

phi(N)=b(N)/K(N);

for p=1:N-1;
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k=N-p; phi(k) = (b(k) - (C(k)*phi(k+1)))/K(k);

end;

K=0;C=0;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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