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Abstract 
 
 Many researchers have noted that scientific codes perform poorly on 
computer architectures involving a memory hierarchy (cache).  Furthermore, a 
number of researchers and some vendors concluded that simply making the 
caches larger would not solve this problem.  Alternatively, some vendors of HPC 
systems have opted to equip their systems with fast memory interfaces, but with 
a limited amount of on-chip cache and no off-chip cache.   

 Some RISC-based HPC systems supported some sort of prefetching or 
streaming facility that allows one to more efficiently stream data between main 
memory and the processor (e.g., the Cray T3E).  However, there are fundamental 
limitations on the benefits of these approaches which makes it difficult to see 
how these approaches by themselves will eliminate the “Memory Wall.”  It has 
been shown that if one relies solely on this approach for the Cray T3E, one is 
unlikely to achieve much better than 
4–6% of the machine’s peak performance.   

 Does this mean that as the speed of RISC/CISC processors increases, systems 
designed to process scientific data are doomed to hit the Memory Wall?  The 
answer to that question depends on the ability of programmers to find 
innovative ways to take advantage of caches.  This report discusses some of the 
techniques that can be used to overcome this hurdle allowing one to consider 
what types of hardware resources are required to support these techniques.  
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1.  Introduction 

Many researchers have noted that scientific codes perform poorly on computer 
architectures involving a memory hierarchy (cache) (Bailey 1993; Mucci and 
London 1998).  Furthermore, as a result of simulation studies, running 
microbenchmarks on real machines, and running real codes on real machines, a 
number of researchers and some vendors concluded that simply making the 
caches larger would not solve this problem.  As a result of these conclusions, 
some vendors of high performance computing systems have opted to equip their 
systems with fast memory interfaces, but with a limited amount of on-chip cache 
and no off-chip cache (e.g., the Cray T3D, Cray T3E, and the IBM SP with the 
POWER 2 Super Chip).  However, none of these systems approach the memory 
bandwidth of a vector processor.  For example, it has been shown that if one 
relies solely on this approach for the Cray T3E, one is unlikely to achieve much 
better than 4–6% of the machine’s peak performance (O’Neal and Urbanic 1997). 

Does this mean that as the speed of RISC/CISC processors increases, systems 
designed to process scientific data are doomed to hit the “Memory Wall”?  The 
answer to that question depends on the ability of programmers to find 
innovative ways to take advantage of caches.  This report discusses some of the 
techniques that can be used to overcome this hurdle.  Once these techniques have 
been identified, one can then consider what types of hardware resources are 
required to support them.  

It is important to note that this work is based on the following two key concepts:   

 (1) It is acceptable to make significant modifications to the programs at the 
implementation level. 

 (2) Not all computer architectures are created equal.  Therefore, one will 
frequently have to define a minimum set of resources for tuning 
purposes (e.g., cache size). 

2.  Caches and High Performance Computing 

Many researchers have noted that scientific codes perform poorly on computer 
architectures involving a memory hierarchy (cache) (Bailey 1993; Mucci and 
London 1998).  Furthermore, as a result of simulation studies (Kessler 1991), 
running microbenchmarks on real machines (Mucci and London 1998), and  
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running real codes on real machines, a number of people and some vendors 
concluded that simply making the caches larger would not solve this problem.  
In fact, one group of researchers observed the following: 

“For all the benchmarks except cgm, there was very little temporal reuse, and the 
cache size that had approximately the same miss ratio as streams is proportional 
to the data set size” (Palacharla and Kessler 1994). 

As a result of these conclusions, some vendors of high performance computing 
systems have opted to equip their systems with fast memory interfaces but with 
a limited amount of on-chip cache and no off-chip cache.  Examples of such 
conclusions are as follows:   

 (1) Intel Paragon:  16-kB instruction cache, 16-kB data cache. 

 (2) Cray T3D:  16-kB instruction cache, 16-kB data cache. 

 (3) Cray T3E:  8-kB primary instruction cache, 8-kB primary data cache, 
96-kB combined instruction/data secondary cache. 

 (4) IBM SP with the Power 2 Super Chip:  64-kB instruction cache, 128-kB 
data cache. 

Can a way be found to beat these conclusions?  If so, how and why are these 
techniques not used more frequently?  The following is a list of techniques that 
have been used to improve the cache miss rate for a variety of scientific codes: 

 (1) Reordering the indices of matrices to improve spatial locality. 

 (2) Combining matrices to improve spatial locality. 

 (3) Blocking the code to improve both spatial and temporal locality. 

 (4) Tiling the matrices to improve spatial locality. 

 (5) Reordering the operations in a manner that will improve the temporal 
locality of the code. 

 (6) Recognizing that if one is no longer dealing with a vector processor, it 
may be possible to eliminate some scratch arrays entirely, while 
substantially reducing the size of other arrays.  When done well, this can 
increase both the spatial and temporal locality by an order of magnitude.   

 (7) Writing the code as an out-of-core solver.  In many cases, it would not 
actually be necessary to perform input/output (I/O).  However, by 
restricting the size of the working arrays, in theory, one could 
significantly decrease the rate of cache misses that miss all the way back 
to main memory.  This method is especially good at improving the 
temporal locality. 
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 (8) Borrowing the concept of domain decomposition, which is frequently 
used as an approach to parallelizing programs.  While this approach is 
not without its consequences, it can significantly decrease the size of the 
working set (or help to create one where it would otherwise not exist).  
Again, this method is aimed at improving the temporal locality. 

This demonstrates that there are methods for significantly decreasing the cache 
miss rate.  However, as will be seen later in this report, some of these techniques 
work best when dealing with large caches.  Unfortunately, many of the more 
popular MPPs either lacked caches entirely (e.g., the NCUBE2 and the CM5 
when equipped with vector units) or were equipped with small to modest sized 
caches (e.g., the Intel Paragon, Cray T3D and T3E, and the IBM SP with the 
POWER2 Super Chip processors).  As a result, for many programmers working 
on high performance computers, there was no opportunity to experiment with 
ways to tune code for large caches.  Furthermore, since many codes are required 
to be portable across platforms, there was little incentive to tune for architectural 
features that were not uniformly available. 

3.  Understanding the Limitations of a Stride-1 Access Pattern 

Before continuing, we will briefly discuss spatial and temporal locality.  Let us 
consider the case of an R12000-based SGI Origin 2000 with prefetching turned 
off, specifically, a 300-MHz processor generating one load per cycle with a Stride 
1 access pattern and no temporal locality (this is an example of pure spatial 
locality of reference), with a cache line size of 128 bytes for 64-bit data.  This 
arrangement will have a 6.25% cache miss rate.  Assuming no other methods of 
latency hiding are used and assuming a memory latency of 945 ns (Laudon and 
Lenoski 1997), then this processor will spend 95% of its time stalled on cache 
misses.  Phrasing this another way, if one assumes that the peak speed of the 
processor is one multiply-add instruction per cycle, the best that the processor 
will deliver is 32 MFLOPS out of a peak of 600 MFLOPS.  This result compares 
favorably with the measured performance in Table 1. 

From this, it can seen that for large problem sizes, relying on spatial locality 
alone will not produce an acceptable level of performance.  Instead, one must 
combine spatial locality with temporal locality (data reuse at the cache level).  
However, if a vector optimized code is run on this machine with the same 
assumptions, one can, at best, work on 131,072 values per megabyte of cache (the  
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Table 1.  Single processor results from the STREAM benchmark for commonly used HPC 
systems.a 

System Peak Speed 
(MFLOPS) 

TRIAD 
(MFLOPS) 

Cray T3E-900 (Alpha 21164) 900 47.3 
Cray T3D (Alpha 21064) 150 14.7 
IBM SP P2SC (120 MHz) 480 65.6 
IBM SP Power 3 SMP High (222 MHz) 888 51.2 
SGI Origin 2000 (R12K - 300 MHz)  600 32.3 
SUN HPC 10000 (Ultra SPARC II - 400 MHz) 800 24.7 

a McCalpin (2000). 

R12000-based SGI Origin 2000 is currently being sold with 8-MB secondary 
caches).  Table 2 demonstrates where some of the strengths and weaknesses of 
this approach lie.  Clearly the two most important concepts are: 

 (1) Maximize the processing of the data a grid point at a time. 

 (2) Minimize the amount of data that needs to be stored in cache at one time 
(minimize the size of the working set). 

Assuming that the techniques mentioned in the previous section have improved 
the cache miss rate to 1%, then the peak delivered level of performance rises to 
157 MFLOPS (or spending 74.9% of the time stalled on cache misses).  Similar 
results are obtained when analyzing all CISC- and RISC-based architectures.  
However, only those architectures with large caches lend themselves to some of 
these tuning techniques.   

4.  Results 

Initial attempts to run a 3-million grid point test case with F3D on an SGI Power 
Challenge (75-MHz R8000 processor—300 MFLOPS) for 10 time steps took over  
5 hours to complete (Pressel 1997).  The same run when run on a Cray C90 took 
roughly 10 minutes to complete.  There was never a chance of running it that fast 
on the Power Challenge, since the processor is slower.  However, it was hoped 
that run times of roughly 30 minutes might be achievable.  Table 3 lists the speed 
of the RISC optimized code when run on a variety of platforms.  The speed has 
been adjusted to remove the startup and termination costs, which are heavily 
influenced by factors that are not relevant to this discussion. 
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Table 2.  The size of the working set for a 1-million grid point problem. 

Problem Description Number of Variables 
(per Grid Point) 

Size of the Working Set 
(Bytes) 

One-Dimensional (1-D) 1 
4 

30 
100 

8,000 
32,000 

240,000 
800,000 

Two-Dimensional (2-D) 
1000 H 1000 
(Processed as a 1-D 
problem) 

1 
4 

30 
100 

8,000 
32,000 

240,000 
800,000 

2-D 1000 H 1000 
(Processed as 2-D vector 
optimized problem, 1 
row or column at a time) 

1 
4 

30 
100 

8 
32 

240 
800 

2-D 1000 H 1000 
(Processed one grid point 
at a time for maximum 
temporal reuse) 

1 
4 

30 
100 

8 
32 

240 
800 

Three-Dimensional (3-D) 
100 H 100 H 100 
(Processed as a 1-D 
problem) 

1 
4 

30 
100 

8,000 
32,000 

240,000 
800,000 

3-D 100 H 100 H 100 
(Processed as a plane of 
data at a time as a 1-D 
problem) 

1 
4 

30 
100 

80 
320 

2,400 
8,000 

3-D 100 H 100 H 100 
(Processed as a 3-D 
vector optimized 
problem, 1 row or 
column at a time) 

1 
4 

30 
100 

 
800 

3,200 
24,000 
80,000 

3-D 100 H 100 H 100 
(Processed one grid point 
at a time for maximum 
temporal reuse) 

1 
4 

30 
100 

8 
32 

240 
800 

Block of data 32 H 32  
(Processed as a block) 

1 
4 

30 
100 

8,192 
32,768 

245,760 
819,200 
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Table 3.  The performance of the RISC optimized version of F3D for single processor runs 
for the 3-million grid point test case. 

System Name Processor Clock Rate Peak Speed Performance 

  (MHz) (MFLOPS) (Time Steps/Hr) (MFLOPS) 

Convex Exemplar 
SPP-1600 

HP PA 7200 120 240 16. 63. 

Cray C90a Proprietary 238 952 81. 319. 

HP Superdome HP PA 8600 552 2208 135. 532. 

SGI Challenge R4400 200 100 10. 39. 

SGI Origin 2000 R10000 195 390 41. 162. 

SGI Origin 2000 R12000 300 600 61. 241. 

SGI Origin 3000 R12000 400 800 89. 351. 

SGI Power Challenge R8000 75 300 23. 91. 

SGI Power Challenge R10000 195 390 32. 126. 

SUN HPC 10000 Ultra SPARC 
II 

400 800 46. 181. 

a Cray C90 ran the vector optimized code. 

Table 4 lists the speed of the RISC optimized code for a variety of problem sizes 
when run on the SGI Origin 2000 (R12000), the SGI Origin 3000 (R12000), the 
SUN HPC 10000, and the HP Superdome (HP PA 8600).  The SGI Origin 2000 
was equipped with 128, 300-MHz R12000 processors with 8-MB secondary 
caches and 2 GB of memory per 2-processor node.  The SGI Origin 3000 was 
equipped with 256, 400-MHz R12000 processors with 8-MB secondary caches and 
4 GB of memory per 4-processor node.  The SUN HPC 10000 was equipped with 
64, 400-MHz Ultra SPARC II processors with either 4 or 8 MB of secondary 
caches (one of our systems was upgraded before the series of runs was finished) 
and 4 GB of memory per 4-processor node.  There was insufficient memory to 
run the 206-million grid point test case on the SUN HPC 10000.  The HP 
Superdome was configured with 48, 552-MHz HP PA 8600 processors with 1 MB 
of on-chip data cache and 1 GB of memory per processor.  For some unknown 
reasons, we could not run several of the cases on this system, even when there 
was more than enough memory to run the job. 
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Table 4.  The performance of the RISC optimized version of F3D for single processor runs 
on the SGI Origin 2000, the SGI Origin 3000, the SUN HPC 10000, and the HP 
Superdome for a range of test cases. 

Test Case Size 
(Millions of Grid Points) 

Speed 
(Time Steps/Hr) 

Performance 
(Time Steps/Million Grid Points-Hr) 

 SGI 
Origin 
2000 

SGI 
Origin 
3000 SUN 

HP 
Superdome 

SGI 
Origin 
2000 

SGI 
Origin 
3000 SUN 

HP 
Superdome 

1.00 181. 275. 138. 403. 181. 275. 138. 403. 

3.01 61. 89. 46. 135. 184. 268. 138. 406. 

12.0 11.7 22. 10.6 30. 140. 264. 127. 360. 

35.6 4.0 6.92 3.4 10.4 142. 246. 121. 370. 

59.4 2.3 3.93 2.1 Would 
not run. 

137. 233. 125. Would 
not run. 

124. 1.05 1.48 0.93 NA 130. 184. 115. NA 

206. 0.62 0.99 NA NA 128. 204. NA NA 

 
Table 5 lists the dimensions of the grids used for each of these test cases.  For 
historical reasons, there were some differences between the 1- and 3-million grid 
point test cases.  All of the remaining test cases were based on the 3-million grid 
point test case.  Only the 1-million grid point test case has been run out to a 
converged solution.  The remaining test cases were only used for scalability 
testing. 

Table 5.  A summary of the test cases. 

Test Case Size JMAX KMAX LMAX 
(Millions of Grid Points) Zone 1 Zone 2 Zone 3   

1.00 15 87 89 75 70 
3.01 15 87 89 225 70 

12.0 15 87 89 450 140 
35.6 29 173 175 450 210 
59.4 29 173 175 450 350 

124. 43 254 266 450 490 
206. 71 421 442 450 490 
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5.  Prefetching and Stream Buffers vs. Large Caches 

Now that it has been established that large caches can be of value, let us consider 
the relative performance of systems that stressed prefetching and/or a fast low 
latency memory system vs. those that include a large cache.  Tables 6 and 7 
contain some real world examples of codes that were able to benefit from the 
presence of a large cache.  This is not to say that all codes will benefit from the 
presence of a large cache.  In particular, it is no accident that the version of F3D 
that was parallelized using compiler directives was able to take advantage of a 
large cache.  It was extensively tuned for such an architecture.  Other codes 
might perform better on the Cray T3E, especially if they were never tuned for 
cache-based systems. 

Table 6.  Comparative performance from running two versions of F3D using eight 
processors with the 1-million grid point test case. 

 
System 

 
Peak Processor Speed 

Parallelization 
Method 

 
Performance 

 (MFLOPS)  (Time Steps/Hr) (MFLOPS) 

SGI R10K Origin 2000 390 Compiler  
Directives 

793 1.04E3 

SGI R12K Origin 3000 800 Compiler 
Directives 

1764 2.31E3 

SUN HPC 10000 800 Compiler 
Directives 

999 1.31E3 

HP V-Class 1760 Compiler 
Directives 

1632 2.13E3 

HP Superdome 2208 Compiler 
Directives 

2851 3.74E3 

SGI R12K Origin 2000a 600 SHMEM 349 4.56E2 

Cray T3E-1200a 1200 SHMEM 382 4.99E2 

IBM SPa 640 MPI 199 2.60E2 
a Results provided courtesy of Marek Behr, formerly of the U.S. Army High Performance Computing Research 

Center (AHPCRC). 

Table 7.  Comparative performance from running the Department of Energy (DOE) 
Parallel Climate Model (PCM) using 16 processors.a,b 

System Peak Processor Speed 
(MFLOPS) 

Performance 
(MFLOPS/PE) 

SGI R10K Origin 2000 500 60 
Cray T3E-900 900 38 

a This data is based on runs done using the T42L18 test case. 
b Bettge et al. (1999). 
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6.  Prefetching and Stream Buffers in Combination With 
Large Caches 

Previously, this report pointed out the limitation of relying solely on prefetching 
and stream buffers.  However, there is also a problem with relying solely on 
caches, even large caches, to solve all of the performance problems.  In particular, 
there is no reason to believe that as the processor speed increases, the cache miss 
rate will automatically decrease.  Even if one were to increase the sizes of the 
cache while increasing the speed of the processor, it would seem unlikely that 
the cache miss rate would significantly decline.  (As Table 2 demonstrates, the 
cache miss rate is a function of the size of the cache and the size of the working 
set.  Once the working set comfortably fits in cache, additional increases in the 
size of the cache will be of minimal value.)  If the memory latency is kept 
constant, then the gain in performance from increasing the speed of the processor 
will be sublinear.  Table 8 shows an example of this.  This is what is known as the 
Memory Wall. 

Table 8.  The predicted performance increase resulting from upgrading a 195-MHz 
R10000 Processor to a 300-MHz R12000 Processor in an SGI Origin 2000. 

Percentage of Time Spent on Cache Misses 
(R10K) 

Speedup 
(%) 

0 54 
10 46 
25 36 
50 21 
75 10 
90 4 

100 0 
 
However, there is nothing that says one cannot combine both caches and some 
form of prefetching/stream buffers.  The goal of this would not be to prefetch 
values far enough in advance that they would arrive prior to the time needed.  
With latencies of over 100 cycles, such a design would effectively be a vector 
processor such as the Cray SV1.  We are also not trying to emulate a vector 
processor’s ability to stream in a large vector of data while encountering the cost 
of a single cache miss.  Instead, the goal is to overlap two or more memory 
latencies, thereby effectively decreasing the average latency by a factor of two or 
more.  A more thorough discussion of this topic can be found in Pressel (2001). 
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7.  Conclusions 

It is possible to tune some scientific codes to take good advantage of systems 
with a memory hierarchy.  It appears as though two- and three-dimensional 
problems have an inherent advantage to one-dimensional problems.  Also, 
algorithms that do a lot of work per time step (e.g., implicit CFD codes) but 
exhibit a rapid rate of convergence may be better suited for use with caches than 
algorithms that do very little work per time step but require a large number of 
time steps to generate an answer (e.g., explicit CFD codes).  For example, if 
Code A performs 1000 floating point operations per time step per grid point and 
requires 1000 time steps to converge, then it will perform 1 million floating point 
operations per grid point.  In contrast, if Code B performs 3500 floating point 
operations per time step per grid point and requires 5000 time steps to produce 
an answer, then it will perform 1.5 million floating point operations per grid 
point.  If one assumes that both programs are efficiently implemented, then 
Code A might have twice as many cache misses per time step as Code B.  
However, over the life of the run, Code B will have 2.5 times as many cache 
misses as Code A.  Presumably, Code B will take close to 2.5 times as long to run 
as Code A.  This is an example of how performing more work per time step can 
increase the potential for data reuse.  In any case, one should be prepared to 
spend a significant amount of time and effort retuning the code. 

On a side note, a surprising outcome of this work is that BLAS 1, and, to a lesser 
extent, BLAS 2, subroutines should be avoided when working with systems that 
use cache.  The BLAS 1 subroutines have little or no ability to optimize for either 
spatial or temporal locality if it does not already exist.  The BLAS 2 subroutines 
can generate spatial locality through the use of blocking but are inherently 
unlikely to support temporal locality since they operate on planes of data.  
Similarly, it was shown that other programming styles that were commonly used 
with vector processors are distinctly suboptimal for the newer systems.  
Therefore, while some researchers have expressed a strong desire to maintain a 
single code for use with both RISC- and vector-based systems, it appears as 
though this is not a good idea. 

To an increasing extent when designing or buying a computer for high 
performance computing, the correct choice when faced with the choice of large 
cache or prefetching/stream buffers will be both.  Of course, this assumes that 
the rest of the system is compatible with that choice. 
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AHPCRC  Army High Performance Computing Research Center 

BLAS  Basic linear algebra subroutines 

CFD  Computational fluid dynamics 

CHSSI  Common High Performance Computing Software Support Initiative 

CISC  Complicated instruction set computer 

DOD  Department of Defense 

DOE  Department of Energy 

HPC High performance computing 

HPCM  High performance computing modernization 

MFLOPS  Million floating point operations per second 

MPP Massively parallel processor 

RISC Reduced instruction set computer 
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 1 DIRECTOR 
  US ARMY RESEARCH LAB 
  AMSRL CI AI R 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 

 15



 
 
NO. OF  NO. OF  
COPIES ORGANIZATION COPIES ORGANIZATION 
 
 1 PROGRAM DIRECTOR  1 NAVAL RSCH LAB 
  C HENRY   R RAMAMURTI CODE 6410 
  1010 N GLEBE RD STE 510   4555 OVERLOOK AVE SW 
  ARLINGTON VA 22201   WASHINGTON DC 20375-5344 
  
 1 DPTY PROGRAM DIRECTOR  1 ARMY AEROFLIGHT 
  L DAVIS   DYNAMICS DIRECTORATE 
  1010 N GLEBE RD STE 510   R MEAKIN M S 258 1 
  ARLINGTON VA 22201   MOFFETT FIELD CA 94035-1000 
  
 1 DISTRIBUTED CENTERS   1 NAVAL RSCH LAB 
  PROJECT OFFICER   HEAD OCEAN DYNAMICS 
  V THOMAS   & PREDICTION BRANCH 
  1010 N GLEBE RD STE 510   J W MCCAFFREY JR CODE 7320 
  ARLINGTON VA 22201   STENNIS SPACE CENTER MS 
   39529 
 1 HPC CTRS PROJECT MNGR  
  J BAIRD  1 US AIR FORCE WRIGHT LAB 
  1010 N GLEBE RD STE 510   WL FIM 
  ARLINGTON VA 22201   J J S SHANG 
   2645 FIFTH ST STE 6 
 1 CHSSI PROJECT MNGR   WPAFB OH 45433-7912 
  L PERKINS  
  1010 N GLEBE RD STE 510  1 US AIR FORCE PHILIPS LAB 
  ARLINGTON VA 22201   OLAC PL RKFE 
   CAPT S G WIERSCHKE 
 1 RICE UNIVERSITY   10 E SATURN BLVD 
  MECHANICAL ENGRNG &   EDWARDS AFB CA 93524-7680 
  MATERIALS SCIENCE  
  M BEHR MS 321  1 NAVAL RSCH LAB 
  6100 MAIN ST   DR D PAPACONSTANTOPOLOUS 
  HOUSTON TX 77005   CODE 6390 
   4555 OVERLOOK AVE SW 
 1 NAVAL RSCH LAB   WASHINGTON DC 20375-5000 
  J OSBURN CODE 5594  
  BLDG A49 RM 15  1 AIR FORCE RSCH LAB DEHE 
  4555 OVERLOOK AVE SW   R PETERKIN 
  WASHINGTON DC 20375-5340   3550 ABERDEEN AVE SE 
   KIRTLAND AFB NM 87117-5776 
 1 NAVAL RSCH LAB  
  J BORIS CODE 6400  1 NAVAL RSCH LAB 
  4555 OVERLOOK AVE SW   RSCH OCEANOGRAPHER CNMOC 
  WASHINGTON DC 20375-5344   G HEBURN 
   BLDG 1020 RM 178 
 1 WL FIMC   STENNIS SPACE CENTER MS 
  B STRANG   39529 
  BLDG 450  
  2645 FIFTH ST STE 7  1 AIR FORCE RSCH LAB 
  WPAFB OH 45433-7913   INFORMATION DIRECTORATE 

  R W LINDERMAN 
  26 ELECTRONIC PKWY 
  ROME NY 13441-4514 
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NO. OF  NO. OF  
COPIES ORGANIZATION COPIES ORGANIZATION 
 
   49590 LASSING RD 
 1 SPAWARSYSCEN D4402   SAN DIEGO CA 92152-6148 
  R A WASILAUSKY  1 UNIVERSITY OF TENNESSEE 
  BLDG 33 RM 0071A   COMPUTER SCIENCE DEPT 
  53560 HULL ST   S MOORE 
  SAN DIEGO CA 92152-5001   1122 VOLUNTEER BLVD 
   STE 203 
 1 USAE WATERWAYS   KNOXVILLE TN 37996-3450 
  EXPERIMENT STATION  
  CEWES HV C  

  ABERDEEN PROVING GROUND   J P HOLLAND 
   3909 HALLS FERRY RD 
 23 DIR USARL   VICKSBURG MS 39180-6199 
  AMSRL CI  
   N RADHAKRISHNAN  1 US ARMY CECOM RSCH 
  AMSRL CI H   DEVELOPMENT & ENGRNG CTR 
   C NIETUBICZ   AMSEL RD C2 
  AMSRL CI HC   B S PERLMAN 
   D PRESSEL   FT MONMOUTH NJ 07703 
   D HISLEY  
   R NAMBURU  1 SPACE & NAVAL WARFARE 
   R VALISETTY   SYSTEMS CTR 
   D SHIRES   K BROMLEY CODE D7305 
   M HURLEY   BLDG 606 RM 325 
   P CHUNG   53140 SYSTEMS ST 
   J CLARKE   SAN DIEGO CA 92152-5001 
   C ZOLTANI  
   A MARK  1 RICE UNIVERSITY 
  AMSRL CI HI   MECHANICAL ENGRNG & 
   T PRESSLEY   MATERIALS SCIENCE 
  AMSRL CI HS   T TEZDUYAR MS 321 
   D BROWN   6100 MAIN ST 
   R PRABHAKARAN   HOUSTON TX 77005 
   T KENDALL  
   P MATTHEWS  3 ARMY HIGH PERFORMANCE 
   K SMITH   COMPUTING RSCH CTR 
  AMSRL WM BC   B BRYAN 
   P PLOSTINS   P MUZIO 
  AMSRL WM BF   V KUMAR 
   H EDGE   1200 WASHINGTON AVE 
  AMSRL WM BC   S MINNEAPOLIS MN 55415 
   J SAHU  
   K HEAVEY  1 ARMY HIGH PERFORMANCE 
   P WEINACHT   COMPUTING RSCH CTR 
   G V CANDLER 

  1200 WASHINGTON AVE 
  S MINNEAPOLIS MN 55415 
 
 1 NAVAL CMD CNTRL & 
  OCEAN SURVEILLANCE CTR 
  L PARNELL 
  NCCOSC RDTE DIV D3603 
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INTENTIONALLY LEFT BLANK. 
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