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Abstract 

Cationic polymerization of epoxy resins can be induced by ultraviolet (UV) or 
electron beam (E-beam) radiation and proceeds very efficiently in the presence of 
an appropriate photoinitiator. Although good thermal properties have been 
obtained for some E-beam cured epoxy resins, other important mechanical 
properties, such as interlaminar shear strength, fracture toughness, and 
compression are poor and do not meet aerospace manufacturers materials 
standards. We have initiated a comprehensive study to investigate the cure 
kinetics and mechanisms of UV and E-beam cured cationic polymerization of 
two epoxide-terminated resins (phenyl glycidyl ether, a monofunctional model 
compound, and Tactix 123, a difunctional structural resin) cured using a mixed 
triaryl iodonium hexafhroroantimonate salt (Sartomer’s CD-1012) photoinitiator. 
The objective of this study was to demonstrate that identical reaction conditions 
and kinetic parameters (e.g., radiation dose, initiator concentration, and reaction 
temperature) control the physical and chemical properties of final polymeric 
products, regardless of initiation by LJV or E-beam radiation. Additionally, the 
identification of key parameters that give rise to improved thermal and 
mechanical properties in E-beam processed resins is sought. Fast kinetic 
spectroscopy, coupled with high-performance liquid chromatography, was used 
to elucidate the polymerization mechanism and to identify the reactive 
intermediates, or molecules, involved in the cure process. 
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1. Introduction 

Currently, there is considerable interest in developing high-strength, lightweight 
polymer matrix composite materials for the aerospace and automotive 
industries. One class of resins that have the proper thermal and mechanical 
properties for these applications is toughened epoxies. These materials are 
typically processed by thermal (i.e., autoclave) curing methods, but recently, 
composites with comparable thermal and mechanical properties have been 
prepared by radiation curing. Ultraviolet (UV) and electron beam (E-beam) 
curing of resins and composites has received considerable attention in recent 
years [I-6]. Radiation curing typically uses high-energy radiation from an 
electron gun to induce polymerization and cross-linking reactions. E-beam 
curing is of great interest to industry because it has many advantages over 
thermal-curing methods that include lower cost, improved polymer 
performance, reduced energy consumption, lower residual thermal stress, 
reduced volatile toxic by-products, and simpler, less expensive tooling. E-beam 
processing is currently used for curing thin films for can and beverage coatings, 
printing inks for folding cartons, and anticorrosion coatings for automobile 
wheels [7J Recent advances in E-beam curing of polymers has invoked onium 
salt promoters in cationic polymerization of vinyl ether monomers [8] and epoxy 
resins [9]. 

A fundamental understanding of the chemical events that lead to the desired 
material properties as well as a knowledge of the materials that undergo these 
radiation-induced reactions can provide researchers with the insight needed to 
control properties of the end products and to make advances into the 
development of novel resin systems for use in composites and adhesive 
applications. However, there is a lack of understanding concerning the chemical 
reactions that occur in the radiation curing of polymeric materials and the 
chemical structures that produce the desired mechanical properties. The goal of 
this study is to identify and optimize the parameters that control the material 
properties to facilitate preparation of new composites with advanced mechanical 
and thermal properties from epoxy resins by radiation curing. 

2. Background 

Radiation induced cationic polymerization in the presence of an initiator has not 
been investigated in detail. A plausible mechanism for radiation curing of epoxy 
resins by cationic polymerization in the presence of onium salts has been 
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proposed recently to explain the curing process [9]. The assigned intermediates, 
however, are speculative (not based on experimental evidence), and their rates of 
reaction to form cross-linked and/or scission products are unknown (Figure 1) 
[9]. Thus, a basic understanding of the kinetics and mechanisms of radiation 
curing leading to crosslinking and scission (an undesirable process that can 
adversely affect the properties of final composite) products is needed to set the 
criteria for developing application-specific composites. 

‘ath A 

+ Ar,On+ X - -. + Ar. + Ar,-,OI 

Polymer 

Path B 

Ar,On+ X > e- 
H+ 

BArnstOn + Ar. + X -- HX 

H 

- Polymer 

Figure 1. Proposed reaction mechanism for cationic ring-opening of epoxides using 
E-beam initiation. 

We have taken a fundamental approach to investigate the chemistry of radiation 
curing of phenyl glycidyl ether (PGE) and Tactix 123 as model compounds in the 
presence of a mixed triaryl iodonium hexafluoroaniimonate salt (Sartomer’s 
CD-1012) as the photoinitiator. Insight gained from these experiments should 
pave the way towards the design and synthesis of novel composites, which will 
be of significant interest to the defense, aerospace, and transportation industries. 
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3. Experimental 

3.1 Materials 

The structure of all the reagents used in this study are shown in Figure 2. Ail the 
solvents used were high-performance liquid chromatography (HFLC) grade and 
include tetrahydrofuran (THF), acetonitrile (ACN), and water. Bromophenol 
blue (3’,3”,5’,5’‘-tetrabromophenolsulfonephthalein) was used as received from 
Aldrich Chemical Company. Gel permeation chromatography (GPC) was 
performed on a Waters 600E Instrument. I-IPLC analysis of the samples was 
carried out under isocratic conditions (75/25 acetonitrile/water) using a Hewlett 
Packard Model 1090 equipped with a diode array detector set at 254 run. 
Absorption spectra of the samples were obtained on a Cary 4 spectrophotometer. 
Fast kinetic studies using pulse radiolysis were conducted at Notre Dame 
Radiation Facilities, University of Notre Dame, Notre Dame, IN. 

CD-1012 

Figure 2. Structures of reagents used to evaluate chemical kinetics. 

3.2 Procedure 

3.2.1 Sample Preparation and UV-Photolysis 

Our initial kinetic studies on UV cationic polymerization of Tactix 123 in the 
presence of CD-1012 focused on polymerization rate and the nature of polymeric 
materials formed. Tactix 123 samples were prepared containing 3% by weight 
CD-1012 in glass tubes (-1 g total weight) and photolyzed in a Rayonet 
photoreactor using 300~nm excitation light source. After the photolysis, a known 
volume of THF was added to the irradiated sample to dissolve the low molecular 
weight polymers, and the mixture was filtered leaving an insoluble material 
(cross-linked polymer) which was dried and weighed. A portion of the THF 
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mixture was analyzed by HPLC to determine the loss of Tactix 123 by 
irradiation. The femainin g THF solution was concentrated down and analyzed 
by GPC to obtain information on low molecular weight polymers formed during 
photolysis. 

3.2.2 Pulse Radiolysis 

Time-resolved studies of the intermediates were performed using pulse 
radiolysis, where excitation was induced using a linear electron accelerator 
(Model TBS-8/16-1sTitan Beta, Dublin, CA) that generates l- to lO-ns pulses of 
8 MeV. These pulses were used as the excitation source and were delivered to a 
flow cell containing the sample. Intermediates generated by the electron pulse 
were detected by optical absorption using a pulsed 1-kW Xe-lamp (samples were 
in quartz cuvette with a optical path length of 1 cm). ALL experiments were 
carried out with a continuously flowing solution. A solution of potassium 
thiocyanate (10 mM) saturated with nitrous oxide was used as the dosimeter 
(using radiation chemical yield of 6.13 for a dimer of cyanide anion (SCN)z and a 
molar coefficient of 7580 M-‘cm-1 at 472 nm). The data acquisition system 
included a Spex 270M monochromator, a LeCroy 7200A digital storage 
oscilloscope with a 7242 plug-m module and a shielded 5-stage photo-multiplier 
tube (PMT, Hamama tsu 955). Software program with incorporated multiple 
time scale stages, developed by G. L. Hug, was used for running the pulse 
radiolysis experiment [lo]. 

3.2.3 Steady State Radiolysis 

Steady state gamma radiolyis studies were performed on two programmable 
cobalt-60 gamma irradiators with radiation intensities of about 2 and 6 kilo 
Curies and dose rates of 5 and 20 krad/min, respectively. Samples were placed 
in capped glass vials. Insignificant increase in the temperature of the sample was 
observed when the sample was irradiated for a long period of time. After 
irradiation, samples were analyzed by optical absorption spectroscopy. 

4. Results and Discussion 

4.1 UV Photolysis of Tact-ix 123 Containing 3% (Weight) CD-1012 

Table 1 shows the data for a set of samples irradiated at various times. As the 
data in Table 1 shows, the yield of insoluble polymer (crosslinked material) 
increases with increasing irradiation time and accounts for about 70% of the total 
polymer formed. Samples irradiated to ~90% conversion of Tactix 123 
completely solidified and were hard to remove from the glass tube by THF. 
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Table 1. HPLC and GPC analysis data for the photolysis (300 run) of Tactix 123 in the 
presence of CD-1012 as the photoinitiator. 

Moles % Polymeric 
Moles Tactix Cross-Linked % Polymeric 

Irradiation Tactix at After % Loss a Insoluble Soluble 
Time Time 0 Irrad. Tactix Product b Productsc 
(mini \ - - - I  

3 2.4 E-3 2.2 E-3 8.8 0.0 100 
6 2.6 E-3 2.1 E-3 20.9 19.0 81.0 
9 3.1 E-: 3 1.7E-3 47.7 22.0 , 78.0 

12 3.0 E-3 1 1.7E3 43.7 56.0 44.0 
18 ( 2.8 E-3 1 1.1 E-3 60.4 67.0 33.0 

69.0 31.0 24 1 2.7E-3 ) 9.7E-4 ( 
a Data obtained by HPLC. 

64.1 

b Percent crosslinked insoluble poIymeric product in THF (based on weight). 
c Percent soluble product based on GPC analysis of dissolved fraction in THF. Three broad peaks 

eluting at 19, 21, and 24 min (unreacted CD-1012 and Tactix 123 elute at 26 and 29 min, 
respectively). 

As a result, the exact weight of insoluble polymer could not be determined for 
high-conversion samples. Figure 3 shows a plot of percent loss of Taciix 123 
monomer as a function of irradiation time for the data shown in Table 1. 

70- 

60- -e- %Tactii Consumed Dark Run 
-6- %Taclii Consumed Photo Run e----- 

/ 8 

/ 
e 

/ 

/” 

o- 
-I 

aL\/\.-a 
* I ’ 1 * 1 * . 

0 200 400 600 
t., ., ., 

600 1000 1200 1400 

Time, s 

Figure 3. Percent loss of Taciix 123 monomer as a function of irradiation time. 

From the plot of In (A/Ao) vs. irradiation time (not shown), the first-order rate 
constant for loss of Tactix 123 was determined to be k = 7.6 x 1W s-r. During the 
course of photolysis, a small increase in temperature rise was observed. To 
study the effect of this temperature rise on the reaction rate, we prepared two 
samples of Tactix 123 without CD-1012 (set A) and two samples of Tactix 123 
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with CD-1012 (set B). In one experiment, one sample of set A and one of B were 
placed in a water bath at 25 “C. A thermocouple was placed inside each reaction 
mixture to monitor the temperature change during irradiation. Sample B was 
irradiated for a total of 240 s, while sample A was irradiated for 500 s. The rise in 
temperature as a function of irradiation time was recorded for both materials 
(Figure 4), and the loss of Tactix 123 monomer was determined by HPLC for each 
irradiated sample. 

0 100 200 300 400 
60 I 1 I I I -I 28 

26 

24 

Irradiation time, s 

Figure 4. Rise in temperature as a function of irradiation time for Tactix 123 with CD- 
1012 and without CD-1012. 

Because Tactix 123 without CD-1012 does not react, as demonstrated in Figure 3, 
the observed variance (Lt5%) is the expected experimental error using the HPLC 
method of postirradiation analysis. Tactix 123 containing CD-1012 lost about 
26% + 5% in 600 s. The rise in temperature during irradiation for Tactix without 
CD-1012 was about 3 “C, which we attribute to lamp heating. For Tactix 123 with 
CD-1012, about 5 “C (Figure 4) rise in temperature was observed. Taking into 
account the 3 “C rise in temperature due to lamp heating the rise in temperature 
as a result of bond breaking (internal temperature rise) during the reaction is 
only +2 “C. Therefore, we believe that the water bath and small sample size 
essentially allow for isothermal cure conditions to be maintained. 

The same experiment was carried out for the second set of samples in air, 
allowing heat of reaction to cause appreciable changes in temperature. The 
results are shown in Figure 5. Observed temperature and extent of Tactix 123 
conversion are plotted as a function of irradiation time. The rise in temperature 
during irradiation for the set A sample was +lO “C, and because no reaction 
occurs, this is attributed to thermal absorption from the UV excitation lamp. For 
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42- 

6 loo 200 300 400 
1 lrradiaiton time, s 

Figure 5. Observed temperature and extent of Tactix 123 conversion. 

the set B sample, the temperature rise was +21 “C, or a reaction temperature 
induced change of +11 “C, resulting from breaking chemical bonds. THF 
extraction and HPLC analysis of the irradiated sample showed a 23% &5% 
conversion of Tactix 123 in 240 s (Figure 5). Comparison of the results for water 
bath vs. atmospheric irradiation demonstrate that within experimental detection 
limits, the internal rise in temperature induced during photolysis does not lead 
to a rate enhancement during photolysis measurements. 

The effect of external temperature on the reaction rate was also studied for 
samples of Tactix 123 with CD-1012 to obtain the activation energy, E, and the 
Arrhenius A-factor for the polymerization process. Figure 6 shows the 
Arrhenius plot for the change in rate constant as a function of inverse 
temperature for the photolysis of Tactix 123 with CD-1012. From the slope and 
intercept of this plot, we obtain an activation energy of 61 kJ/mol and an 
Arrhenius-A factor of 2.4 x 108 s-r. The observed deviation of reaction rate at 
higher temperatures (T > 60 “C) could be due to faster molecular diffusion that 
could facilitate recombination of reactive species back to starting material. 

According to Figure 1, polymerization of the epoxy resins proceeds by the 
interaction of electrons with the monomer (path A) or photoinitiator (path B). In 
order to determine the extent to which each path (if any) contributes to the 
polymerization process, we carried out pulse radiolysis experiments on PGE (a 
model compound that upon polymerization forms soluble products), CD-1012, 
and PGE/CD-1012 mixtures to obtain information on the nature of intermediates 
produced in each case. 
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Ea= 7347"8.314[J*Wmol]= 61.08 kJ/mol Ea= 7347"8.314[J*Wmol]= 61.08 kJ/mol 

\ \ 

A= 2.39x10Es-' A= 2.39x10Es-' 

Ea=5261'8.314[J*Wmol]=43.74 Ea=5261'8.314[J*Wmol]=43.74 
A= (2.74+0.05)x105s“ A= (2.74+0.05)x105s“ 

-5- -5- 

-6- -6- 
I" I" V' 1 ' V' 1 ' * "I" * "I" 

0.0026 0.0026 0.0028 0.0028 0.0030 0.0030 0.0032 0.0032 0.0034 0.0034 

kJ/mol 

l/T, K' 

Figure 6. Change in rate constant as a function of inverse temperature for the photolysis 
of Tactix 123 with CD-1012. 

4.2 Steady State y-Radiolysis 

Radiolysis of CD-1012 in aerated acetonitrile was monitored directly by 
following changes in the absorption spectrum of the solution using nonirradiated 
acetonitrile as a reference. At low dose rates (5 krad/min), changes in the 
absorption spectrum of CD-1012 indicate the presence of two isosbestic points 
observed at 309 run and 351 run (Figure 7). As the absorbed dose increases, the 
absorption in the 200- to 250-run region of the spectrum increases concomitant 
with a decrease in the 300- to 400~run wavelength region. At higher dose rates 
(20 krad/min), no isosbestic points are observed, and an overall increase in the 
absorbance is observed (Figure 8). Changes in the intensity of the 234-run 
absorption band for CD-1012 with time, upon steady state y-radiolysis of 70-m 
solution of CD-1012 in aerated acetonitrile for two different dose rates 
(5 and20krad/ ’ ) mm , is shown in Figure 9. It can be seen from Figure 9 that high 
dose rates significantly increase the rate of growth for the 234nm band 
compared to low dose rates. The 234-nm absorbance almost doubled 
after exposing the solution for 25 min at 20 krad/min dose rate, while 
irradiation for 115 min at lower dose rate (5 krad/min) resulted in cu. 72% 
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t.~.,““‘,““.,‘.‘“,‘.~~‘,““‘,“‘“,’”’~i 
200 220 240 260 280 300 320 340 

Wavelength, nm 

Figure 7. Changes in the UV-Vis absorption spectrum of CD-1012 (70 pmol/L) in aerated 
acetonitrile observed upon y-radiolysis (5 krad/min dose rate). 

r 
18C 

ZOkrad/min 

+#122,20Okrad 
-.-#124,30Okrad 
-A-#126,30Okrad 
+#127,40Okrad 
-+-#131,50Okrad 

) 200 220 240 260 280 300 320 340 360 380 400 
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Figure 8. Changes in the UV-Vis absorption spectrum of CD-1012 (70 pal/L) in aerated 
acetonitrile observed upon y-radiolysis (20&rad/min dose rate). 
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Figure 9. Changes in the intensity of 234-m absorption band of CD-1012 (aerated 70-pM 
solution in acetonitrile) with time upon steady state y-radiolysis (dose rates: 5 
and 20 krad/min). 

increase in the absorbance. The difference in the rates of growth for 23kur-1 band 
under high and low dose rates is a factor of 116, which is much greater than the 
factor of 4 increase in dose rate. If the observed changes in UV-Vis region of the 
spectrum are due to formation of the same species (e.g., a precursor to 
superacid), then at high dose rates, one should produce much more superacid 
according to the sequence of the reactions shown in Figure 2. 

Formation of superacid was monitored by adding bromophenol blue indicator 
to the irradiated samples of CD-1012. In order to avoid interference from 
bromophenol blue radiation chemistry with that of CD-1012, the indicator was 
added after irradiation to a diluted solution of CD-1012 in acetonitrile. An 
increase in the acidity of the media should result in a decrease in the intensity of 
the 595~run absorption band of the bromophenol blue indicator. The change in 
bromophenol blue absorbance at 595 nm caused by a decrease in the pH of the 
mixture as a result of radiolytic decomposition of CD-1012 is shown in Figure 10. 
The data confirms the formation of protons by CD-1012 radiolysis. For high dose 
rates (20 krad/min), the decrease in the 595~nm absorbance is smaller (almost by 
a factor of 2) than that for the low dose rate. One possible explanation for this 
observation is that the yield of superacid precursor (solvent-SbFb ion pair or 
SbF6-) decreases at a high dose rate. A decrease in superacid precursor is likely, 
provided recombination reactions lead to the formation of an intermediate 
incapable of generating superacid. The changes in the 595~run absorption 
appears to be insensitive to the dose rate. 
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-8- 12lind, 1Mrad (20kradfmin) 
-e- 122ind, IOOkrad (20kradlmin) 
A 123ind, IOOkrad (5kradlmin) 
t 124ind. 200krad (2OkradImin) 
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+ 130ind, 677.75krad (5kradlmin) 
+ 13lind, 500krad (20kard/min) 

595nm 

425nm 

0.0 

I ,,,, ,,,, ,,,, ,,,, ,,,, ,,,, ,,, 

350 400 450 500 550 600 650 

Wavelength, nm 

Figure 10. Changes in the UV-Vis absorption spectra of bromophenol blue (35 pal/L) 
added to an irradiated (5 and 20 krad/min, blue and black curves) solution of 
CD-1012 (70 pal/g) in aerated acetonitrile. 

4.3 Pulse Radiolysis of Degassed PGE 

Decay of the transient absorption spectrum obtained upon pulse radiolysis of 
degassed PGE is shown in Figure 11. The transient spectrum observed 0.5 p 
after the electron pulse exhibits peaks at 300,333 (sh), and 400 run. The 333~run 
absorption is buried under the intense 300~run band and appears at 0.5 us after 
the pulse as a shoulder. A broader band with intensity much smaller than that of 
300 nm is observed in the 400- to 500~run wavelength region. The transient 
spectrum changes significantly 3.0 p after the pulse. Most of the spectral 
features, however, resemble the spectrum observed at 0.5 p after the pulse, 
except for a broad band. At longer times (>50 us), the transient spectrum does 
not change significantly. On the basis of the observed transient spectra, it is 
clear that the major absorption band (300 run) corresponds to the first 
intermediate formed and the broad bands at 400 run and higher to a second 
intermediate. Assuming that the spectral features of LLI are the same 
throughout the observed time scale and that the 300~nm absorption band is 
mostly due to this species, we can deduce the spectral features of the second 

11 



0.04 
-I 

300 . 
0.03 ‘k 333 P -s I P ‘. 2 0.02 i t.\ ! ‘i\ 400 I\ \, - - 0.5 us 

--a- 3.0 us 
- 5.5 us 
t 8.0 us 
-4ous 

“::I 

z?oo 250 303 350 400 450 5w 550 WJ 653 700 750 em 
Wavelength, nm 

Figure 11. Transient absorption spectrum of nitrogen saturated PGE obtained at 0.5,3.0, 
5.5,8.0, and 40 p after the pulse. 

intermediate by subtracting the normalized spectrum obtained at 160 p after the 
pulse from the normalized spectnun obtained at 0.5 ~IZS after the pulse (both 
spectra normalized at 300 nm) (Figure 12). The subtracted spectrum representing 
the second intermediate exhibits absorption bands at 310, 340, and 430 run, 
respectively. The complex nature of this transient can be seen in Figure 13, with 
tune profiles of optical density monitored at the major absorption bands 300,340, 
400, and 430 nm. Thus, the 300~run absorbance attributed to the first 
intermediate appears to be within the pulse duration (10 ns) of our instrument 
and continues to grow with a lifetime (7) of 1.56 f 0.27 p (nonlinear least squares 
fitting procedures with Levenberg-Marquardt algorithm was used). Continuous 
formation of the 300-run absorption due to first intermediate appears to be 
concomitant with the decay of the 430~run band of second intermediate. The 
decay profiles could not be fitted to a mono-exponential equation, suggesting the 
presence of more than one component in these transients. Two-exponential fit of 
43Qnm decay gave two lifetimes of 4.88 f 0.45 ~.IJS and 60.0 + 3.4 p (indicative of 
the presence of two components), respectively. Decay of the 300-nm absorption 
band, using the two-exponential model, gave two lifetimes of 3.62 + 0.79 and 70.0 
f 1.1 p (also suggesting the presence of two components in this intermediate), 
respectively. If the first lifetime of the 430~nm band (second intermediate) is kept 
constant at 3.62 p, the second component lifetime is estimated to be 60.0 +- 0.8 ~A.S 
When the second component lifetime of 430-run intermediate is restricted to 
70 w, the first component lifetime of 8.19 + 0.52 p is obtained. Because the first 
and second intermediates were observed right after the excitation pulse, it is 
reasonable to assume that their precursor is either a PGE cation radical or 
solvated electron (vi&r infra). 
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Figure 12. Transient absorption spectra of short-lived and long-lived intermediates 
obtained upon pulse radiolysis of PGE. The spectrum of the short-lived 
intermediate was determined by subtracting the spectrum of the long-lived 
intermediate (taken 160 p after the pulse) from the spectrum obtained at 
0.5 ps after the pulse. 
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Figure 13. Changes in the optical density at major absorption bands (280,300,340,400, 
and 430 nm) obtained upon pulse radiolysis of degassed PGE. 
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4.4 Pulse Radiolysis of Oxygenated PGE 

The major absorption bands in the transient absorption spectrum of oxygenated 
PGE obtained 0.5 p after the pulse are similar to those found for degassed PGE 
(300,340 [sh], 400 and 425 nm) (Figure 14). A decrease (factor of 1.5) in the initial 
intensity of the 340-nm absorption band is observed compared to degassed PGE. 
This shoulder was previously attributed to the spectral signature of a second 
intermediate. Oxygen does not quench SLI completely, and similar to degassed 
PGE, we observe a significant difference between the 0.5- and 3.09~ spectra 
indicative of the presence of this intermediate. The spectrum of this intermediate 
shows features that are quite similar to that observed in degassed PGE with the 
major absorption bands at 310, 340, and 425 run. The difference between these 
spectra is in the relative band intensities. Oxygen appears to quench the 340~nm 
band of this intermediate, as well as the narrow band at 430 run. This 
observation, coupled with the fact that oxygen does not affect the spectral 
features of the first intermediate (30~nm band), suggests that the second 
intermediate has a complex nature and that its spectrum consists of at least two 
components (with different sensitivity to oxygen). The absorption band at 
340 nm belongs to the oxygen-sensitive, short-lived component, while the 
oxygen-sensitive component shows a broad absorption band at 425 nm. A 5-run 
blue shift in the position of the 430-nm absorption band in the oxygen-purged 
PGE compared to the degassed sample could be due to significant overlap of the 
absorption spectra of for these two components in the absence of oxygen. All the 
intermediates are formed right after the pulse. Kinetic profiles do not show 
additional rise in the 300-run absorption band for the first intermediate at the 
expense of the 425-run band of the second intermediate. This suggests that the 
oxygen-sensitive component of the second intermediate is a plausible precursor 
for additional formation of the first intermediate in deoxygenated PGE. 

4.5 Pulse Radiolysis of N20 Saturated PGE 

In NzO saturated PGE, solvated electrons can interact with N20 to produce 
hydroxy radicals according to equation (1): 

&,,+N,O+PGE+N,+OH’+OH-. (1) 
Hydroxy radicals could potentially attack the ether or epoxy group of the PGE, 
causing a change in the UV-Vis absorption spectrum of intermediates. The 
transient absorption spectrum of PGE saturated with nitrous oxide measured at 
0.5,3.0,5.5,8.0, and 40 p after the electron pulse is shown in Figure 15. Spectral 
features and relative band intensities are similar to the transient absorption 
spectrum of degassed PGE with the maxima at 300,34O(sh), 400, and 425 run, and 
a broad absorption band in the 450- to 750~run region. The spectrum of the 
second intermediate is deduced by subtracting the transient spectrum obtained 
200 ps after the pulse from that obtained 0.5 p after the pulse (both normalized 
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Figure 14. Transient absorption spectra of oxygen saturated PGE taken at 0.75,3.25,5.75, 
8.20, and 40 p after the pulse. 
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Figure 15. Transient absorption spectra of NzO saturated PGE taken at 0.5, 3.0, 5.5, 8.0, 
and 40 p after the pulse. 
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at 300 run). The difference spectrum shows maxima at 330 and 425 nm and a 
shoulder at 520 run. Relative intensity of the 330~nm absorption band (compared 
to that at 425 nm) in the spectrum of this intermediate falls between the values 
for degassed and oxygen-saturated solution. Similar to degassed PGE, the 
300~nm kinetic shows a rise of absorbance within the first few microseconds after 
the pulse (0.75 + 0.10 p), followed by its decay, to give much longer lifetimes of 
8.65 + 0.95 and 90 f 3.92 p for its two components. The 425nm absorbance 
decays to give a short component lifetime of 0.97 + 0.11 p (which is close to the 
risetime of the 300-run absorbance) and a relatively slow second component with 
a lifetime of 70 p. Similar to the deoxygenated PGE, post-pulse formation of the 
300-run absorbance takes place at the expense of the 425 nm band. The long- 
lived component of the 340-r-m band decays with a lifetime of 70 us, and the 
short-lived component decays with a lifetime of 1 p. Most of the absorbance 
decays for the second intermediate shows a long-lived component with a lifetime 
of ca. 70 us (limited to 200-p time scale with a pulse-lamp). Based on these 
results, the range of lifetimes for the long-lived component is 70-90 p. 

4.6 Assignment of Intermediates 

Figure 16 depicts plausible intermediates produced by pulse radiolysis of PGE, 
labeled (1) in that figure. We observe no changes in the initial yield of the 
intermediates in the presence of NzO, suggesting that solvated electrons do 
not play a significant role in their production. Thus, a cation radical of PGE 
appears to be the most suitable precursor for the formation of all the 
intermediates observed in the 0- to 200~lo time scale with absorption in the range 
of 250-800 nm. A cation radical can form by either the ether oxygen or the epoxy 
oxygen of the PGE. The opening of the epoxy ring is more favorable (releasing 
112 kJ of energy) than cleavage of an ether bond (25.3 vs. 44.0 kcal/mol). 
Therefore, the observed transients are most likely formed by this ring-opening 
process and can proceed by both paths shown in Figure 16. Loss of a secondary 
or tertiary proton on the carbon atom adjacent to the epoxide oxygen produces 
free radical species 4 and 4a. Cleavage of the carbon-oxygen bond is followed by 
the rearrangement of free radical species to give the resonance stabilized radicals 
9,lO and 9a, 10a. Resonance-stabilized intermediates 9,lO and 9a, 10a could be 
assigned to the transient absorption of the first intermediate. Equilibration 
between the resonance forms of LLI appears to be so fast that we cannot 
distinguish between them under the conditions of our experiment. However, the 
presence of more than one lifetime, when fitting these transient absorbances, 
suggests that several species with relatively similar structures are present. 
Spectral features of the first intermediate (strong absorption at 300 run and 
weaker absorption bands in the 400- to 500-run wavelength region) agree well 
with the published spectral characteristics of aromatic ketyl radicals. This notion 
is further supported by the fact that oxygen does not quench these intermediates. 
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Figure 16. Plausible intermediates produced by pulse radiolysis of PGE. 

Additional formation of this intermediate from the oxygen-sensitive component 
of the second intermediate is observed for alI solutions, except for oxygen- 
saturated ones. Quenching of the oxygen-sensitive component of the second 
intermediate by oxygen suggests that it is a carbon-centered radical species (with 
no ketyl character). Intermediates 4 and 4a match these conditions for the 
oxygen-sensitive transient. The second short-lived component, which is not 
oxygen sensitive, absorbs at a longer wavelength than the oxygen-sensitive one 
and could form from the cleavage of epoxy ring. The fact that this component is 
not quenched by oxygen suggests that it is a zwitterionic species. Hence, 
intermediate 2 with its ionic character is a plausible candidate. The spectral 
features of the first and second intermediates, which absorb at a much longer 
wavelength than any of the possible radicals 5-8 shown in Figure 16, substantiate 
our proposed mechanism that the PGE ether linkage remains intact upon pulse 
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radiolysis. Radicals 5-8, which are derived from the homolytic cleavage of ether 
bond in PGE, where extended conjugation with the phenyl moiety is lost, will 
absorb at shorter wavelengths. 

4.7 Pulse Radiolysis of Degassed PGE Containing 3% (Weight) 
CD-1012 

The evolution and decay of the transient absorption spectrum of degassed PGE 
in the presence of 3 weight-percent CD-1012 is shown in Figures 17(a) and 17(b). 
The spectral features of the intermediate with maxima at 360 and 400 run changes 
with time. Growth of the 400 run absorbance maximizes in approximately 11 us 
after the pulse and decays on a much longer time scale. Figure 17(b) shows that 
at longer times (>20 p after the pulse), the 435nm band becomes a major 
absorption band in the transient spectrum and decays on a much longer time 
scale. About one third of the transient spectrum decayed within 160 Jo (limits of 
pulsed probe lamp). Similar spectral changes were also observed for the 
transient in the 500- to 800-nm wavelength region (not shown). This transient 
exhibits a maximum absorption at A,, > 800 run and two shoulders at 605 and 
685 run (not shown). Spectral features of these intermediates change with time. 
At 160 p after the pulse, only the spectrum of transient with h- > 800 run is still 
observed. 

4 .,““,“,,,“‘~,,‘,‘,“, a ,*,, , 

250 300 350 400 450 500 

Wavelength, nm Wavelength, nm 

Figure 17. Transient absorption spectrum of degassed PGE in the presence of cc1. 3% 
CD-1012 taken at (a) 0.75,3.5,5.75, and 10.75 p and at (b) 20,40,60,110, and 
160 p after the excitation pulse. 
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We observe significant variation in the risetime of transients (e.g., from 2 p for 
605~nm absorbance to 20 p for 435-run band). Almost aII the absorption bands 
reach their maximum value between 20 and 60 p after the pulse, suggesting that 
these transients are formed by secondary processes. 

4.8 Tentative Assignment of Intermediates Observed on Pulse 
Radiolysis of Degassed PGE Containing 3% (Weight) CD-1012 

None of the transients previously assigned to the first intermediate (9,9a, 10, and 
10a in Figure 16) were observed in the pulse radiolysis of PGE containing 3% 
CD-1012. Such observation suggests that at this concentration of CD-1012, aII 
PGE intermediates are intercepted by CD-1012, leading to the observed 
transients. Additional intermediates are produced by the reduction of iodonium 
salt with solvated electrons (Figure 18). Products of this reaction are an aryl 
radical (13), hexafhroroantimonate anion (14), and an aryl iodide (12). A strong 
Brijnsted acid, HSbF6 (15), is also generated upon hydrogen abstraction from the 
PGE molecule by hexafmoroaniimonate anion (14). The polymerization reaction 
shown in Figure 18 proceeds through the reduction of iodonium salt, Ar2ISbF6, 
by either radicals 9, 9a, 10, 10a in Figure 16, or by the solvated electrons 
producing the intermediates 11 and lla. The products of this reaction are an aryl 
radical 13, hexafluoroantimonate anion 14, and an aryl iodide 12. The aryl 
radical 13 could abstract a hydrogen atom from a molecule of PGE 1 to produce 
intermediates 4 and 4a, which can proceed to form polymer according to the 
scheme in Figure 18. Alternatively, the acid-catalyzed ring-opening of the epoxy 
proceeds through intermediate 16, which has 14 as a counter ion. Ring-opening 
can take place to generate two different intermediates, 17 and 17a. Interaction of 
a PGE molecule with either 17 or 17a can produce intermediates 18 or 19, starting 
a repeating unit of polyphenylglycidyl ether (PPGE). 

The observed absorption in the 300- to 600~nm region can be assigned to either 
intermediates 11 and lla, or intermediates 17 and 17a with 14 as a counter ion. 
However, the fact that there is no significant absorbance in the 300~run region, 
where ketyl intermediate absorbs, suggests that intermediate 17 is the most likely 
candidate. It also indicates that initiation of cationic polymerization by PGE 
radicals is not very efficient compared to polymerization initiated by the reaction 
of CD-1012 with solvated electrons. The broad absorption band around 605 run 
could be attributed to the absorption of diaryIiodonium radical cation based on 
the literature data. It is also plausible that the radiolysis of PGE in the presence 
of 3% CD-1012 does not proceed to give the first intermediate (9,9a, 10, and 10a 
in Figure 16). The precursor of this intermediate, which is the oxygen-sensitive 
component of the second intermediate, reduces CD-1012, producing the same 
combination of intermediates 12,13, and 14, as weII as ring-opening of the epoxy 
ring without the formation of a ketyl intermediate. This is consistent with our 
experimental observation that the observed transient obtained at 0.75 ps after the 
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Figure 18. Plausible intermediates produced 
degassed PGE. 

by pulse radiolysis of 3% CD-1012 in 

pulse (for PGE + CD-1012 mixture) shows no spectral features of the first 
intermediate. Table 2 summariz es the spectral features and lifetimes of these 
intermediates and their components. 

Table 2. Spectral features and the lifetime of intermediates observed for PGE and 
PGE/CD-1012 by pulse radiolysis. 

Transients CD-1012 Components 
Observed Present 

Absorption Quenched Observed 
Present Peaks Observed by Oxygen Lifetimes 

(IJ4 
1 No 1 300 (sharp), No 3.6-8.6 ps, 

400 (shoulder), 70-9tIp 
450-700 (broad) 

2 No 2 340 (sharp), Yt?S 1,7Op% 
430(sharp) No l-5ps,60-7ojls 

1 YeS 360 (sharp), ND 
400 (sharp), 

500-800 (broad) 
a Not determined. 
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5. Conclusions 

UV photolysis of Tactix 123 in the presence of photoinitiator CD-1012 (3% by 
weight) proceeds efficiently to produce mainly a cross-linked insoluble polymer. 
The first-order reaction rate for the polymerization process (kr = 7.6 x lo-4 s-i) 
appears to be insensitive to temperature. An activation energy of 61 kJ/mole 
was determined for the polymerization process. 

Kinetics of PGE polymerization by pulse radiolysis has revealed that upon 
excitation, PGE produces two intermediates that absorb in the UV-Vis region of 
the spectrum. The first intermediate shows a strong absorption band at 300 nm. 
The second intermediate that absorbs above 400 nm contains two 
short-lived components - one sensitive and the other insensitive to oxygen. The 
rise time of these components is about 2 ~.LS It appears that decomposition of the 
oxygen-sensitive component results in the production of additional amounts of 
first intermediate that absorbs at 300 run. Based on our kinetic data, we have 
assigned two plausible structures to these components. The oxygen-sensitive 
intermediate can form by a PGE radical after abstraction of a hydrogen atom 
from one of the carbon atoms of the epoxy moiety without ring opening (4 and 
4a in Figure 16). The oxygen-insensitive component can form as a zwitterionic 
species (2 in Figure 16). The components of first intermediate can be assigned to 
two ketyl radicals, 9 and 9a (Figure 16), which are in equilibrium with their 
resonance forms, 10 and 10a (Figure 16). All the intermediates produced upon 
pulse radiolysis of PGE under different reaction conditions (oxygen, nitrogen, 
and nitrous oxide saturated) seem to derive from the cation radical of PGE. 
Solvated electrons do not produce any intermediate that absorbs in the UV-Vis 
region of the spectrum on a 0- to 200~j.~s time scale. ’ 

PGE in the presence of CD-1012 (3%) produces a different set of intermediates 
with red-shifted absorption. Radiolysis of PGE in the presence of CD-1012 does 
not proceed to form the first intermediate as seen in direct excitation of PGE. 
Instead, the second intermediate, which is formed initially, reduces iodonium 
salt to form anion pair of PGE/CD-1012. Alternatively, solvated electrons could 
also reduce iodonium salt to produce an aryl iodide, an aryl radical, and an 
anion of iodonium salt (Figure 18). Reaction of the aryl radical with PGE 
produces a PGE radical capable of reducing iodonium salt. Hydrogen 
abstraction from PGE by iodonium anion produces a strong Bronsted acid, which 
catalyzes the epoxide ring opening and is followed by the polymerization 
process. Experiments are currently underway to unravel the reaction pathways 
that are responsible for the observed polymerization process. 
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:onditions and kinetic parameters (e.g., radiation dose, initiator concentration, and reaction temperature) control the 
bhysical and chemical properties of final polymeric products, regardless of initiation by W or E-beam radiation. 
idditionally, the identification of key parameters that give rise to improved thermal and mechanical properties in 
I-beam processed resins is sought. Fast kinetic spectroscopy, coupled with high-performance liquid chromatography, 
iras used to elucidate the polymerization mechanism and to identify the reactive intermediates, or molecules, involved in 
he cure process. 
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