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Abstract 
 
An electrical composite conductor may consist of a metallic core with a cooling channel and a 
multilayered insulating material.  A model was developed to predict the mechanical properties of 
the composite conductor based on two-level homogenization hierarchies.  A composite cylinder 
assembly model was developed in the level 1 homogenization for metallic core with a cooling 
channel, in which the cooling channel was analogized as a fiber void with null material 
properties.  The effective mechanical properties of the composite insulation layers were 
homogenized by smearing the properties of the multiple polymer coatings and fiber-reinforced 
composite.  In the level 2 homogenization, combined homogenization sequences were used 
based on the requirement of the displacement- or the traction-prescribed continuity.  The 
developed model can calculate the nine effective mechanical constants of the conductor made of 
a metallic core and any angle (±θ°) plain-woven glass-fiber composite.  The model predictions 
were compared well with the results obtained from the finite element analyses.  The developed 
model provides a theoretical basis and an accurate calculation for effective mechanical constants 
that are often difficult to be accurately determined through an experimental approach due to the 
structural heterogeneity and material anisotropy of the composite conductor.   
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1. Introduction 

Electrical machinery, which ranges from electric drive vehicles to the electric launch system, is 
considered to be one of the most important components in the future combat systems.  Compact, 
durable, and highly mobile power generators and motors are necessary for the success of all 
electrical systems [1, 2].  Extensive research has been conducted for electromagnetic (EM) 
structural design, analysis, and mechanics on various technical areas [3–9].  Because of the 
complex geometry and the heterogeneity of the conductor with insulation layers, the EM systems 
usually need to be analyzed using numerical techniques such as the finite element method.  
However, a conventional finite element analysis (FEA) cannot analyze each structural entity 
from the whole EM system because of the limit of computational time and machine capacity 
limitations.  Therefore, the EM structure must be analyzed separately at different levels, i.e., a 
global and local level.  The analyses conducted at the global level use the homogenized effective 
properties derived from the representative volume element, or a unit cell of the EM conductor 
[10, 11].  At this level, the structure of the composite conductor is homogenized by smearing the 
distinctive phases of the constituents, and the effective properties of the EM conductor unit cell 
are derived.  The unit cell properties are used to predict the global responses of the EM system 
subjected to a given loading condition.  The results derived from the global analysis will then be 
used in the local level analysis where the individual constituents, including their geometries and 
properties, are considered, and the detail stress and deformation will be calculated.  Clearly, an 
accurate prediction of the conductor effective mechanical properties is critical because they 
provide the fundamental material parameters in the design and analysis of the EM structural 
behavior under the combined mechanical, EM, and thermal loading, as well as the system 
structural integrity, insulation, and service life.  

In this report, a homogenization modeling to predict the effective mechanical properties of EM 
composite conductor consisting of metallic core with cooling channel and multilayered 
insulating materials is presented.  The model was developed based on the two-level 
homogenization hierarchy schemes, in conjunction with the composite cylinder assembly model 
(CCAM) and the combined homogenization sequences.  The developed model was applied to 
predict the effective properties of the EM conductor made of metallic conducting core with 
cooling channel, insulation layers of different phase materials, and ±θ° plain-woven glass-fiber 
composite.  These effective properties are composed of nine material constants that are often 
difficult to accurately determine through an experimental approach due to the structural 
heterogeneity and material anisotropy.  The model predictions were also compared and validated 
with finite element calculation.   

The presentation of this report is organized as follows:  Section 2 describes the conductor 
schematics, including its structural layout, geometric and material configuration, as well as the 
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homogenization scheme used in the study; the analytical model to predict the conductor 
homogenized effective constants is derived and presented in section 3; the application of the 
model to predict the effective properties, the results, and comparisons will be presented in 
section 4; a summary and conclusion follows in section 5.  

2. Conductor Structural Layout and Homogenization Scheme 

We consider a composite conductor consisting of an interior metallic conducting core with 
cooling channel and the exterior insulation layers made by different insulation materials and ±θ° 
plain-woven glass-fiber-reinforced composite.  The metallic core conducts pulsating EM currents 
that can cause rapid heating of the core material.  The fiber-reinforced composite is used to 
provide desired mechanical and thermal properties, as well as an extra insulating protection.  The 
small cooling channel in the middle of the core lets a pressurized coolant circulate at a high 
velocity in order to reduce the heat.  The metallic conductor core with cooling channel, wrapped 
with the insulating composites, is packed into a winding assembly.  A schematic representation 
of the constituent materials and geometries for such a composite conductor unit cell is presented 
in Figure 1.  

 
 Insulation layer 2 (Phase 2) 

(thickness: cL) 

Insulation layer 3 (Phase 3) 
Glass/Epoxy plain-woven 

(thickness: dL) Insulation layer 1 (Phase 1) 
(thickness: bL) 

Metallic conducting Core 
(L x aL) 

Cooling channel
(Diameter: D) 

L

 
 

Figure 1.  Schematic representation of a composite conductor unit cell. 

For a composite conductor unit cell as shown in Figure 1, we used the following two-level 
homogenization schemes to derive its effective mechanical properties: 

 Level 1:  Homogenization for effective metallic core and effective insulation composite 
blocks; 
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 Level 2:  Homogenization for effective composite conductor consisting of effective 
metallic core and effective insulation composite blocks. 

The level 1 homogenization is composed of two separate procedures:  to determine the effective 
mechanical properties of metallic conducting core with cooling channel through composite 
cylinder assembly model [12] and to determine the effective mechanical properties of the 
insulation layer, which consists of different phase insulation materials and glass composite.  The 
results of the homogenized mechanical properties of the insulation layers and the metallic 
conducting core calculated from the level 1 homogenization will be used to derive the effective 
mechanical properties of the composite conductor in the level 2 homogenization.  The 
homogenization scheme is illustrated in Figure 2, and the detail derivation is presented in the 
next section.   

 
 

Level 1  
Homogenization 

Level 2  
Homogenization 

 

Figure 2.  Two-level homogenization scheme. 

3.  Homogenization Modeling 

3.1 Homogenization of the Effective Metallic Core With Cooling Channel 

We analogize the metallic core containing cooling channel in Figure 3 as a composite cylinder 
assembly, which is composed of a matrix (metallic core) and a cylindrical fiber (cooling channel 
as void).  For this type of composite assembly, we apply a CCAM [12] to calculate its 
homogenized mechanical properties. 

As shown in the derivation of the CCAM [12], the effective mechanical constants of the 
conducting core containing a cooling channel can be expressed by 
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Homogenized conducting 
core by CCAM 

Conducting core  
with cooling channel

r 

Original  
metallic core Equivalent 

metallic  
cylinder 

Cooling Channel

Volume of homogenized metallic core = Volume of equivalent metallic cylinder 
= Volume of original metallic core  

Figure 3.  Effective modeling of metallic core with cooling channel by CCAM. 
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The nomenclatures used in equations (1)–(12) are defined as follows:  superscript M denotes 
metallic core; subscripts A and T denote the effective properties in the channel axial direction (in  
Z direction) and in the transverse direction (in X or Y direction), respectively; T(+) and T(!) 
stand for the upper and lower bounds; 1 and 2 stand for homogenized metallic core, original 
metallic core, and cooling channel (fiber); E is for Young's modulus; G is for shear modulus; k is 
for bulk modulus; υ is for Poisson’s ratio, and V is for volume fraction.  

If we analogize the cooling channel as a cylindrical void in the CCAM as shown in Figure 3, E2, 
G2, k2, and υ2 will be equal to zero. Substituting these values into equations (1)–(12) obtain 
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with the transverse constants being defined by equations (4)–(8). 

3.2 Homogenization of the Insulation Layers as Composite Blocks 

Because of the different fiber orientations in the plain-woven composite with respect to the 
global conductor coordinate system, we homogenize the over-wrapped insulation layers as two 
different composite blocks:  CB1 at the horizontal surfaces of the conducting core and CB2 at the 
vertical surfaces.  The difference between CB1 and CB2 is in the fiber orientation of the 
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plain-woven composite with respect to the global coordinate system XYZ, as indicated in 
Figure 4.  The detail section views of the insulation composite block CB1 and CB2 are shown in 
Figure 4b and Figure 4c, and the relationship between the local composite coordinate system xyz 
for a typical insulation composite block and the conductor global structural coordinate system 
XYZ is shown in Figure 4d, respectively.  

 

c) Section view of composite 
block 2 - CB2 

(G/E ± 450 in YZ-plane) 

b) Section view of composite block 1 - CB1
(G/E ± 450 in XZ-plane) 

 

 

 

Y 

X

a) Section view of composite 
conductor 

X 

Glass  
Composite

Phase 2

Phase 1 

Z

Y

x
z

y

0

0

d) Coordinate systems  
xyz: local composite coordinate system 

XYZ: global conductor coordinate system
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Phase 1 (P1)

Phase 2 (P2)

 
 

G

Glass Composite (G) 

CB2 CB2

CB

CB1

Y

X

Metallic Core 

 

Figure 4.  Section views of conductor and insulation composite blocks. 

Based on the composite mechanics and homogenization theory [14–16], we can derive an 
analytical expression for elastic constants of the typical composite block shown in Figure 4d.  Its 
nine elastic constants in the global coordinate system XYZ can be expressed in terms of the 
elastic constants of its constituent layers and their volume fractions as: 
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The elastic constants of the plain-woven glass/epoxy composite in the local coordinate system 
(xyz) can be determined by 
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The detail derivation for glass composite mechanical properties have been addressed by Sun and 
Tzeng [10], and Huang [13].  The additional nomenclatures in equations (18)–(35), as well as in 
the following expressions, are defined as follows: the superscripts CB1 and CB2 denote 
composite blocks 1 and 2; the subscripts 1, 2, and 3 are for the composite principle coordinate 
system; x, y, or z denote components in the composite local coordinate system; X, Y, and Z 
denote the conductor global structural coordinate system; P1, P2, and G denote phase 1, phase 2, 
and glass composite insulation materials; the subscripts f and m denote constituent fiber and 
matrix in glass composite materials; Vi

Pj  denotes the volume fraction of individual insulation 
material in the composite blocks, with i = 1, 2 for CB1 and CB2, and j = 1, 2, 3 for phase 1, 
phase 2, and phase 3 material, respectively; and Vf  and Vm  denote the volume fraction of the fiber 
and matrix in glass composites.   

From equations (18)–(26), we can determine the effective elastic constants for composite blocks 
CB1 and CB2 as shown in Figures 4b and 4c.  Their relations to the constants of the typical 
composite block (Figure 4d) are: 
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3.3 Homogenization of EM Composite Conductor 

Homogenization for effective mechanical properties of the composite conductor is accomplished 
by homogenizing the effective metallic conducting core with the composite insulation blocks. 
The schematic of the homogenization is illustrated in Figure 5. 

To homogenize the mechanical properties of the composite conductor, we consider using a 
two-sequence model as shown in Figure 6.  Namely, the homogenized mechanical properties of 
the composite conductor are determined through a combined sequence operations.  In sequence 
1, we first homogenize the insulation composite block and the metallic conducting core to 
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Figure 5.  Homogenization of composite conductor. 
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Figure 6.  Combined sequences for composite conductor homogenization. 

determine the effective mechanical properties (Figure 6a) or (Figure 6b).  In 

sequence 2, we add the remaining insulation composite blocks to the results of the sequence 1 
homogenization to derive the effective mechanical properties of the composite conductor .   

Depending on the responses of the constituents to the prescribed deformation, the effective  
constants derived from the sequence operations  or  

 will be calculated either through a displacement-prescribed relation: 
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Based on the previously mentioned analogies, we establish the following mathematical 
formulations to calculate the homogenized mechanical properties of the composite conductor:  
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In equations (40)–(48), the homogenized mechanical properties of metallic conducting core are 
determined by the CCAM model and are related to the global coordinate system as: 
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4. Results and Comparisons 

4.1 Results of the Modeling Prediction 

The assumed constituent material properties and the designed geometry in the conductor unit cell 
(Figure 1) are listed in Table 1.   

Table 1.  Assumed constituent material properties and geometries. 

Constituent Material Dimension Material Properties  

Metallic Conducting Core Width H height H depth 
(L H aL H L) 

Young’s modulus EM:  10.0 (106 psi) 
Poisson’s ratioυΜ:  0.32 

Diameter of cooling channel: D 
Phase 1 

Insulation Material 
Thickness 

bL 
Young’s modulus EP1:  0.5 (106 psi) 

Poisson’s ratio υP1:  0.35 
Phase 2 

Insulation Material 
Thickness 

cL 
Young’s modulus EP2:  0.075 (106 psi) 

Poisson’s ratio υP2:  0.35 
Phase 3 

Glass/Epoxy Composite 
Thickness 

dL 
±45° plain woven 

E-glass fiber:  Ef: 10.5 (106 psi); υf: 0.22 
Epoxy:  Em: 0.5 (106 psi); υm:  0.35 

Fiber volume fraction Vf:  0.5 

 
From the equations defined in the level 1 and level 2 homogenization, we obtain the following 
homogenized elastic material constants for metallic conducting core with the cooling channel, 
for composite insulation blocks, and for composite conductor. These results are summarized in 
Table 2. 

Table 2.  Homogenized elastic mechanical constants (L = 1 in, a = 1.5, b = c = d = 0.02, D = 0.3 in). 

Homogenized Conductor Core Composite Block  
CB1 

Composite Block  
CB2 

Composite Conductor 
 

EM
A = 8.115 Mpsi 

EM
T = 6.252 Mpsi 

GM
A = 2.586 Mpsi 

GM
T = 2.424 Mpsi  
υM

A = 0.320 
υM

T= 0.290 

ECB1
XX = 0.675 Mpsi 

ECB1
YY = 0.183 Mpsi  

ECB1
ZZ = 0.675 Mpsi 

GCB1
XY = 0.069 Mpsi 

GCB1
YZ = 0.069 Mpsi 

GCB1
XZ = 0.417 Mpsi  
υCB1

XY = 0.089 
υCB1

YZ = 0.328 
υCB1

XZ = 0.378 

ECB2
XX = 0.183 Mpsi 

ECB2
YY = 0.675 Mpsi 

ECB2
ZZ = 0.675 Mpsi  

GCB2
XY = 0.069 Mpsi 

GCB2
XZ = 0.417 Mpsi 

GCB2
YZ = 0.069 Mpsi 

υCB2
XY = 0.328 

υCB2
YZ = 0.378 

υCB2
XZ = 0.328 

ECC
XX = 1.485 Mpsi  

ECC
YY = 2.011 Mpsi 

ECC
ZZ = 6.826 Mpsi 

GCC
XY = 0.368 Mpsi  

GCC
YZ = 0.694 Mpsi  

GCC
XZ = 0.522 Mpsi  
υCC

XY = 0.322 
υCC

YZ = 0.326 
υCC

XZ = 0.324 
 

4.2 Comparison With the Numerical (Finite Element) Solution 

The finite element model is developed based on the designed computer-aided design (CAD) 
geometry.  The FEA software used in the analysis is ANSYS 5.6.3.  A total of 6300 8-node brick 
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elements was generated in ANSYS for the unit cell CAD model.  Out of the 6300 elements, there 
are 1260 8-node Solid64-type structural anisotropic elements in CB1, 1440 8-node Solid64-type 
structural anisotropic elements in CB2, and 3600 8-node Solid45-type structural brick elements 
in the metallic core.  The material properties of CB1 and CB2 are determined from the equations 
derived in section 3.  The FEA mesh, loading, and boundary condition for determining  is 
presented in Figure 7.  For the purpose of description, we present only one case of determining 
the effective constant  by using the FEA model and numerical calculation.  A description of 
using the FEA model and numerical approach to calculate all nine mechanical constants was 
detailed by Hashin [12].   
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Figure 7.  FEA mesh, loading, and boundary condition for determining .CC
XXE  

Based on the prescribed loading and boundary condition as shown in Figure 7, the conductor 
effective constant  can be determined as CC

XXE
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where Ux is the prescribed displacement on the surface SX1 and SX2; ASX1 and ASX2 are the areas 
of the surface SX1 and SX2, respectively; LX is the dimension of the unit cell in the X direction; a 
scale of 0.001 in the application displacement on the surface SX1 produces a uniform strain at the 
value of 0.1%, and RX is the X-component of the average reaction force produced on the surface 
SX2 as a result of the prescribed displacement UX on the surface SX1.  

Comparisons of the analytical predictions to the numerical calculations based on the FEA are 
presented in Figures 8 and 9 for the composite conductor with different core cross sections. It 
can be seen that the mechanical constants predicted from the analytical model agree well with 
the finite element predictions for both cases, except for a slight difference between the 
predictions of the in-plane Poisson’s ratio υxy.  
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Figure 8.  Comparison of FEA and analytical predictions (conducting core with cross section: 1 H 1 in, insulation 
layer thickness: 0.02 in, D = 0.3 in). 
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Figure 9.  Comparison of FEA and analytical predictions (conducting core with cross section: 1 H 1.5 in, insulation 
layer thickness: 0.02 in, D = 0.3 in). 
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4.3  Parametric Studies 

The effects of the fiber orientation in the composite layer and the change of the channel diameter 
on the effective properties of the conductor are studied, and the results are presented in 
Figures 10 and 11, respectively.  It seems that the homogenized effective properties of the  
conductor are not sensitive to the fiber orientations, except for a slight variation for axial 
modulus, , and the axial Poisson’s ratio,  and , as shown in Figure 10.  The increase 
of the channel diameter will decrease the axial modulus, , , and G , as well as the 
transverse Poisson’s ratio, , but will produce less of an effect on the transverse modulus, 

, , and G , and has no effect on the axial Poisson’s ratio,  and , as shown in 
Figure 11.  We believe that this trend of change is caused by the reduction of the axial modulus 
and the transverse Poisson’s ratio of the metallic core due to the increase of the channel 
diameter.  
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Figure 10.  Effect of the plain-woven fiber orientation on the conductor effective properties (conducting core with 
cross section: 0.75 H 1.0 in, insulation layer thickness: 0.015 in, D = 0.3 in). 

The variation of the conductor geometry, such as the change of the insulation layer thickness and 
change of the conductor core cross section on the effective properties of the conductor are also 
studied and the results are presented in Figures 12 and 13, respectively.  It can be observed that 
the increase in the insulation layer thickness will, in general, decrease the effective modulus of 
the conductor because of the decrease of the conducting core volume.  The three Young’s 
modulus, , , and , and the in-plane Poisson’s ratio, , are particularly sensitive to 
this change, while the shear modulus and the axial Poisson’s ratios are less sensitive, as shown in 
Figure 12.  Geometric variation, i.e., increasing the core height dimension, will affect the axial 
Young’s modulus, , and in-plane Poisson’s ratio, , but will not dramatically affect other 
conductor effective mechanical properties, as shown in Figure 13. 
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Figure 11.  Effect of cooling channel diameter on the conductor effective properties (conducting core with cross 
section: 0.75 H 1.0 in, insulation layer thickness: 0.015 in). 
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Figure 12.  Effect of insulation layer thickness on conductor effective properties (conducting core cross section:  
1 H 1.25 in, D = 0.3 in). 

5. Summary and Conclusion 

A homogenization modeling to predict the effective mechanical properties of EM composite 
conductor consisting of metallic core with cooling channel and insulating layers of different 
materials and ±θ° plain woven glass-fiber composite was presented.  The homogenization 
scheme was developed based on the following two-level homogenization hierarchies:  the 
homogenization of the metallic core with cooling channel and composite insulation blocks and 
the homogenization of the EM composite conductor.  The CCAM was applied in the level 1 
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Figure 13.  Effect of conducting core cross section on effective properties (conducting core cross section: L H aL 
with L = 1 in, insulation layer thickness = 0.02 in, D = 0.3 in). 

homogenization process to derive the effective properties of the conducting core with the cooling 
channel.  In the CCAM-based modeling, the cooling channel was analogized as a fiber void with 
null material properties.  The effective mechanical properties of the composite insulation blocks 
were homogenized by smearing the properties of the insulating layers.  In the derivation of the 
homogenization model to predict the effective mechanical properties of the composite conductor, 
combined sequences of the homogenization were used and the homogenization algorithms were 
executed based on either the displacement prescribed or the traction prescribed boundary 
conditions.   

The developed homogenization model was applied to predict the effective mechanical properties 
of the EM composite conductor.  The mechanical properties of the homogenized EM composite 
conductor behave anisotropically due to the material anisotropy and the structural anisotropy of 
the conductor.  The material anisotropy is primarily caused by the constituent anisotropic 
properties of the insulation layer originated from the glass fiber plain-woven composite.  The 
structural anisotropy is caused by the transverse dimensional difference in the conductor global 
structure. Both anisotropies contribute a significant difference between the transverse modules 
( , , ) and the axial modules ( , G , G ), as shown in Table 2.  The slight 
difference between  and  in Table 2 is due to the geometric difference of the conducting 
core in the X and Y directions, while this difference vanishes if the dimensions of the conducting 
core in X and Y are the same, as shown in Figure 13, where a  = 1 for a conducting core with a 
square cross section.  However, the effective Poisson’s ratios of the conductor are not too 
sensitive to the material anisotropy and the structural anisotropy.  There is no significant 
difference between the three principal Poisson’s ratios, as observed in both Table 2 and in the 
subsequent figures.  The good agreement between the analytical and numerical predictions as 
shown in Figures 8 and 9 demonstrates the applicability and accuracy of the developed 
homogenization model.  
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