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Abstract 
 
In recent years, a para-phenylene benzobisoxazole fiber, Zylon (registered trademark of the 
Toyobo Company), has surfaced as a potential candidate for body armor to possibly replace 
Kevlar (registered trademark of DuPont).  Zylon’s effectiveness depends on its ballistic 
properties as well as its mass in comparison with Kevlar.  The present extended investigation 
focuses on determining the ballistic limit and the V50 velocity for 10, 20, and 30 stitched plies of 
Zylon using standard North Atlantic Treaty Organization 9-mm nonrotating strikers.  This report 
concentrates specifically on the ballistic limit of 10-ply Zylon, as well as the effect that impact 
location has on perforation.  It was also discovered that many other factors affect the ballistic 
performance, including slip of the fabric in the holder, the preparation of the shell, and the 
amount of fiber damage present.  These aspects will be considered when evaluating Zylon’s 
performance and determining whether or not it is indeed superior to Kevlar for applications in 
body armor and personnel protection.  The first instance of perforation for 10-ply Zylon occurred 
at an initial velocity of 341.4 m/s, and the highest initial velocity for a ricochet was 566.2 m/s.  
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1. Introduction 

Zylon* is a para-phenylene benzobisoxazole (PBO) fiber made by the Toyobo Company of 
Osaka, Japan, with promise to replace today’s aramids as the super high-performance fiber of the 
future.  It is far superior to Kevlar† and other aramids in both mechanical properties and 
resistance to such environmental effects as heat, moisture, abrasion, and seawater corrosion.  
Because of these properties, the U.S. Army took an interest in Zylon as a future bulletproof 
material.  Based on a contract from the Army, the goal of this project is to determine the ballistic 
performance of Zylon.  This is summarized into two basic experimental results—the ballistic 
limit and the limit velocity.  

The earliest reference to “modern” body armor located by a literature search consisted of a 1931 
photograph of a bulletproof vest that was not published until 1988 [1].  Other references 
involving personnel protection have appeared primarily during the last decade [e.g., 2–6] and 
have been almost exclusively concerned with ballistic fabric or fabric composite shielding.  
Widespread investigations of projectile penetration and perforation for normal impact have been 
presented in references [7, 8] and for nonstandard impact conditions, in reference [8].  The 
ballistic limit can be improved in many ways, both through advances in materials and in the 
geometry of their application.  This study involves simply testing a new material, Zylon, for 
comparison against similar ballistic fabrics such as Kevlar.  New applications for Zylon are 
being investigated, including a joint project between Boeing, SRI, the Federal Aviation 
Administration, and the University of California, Berkeley, to explore containment barriers on 
commercial aircraft jet engines.  Their function would be to protect vital fuselage components 
and systems, as well as passengers, from high velocity fan fragments that can result from 
catastrophic engine failure. 

2. Objectives 

The ballistic limit represents the speed of a nonrotating striker of given mass and dimensions at 
which half of the projectiles will just perforate a specified target at normal incidence [9].  The 
V50 and limiting velocity is a somewhat more complicated mathematical function and requires a 
program to compute.  These calculations will be made for the samples of 10-, 20-, and 30-ply 
Zylon targets.  In addition to these concrete objectives, other consequential concerns arose after 
the initial stages of experimentation.  First, it was discovered that the boundary conditions of the 
Zylon target had a great affect on the performance of the fabric.  Not only the velocity of the 

                                                 
* Zylon is a registered trademark of the Toyobo Company. 
† Kevlar is a registered trademark of DuPont. 
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projectile, but also the location of the impact (relative to the edges of the target holder) became 
important.  This phenomenon is clearly rooted in the “give” of the material farther from its rigid 
boundaries.  The results of a static force deflection test at various locations on the target will be 
discussed later.  At this point, the effects are only qualitative, but there is hope of developing a 
model (based on the boundary conditions of a thin membrane with a distributed load) to make 
this conclusion more quantitative.  Also, due to the thickness of the target samples, there was 
slipping of the material within the holder at high/nonperforating shots.  Some of this should be 
eliminated after some modifications to the target holder (see section 5). 

3. Experimental Setup  

The experimental setup included a 14- × 14-in aluminum target holder, C-clamped at four 
corners to a steel “backstop” (Figure 1) that was, in turn, secured to a 680-kg steel table on which 
the gun was mounted. 

Figure 1.  The aluminum target holder clamped to the steel backstop. 

The targets were struck relatively centrally and normally by standard 9-mm full metal jacket 
flatback handgun projectiles, made by either Remington or Winchester.  The projectiles had a 
nominal diameter of 0.355 in and a length of 0.625 in.  They were made of lead, with a thin 
copper alloy jacket, and had an average mass of 124 gr each and a sectional density of 0.141. 

The 9-mm projectiles were saboted for a 0.50-cal. powder gun.  The 0.50-cal. powder gun 
(Figure 2) consisted of a 20-mm-thick high-strength steel barrel with an inside diameter of 0.501 
in and a length of 1.6 m, a breech capable of accommodating a 50-mm cartridge and a supporting 
rail frame which attached the unit to the support. 
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Figure 2.  The 0.50-cal. powder gun:  (a) side view and (b) rear view. 

The initial velocity of the projectiles was measured by the duration required to break the beams 
of two parallel helium-neon lasers positioned directly in front of the muzzle, separated by  
165 mm, with the first of the two lasers located 24 in from the gun muzzle.  The target itself was 
~44 in from the muzzle.  The lasers were focused on two custom photodiodes generating a 
voltage pulse recorded by a Hewlett-Packard 5316 time-interval counter.  The final velocity of 
the fastest object behind the target was determined by the time between the signals generated by 
two aluminum foil make screens, each about 432 × 254 mm in size, and separated by 155 mm.  
The two aluminum foil sheets constituting a make screen were separated by a distance of 6 mm.  
The two make screens generated both a starting and stopping pulse recorded by a second time 
interval meter from which the final velocity was determined. 

A second “backup” system of consecutive paper targets with a grid of interlocking conducting 
ink lines (Figure 3) worked in a similar fashion to the foil, also making use of a second Hewlett-
Packard 5316 time-interval counter. 

A blast shield was placed 10 inches in front of the gun muzzle to prevent undue damage to the 
rebound catcher box and to keep gasses and firing debris from interacting with data-collecting 
equipment.  The rebound catcher box (Figure 4) was essentially a foam cage with an entrance 
hole for the projectile and small holes in the sides for the initial velocity lasers to pass through to 
the detectors.  A catcher box using rags was placed behind the gun table to soft recover 
projectiles and plugs.  Several blocks of buff potters clay were placed in front of this catcher box 
to further slow perforating projectiles. 

(a) (b) 



 

 4

 

                       

Figure 3.  Timing grid holders:  (a) 3/4 view from ~2 m and (b) top view, close-up. 

Figure 4.  Rebound catcher box. 

(a) (b) 
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4. Procedure 

The 12- × 12-in Zylon target sample (Figure 5) was secured in an aluminum target holder with 
essentially a machined “tongue and groove” system to minimize fabric slipping.  Uniformity is 
achieved through the use of an 85 in-lb torque wrench at the numerous screws around the target 
holder.  The targets themselves are 10-, 20-, and 30-ply sheets of Zylon sewn together with 
chain-link fence-type crisscross stitching.  For the thicker samples, the tapped holes will be bored 
out, and stronger tool-grade steel bolts will be used in lieu of the less reliable lag screws.  The 
desired impact location was aligned to the bore by a laser placed in the breech.  The position of 
the impact was recorded to investigate effects of different tensile preloads in the Zylon target.   

Figure 5.  Zylon target (note:  20-ply sheet shown). 

The lasers and photodiodes were turned on to record the initial velocity of the striker upon beam 
interruption.  Two aluminum foil make switches, each consisting of a set of closely spaced 
parallel sheets, were connected to a time-interval meter that measured the time differential of the 
passage between the two positions, representing the final velocity of the projectile behind the 
target. 
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Following a test, the projectile was recovered.  In a few instances, the projectile shattered, most 
likely from contact with metallic objects other than the target (e.g., the back of the steel catcher 
box), and, in other cases, it could not be recovered due to single or multiple ricochet, especially 
when deviating from its initial trajectory due to impact.  The position of the holes in the foils was 
examined to ascertain the projectile trajectory. 

5. Results and Discussion 

5.1 Sources of Error 

There are many factors that contribute to the accuracy of our data; all must be taken into account 
when observing the data.  First and foremost are the boundary conditions of the target holder.  
The closer to an edge or corner the projectile strikes, the easier it is for the projectile to perforate.  
With multiple shots per target, it is impossible to have all shots in the center.  Another concern 
when firing multiple shots per target is whether or not the strength of the target as a whole is 
compromised after the first shot.  Figure 6 shows the typical target deformation (originally taut) 
from a near-perforating target-center shot.  If a shot hits too close to a previous impact, the 
projectile may strike fibers damaged from a previous shot.  It is obvious that if this is the case, 
the data obtained will not be accurate.   

The way that the target is secured in the holder also affects the outcome of shots.  The target slips 
slightly from the “grasp” of the target holder upon impact, which increases the targets resistance 
to perforations.  The amount the target slips ranges from 1/2 to 1 in.  Previously, the target holder 
used 16 tapped holes with bolts torqued to a maximum of 85 in-lb to secure the target.  Any 
torque higher than 85 in-lb would snap the bolts.  Also, after a few months, the threads of the 
holes began to wear.  This created a resistance to the torque applied in the bolts which made it 
difficult to assess the actual torque in each bolt.  The target holder has been modified to a nut and 
bolt design, which allows for more torque to be applied to each bolt, and there is no resistance 
from threads.  Soon, higher-grade, larger diameter (3/8 in rather than 1/4 in) bolts will be used, 
allowing for even more torque. 

The way that a shell is loaded can also have a great impact on the projectile’s initial velocity.   
Due to the size of the projectiles, slight variations in the amount of wadding or the way it is 
tamped down in the shell can greatly affect velocity.  It is difficult to obtain desired velocities, 
and thus difficult to get data for specific areas of interest.  This proves to be quite a nuisance 
when specific velocities are needed to find the V50 or the ballistic limit.  It becomes a “shooting- 
in-the-dark” process, which increases the number of targets needed to obtain specific data. 
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Figure 6.  Typical target deformation of a 
near-perforating shot. 

5.2 Load-Deformation Tests 

Due to the implication that the location of impact (with respect to the boundary of the target 
holder) may greatly affect the chance of perforation, load-deformation tests were performed on a 
10-ply sheet of Zylon while it was secured in the target holder.  Each of the 16 screws was 
torqued up to 85 in-lb.  Figure 7 shows these tests that were performed at three locations—2.5 in, 
4.5 in along the diagonal, and in the center. 

It was found that the closer to the center of the target one gets, the less force is required to 
elastically deform the material.  Therefore, shots fired closer to the corners have a greater chance 
of perforating because less energy is absorbed by the target.  This fact greatly affects our ballistic 
results.  It was also found that when a target is fired, it slips in the target holder.  Due to this 
implication, we changed the target holder to accommodate a nut and bolt setup with high-grade 
bolts.    

6. Ballistic Tests 

Fifty-four shots were fired at various points on 10-ply sheets of Zylon.  The complete results for 
all the shots, obtained from the data in Table 1, are shown in Figure 8.  However, since the 
location of the shots, as well as many other factors, affects the projectile’s ability to perforate, 
Figure 8 is not a completely accurate depiction of the ballistic capabilities of Zylon.  However,  
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Figure 7.  Load displacement curves. 

Figure 8.  Final vs. initial velocity. 

corner shots can be considered a lower bound of sorts and the center shots an upper bound.  
These discrepancies can be clearly seen using Figure 8.  For instance, there is a nonperforating 
shot with an initial velocity of 566 m/s fired at the center as well as a perforating shot at 349 m/s 
fired near the corner.  Finally, Figure 9 is a three-dimensional plot of initial velocity of 
projectiles vs. the striking location on the target measured from an origin at an arbitrary corner of 
the target. 
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Table 1.  Tabular ballistic data. 

 
Shot No. 

 

 
Ply 

Powder 
Load 

(g) 

Initial 
Velocity 

(m/s) 

Final 
Velocity

(m/s) 

Type of
Bullet

 
Perforation?

 
X Position

(in) 

 
Y Position 

(in) 

 
Comments

1 10     5.2 error NA R N 3.25 9  
2 10   5.81 348.9 309.5 R Y 7 8.25  
3 10     6 error 508.86 R Y 4 4  
4 10     6 890.4 440.5 R Y 7.5 4.5  

5 10     6 320.5 error R Y 6.375 8.125 

Shot fired 
without 
sabot 
stripper. 

6 10     6 783.5 471.8 R Y 5.25 3.5 

Shot fired 
without 
sabot 
stripper. 

7 10 6.5 598.7 error R Y 4.5 4.75 
Sabot was 
not stripped.

8 10 6.5 513.4 458.2 R Y 3.25 3.75  
9 10     7 error 457.8 R Y 5 3.75  

10 10     7 error error R Y 8.125 4.5  
11 10     7 591.2 error R Y 9.75 7.25  
12 10 7.5 395.3 105 R Y 6.375 7.5  
13 10 7.5 1757.2 error R Y 3.5 7.875  
14 10     8 error 236.6 R Y 3.875 6.25  
15 10     5 682.4 error R Y 7.875 6.75  
16 10 0.5 91.63 NA R N 8.25 4.75  
17 10   0.75 error NA R N 6 6.125  
18 10   0.75 81.45 NA R N 3.25 4.125  
19 10     1 27.3 NA R N 6.125 8.375  
20 10     1 88.33 NA R N 3 7.5  
21 10   1.25 175.53 NA R N 5.625 4.25  
22 10 1.5 19.55 NA R N 8 8.75  

23 10   1.75 error NA R N 7.75 6.375  
24 10   1.75 118 NA R N 4 3.75  
25 10     6 924.89 440.22 R Y 7.25 5.75  
26 10 0.5 error NA W N 4.375 4.875  
27 10 0.5 56.99 NA W N 7.75 7.25  
28 10   0.75 99.4 NA W N 6.875 6.125  
29 10     1 108.4 NA W N 4.75 8  
30 10   1.25 167.67 NA W N 4.125 4.5  
31 10     2 130 NA R N 2.75 8.875  
32 10  2.5 137.5 NA R N 7.625 3.75  
33 10     3 error NA R N 5.75 6.125  
34 10  3.5 354.3 NA R N 2.5 4.25  
35 10  1.5 error NA W N 5.5 NA  
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Table 1.  Tabular ballistic data (continued). 
 

Some interesting information was gained from the recovered projectiles themselves.  Figure 10a 
shows some typical low-velocity, nonperforating projectiles (57–138 m/s) that suffered almost 
no visible damage upon impact.  However, it is also known that each of these projectiles rotated 
upon impact with the Zylon target and was finally brought to rest completely sideways.  This 
was inferred from the imprint of the bullet left on the Zylon, clearly showing the bullet-like 
profile of the projectile, rather than a circular one.  The extreme case of this rotation can be seen 
in Figure 10b.  Here, higher velocity nonperforating projectiles (161–451 m/s) showed 
significant deformation in the lateral direction from being “squished” sideways against the Zylon 
target upon rotation.  (Note:  The bullets in Figure 10b are shown from behind, parallel to their 
major axes.)  This rotation appears to help the target absorb energy, thus allowing no perforation 
at 451 m/s, even though lower velocity projectiles showed perforation (such as the 321- and  
349-m/s projectile in Figure 10d).  Compare these laterally deformed projectiles to those in  
Figure 10c.  Here, the projectiles did not rotate upon impact, and they bear the more intuitive 

 
Shot No. 

 

 
Ply 

Powder 
Load 

(g) 

Initial 
Velocity 

(m/s) 

Final 
Velocity

(m/s) 

Type of
Bullet

 
Perforation? X Position

(in) 

 
Y Position 

(in) 

 
Comments 

36 10 1.5 260.6 NA W N 2.5 3 
Sabot was not 
stripped. 

37 10 2.5 229.26 NA W N 4 8.25  
38 10     2 169.3 NA W N 4 8.125  
39 10     3 161.29 NA W N 8.25 7.5  
40 10     3.5 310 NA W N 4.375 5.5  

41 10     4 497.4 NA R N 8.375 4.125 

Bullet hit target 
holder before 
striking target. 

42 10     4 243.5 NA R N 6.875 4.5  
43 10 4.5 451.44 4.5 R N 4.875 6.25  
44 10     5 342.89 error R Y 3.5 6.375  
45 10     3 344.9 NA R N 5.25 4.25  

46 10 3.5 203.5 NA R N 3.625 5 
Sabot was not 
stripped. 

47 10     4   error error R error NA       NA  
48 10 3.5 566.2 NA R N        5 6.5  
49 10 3.6 399.8 NA R N 5.75 6.25  
50 10 3.7   error error R error NA       NA  

51 10 4.1 250 NA R N 5.5 5 

Initial velocity 
obtained from 
high-speed video 
camera. 

52 10 4.2 341.4 313.6 R Y 5.5 5.75  
53 10     4 177.4 NA R N 6.125 6  
54 10     4 271.1 NA R N 5.5 6  
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Figure 9.  Final vs. initial velocity (striking velocity). 

“snub-nosed” shape expected from fully anterior deceleration.  Finally, Figure 10d shows some 
typical perforating shots with velocities ranging from 321 to 890 m/s.  It is interesting to note 
that the higher velocity perforating shots show less damage than those that perforated at lower 
velocity. 

The V50 was estimated using the following: 

 V50 = V*(ao + a1X + a2X2 + a3X3 + a4X4), (1) 

where X = AdAp/mp = (fabric areal density)(projectile base area)/(projectile mass), 

Ad =  1.56 kg/m2, Ap = 254.5 × 10-6kg/m2, mp = 0.00803 kg, and ao = 0.323, a1 = 6.732,  
a2 = !26.642, a3 = 68.442, a4 = !62.446, and V* = 813.2  [10]. 

V50 was calculated to be 486.8 m/s.  Our first instance of perforation was at 341.4 m/s, and our 
last instance of no perforation was at an initial velocity of 566.2 m/s.  Both of these shots were 
center shots, but the former shot was fired after the nut and bolt fasteners were implemented in 
the target holder.  This allowed for a reduction in slip, thus allowing the target to absorb less of  
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Figure 10.  Recovered projectiles (note:  numbers beneath projectiles indicate initial velocity 
in meters per second). 

 

(a) 

(b) 

(c) 

(d) 
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the projectile’s kinetic energy, resulting in a perforation.  These variances in actual limits from 
the theoretical limit can be attributed to the location of the shots, the accuracy of the initial 
velocity equipment, and slipping in the target holder.  None of these factors can be completely 
eliminated.  Multiple shots per target are necessary due to the number of targets available.  The 
slip can be reduced in our target holder, but it can never be zero.  With the data provided in this 
report, the ballistic limit for various impact locations can be determined.  However, the ballistic 
limit is not the same as the V50 or the limiting velocity.  The V50 as well as the limiting velocity 
will be found on a later date using the programs provided. 

The average 9-mm handgun has a muzzle velocity of 388 m/s [11].  Ten plies of Zylon are not 
enough to stop a shot from the average 9-mm handgun, but a slight increase in the number of 
plies should prove effective.  Ten plies of Kevlar 29 have a V50 of 434 m/s [12].  Although  
Kevlar 29 has a higher V50 than Zylon, Zylon has a lower areal density.  Ten plies of Zylon have 
an areal density at 1.56 kg/m2, and 10 plies of Kevlar 29 have an areal density of 2.95 kg/m2 [12].   
Therefore, it may take more plies of Zylon than Kevlar 29 to stop a projectile, but with Zylon’s 
significantly lower areal density, that amount of plies will weigh less than the ballistic equivalent 
made of Kevlar 29.  This shows that Zylon would be more practical than Kevlar 29 for use as 
body armor in the military and law enforcement where mass is critical. 

7. Conclusions 

Ten plies of Zylon were not enough to stop a 9-mm bullet fired from an average handgun, nor 
was the theoretical V50 or the ballistic limit higher than that of Kevlar 29.  However, a slight 
increase in plies should be enough to overcome both of these.  Since Zylon has a far less areal 
density than Kevlar 29, the mass of the number of plies needed to reach the ballistic limit of 
Kevlar would still be less than that of 10 plies of Kevlar.  Twenty plies of Zylon, which will be 
tested next, should prove effective against projectiles fired at 388 m/s. 

Despite the sources of error, a ballistic curve was obtained.  The error that comes from the target 
and the target holder can be considered positive because Zylon in real-world use will not be in 
laboratory conditions.  For 20 plies of Zylon, the slip will be minimized due to modifications 
made on the target holder.  It is essential that the fabric holds up no matter what adversities it 
faces—multiple shots, slipping, or any other nonideal conditions. 

Zylon is the “ballistic fabric” of the future.  Zylon’s low areal density allows for more 
maneuverability and proves to be more practical for applications in the armed forces and law 
enforcement than Kevlar.  Further testing will show the number of plies of Zylon needed to 
achieve the same ballistic limit, as Kevlar 29, will weigh less. 
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