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1. Introduction 

In a previous study (1, 2), it was found that a useful mathematical representation of the wind 
flow, temperatures, and turbulence inside and above a (uniform) continuous forest stand could be 
obtained by means of a one-dimensional (1-D), steady-state, second-order turbulence closure 
model, with an embedded radiative transfer and energy budget algorithm to predict the heat 
source.  Development of this model made it possible to generate realistic profiles for effective 
sound speed inside and above a forest canopy.  In turn, these data were used as input to an 
acoustic propagation model that predicts atmospheric and terrain effects on short-range acoustic 
attenuation (3, 4).  As a result, it was shown that attenuation and “ducting” of acoustic waves in 
and around forests is significantly influenced by local micrometeorological profile structure. 

However, forest stands are typically inhomogeneous, containing nonuniform distributions of 
canopy height and leaf area density (5).  In addition, open fields, roadways, and buildings often 
border forests.  Hence, to begin to address nonuniform forests and forest edges, this report 
presents the equation set, modeling assumptions, and some initial results from a new, physics-
based computer model that is being developed for two-dimensional (2-D) forest canopy wind 
flow, temperature, and turbulence calculations.  Like the earlier 1-D model, the 2-D model is 
based on the conservation (simplified Navier-Stokes) equations for continuity, momentum, 
Reynolds stress, energy, heat flux, and turbulent temperature variance.   However, in this case, a 
set of simultaneous equations for each of 12 computed variables is solved iteratively on a 
computational grid consisting of 10 × 60 points.  Horizontal grid spacing is 50 m and vertical 
grid spacing is 0.5 m.  The model domain is 500 × 30 m.  It is anticipated that improved physics-
based theory and computer modeling for meteorology coupled to acoustics will become 
increasingly useful to predict effective sound speed information for military acoustic application 
research (6, 7). 

The mathematical model for the forest canopy is described in section 2.  Initial model results for 
uniform forest stands are shown in section 3.1.  Initial model results for nonuniform forest 
stands, i.e., those that contain a single step change in canopy height, are shown in section 3.2.  A 
summary and conclusions are provided in section 4. 

2. Forest Canopy Model 

2.1 Conservation Equations 

The conservation (simplified Navier Stokes) equations for the current model, neglecting coriolis∗ 
forces, can be expressed as follows:  

                                                 
∗Other than a few authors (8–10), most consider the effect of the coriolis force as being negligible for the scales of motion 

considered. 
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Here, t is the independent variable time, ρ  is air density, iu  is the i-component of the wind 

velocity vector ( wuvuuu === 321 ,, ), and xi is the i-component of the position vector (x1 = x, 
x2 = y, x3 = z).  In addition, p is static pressure normalized by air density (i.e., kinematic 
pressure), g is the acceleration due to gravity, T is the absolute temperature, θ0 is a deviation 
from a reference temperature that decreases with height at the adiabatic lapse rate, and v is 
kinematic viscosity.  The overbar and primed variables indicate the mean (time averaged) and 
fluctuating components of the given quantity, whereas the brackets, , and double primed 
variables indicate horizontal averaging and departures from the horizontal averaging operator 
(11).  
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The energy equation is 
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Here, θ is ambient air temperature, κT is thermal diffusivity, and Sθ is the forest canopy heat 
source (or sink).  The heat source can be expressed as a function of leaf surface-to-ambient-air 
temperature differences (12). 
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The heat flux equation is 
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Finally, the turbulent temperature variance equation is 
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2.2 Modeling Assumptions 
Wilson and Shaw (13) give the following closure approximation for the pressure drag force in 
equation 2:  

 id
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Here, Cd is the forest canopy drag coefficient (= 0.10) and A (in units m2m–3) is the leaf area 
density.  It is further assumed that pressure forces are the main contributor to the total drag from 
the forest canopy (i.e., viscous drag forces are neglected).   

In equation 3, Mellor (14) and Mellor and Yamada (15, 16) parameterize the triple-velocity 
products as 
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where the turbulent kinetic energy (t.k.e.) is 2
1

''
iiuuq =  and λ1 is a function of mixing length.∗   

The pressure-velocity gradient terms (i.e., the pressure redistribution terms) in equation 3 can be 
rewritten as 
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where 

                                                 
∗In these equations, λ1 through λ7 are length scales, which contain a set of seven closure constants, i.e., λk = akl, where k is an 

arbitrary index 1–7 and l is the mixing length. Values for these closure constants are as follows: a1 = 0.39, a2 = 0.85, a3 = 16.57, 
a4 = a6 = 0.23, a5 = 0.74, and a7 = 10.10 (11, 13–16). 
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This is modeled according to the return-to-isotropy principle, as described by Mellor (14) and 
Donaldson (17).  In equation 10, C is a constant whose value is about 0.077 (11).   

Viscous dissipation is assumed isotropic and a function of local t.k.e. intensity.  Viscous 
dissipation, as described by Katul and Albertson (11), is parameterized as 
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In equation 4, the heat source term (Sθ), as described by Meyers and Paw U (12), is modeled as    

 ( ) hl rAS θθθ −= 2    . (13) 

Here, A (in units m2m–3) is the leaf area density, ( )θθ −l  is the mean leaf surface-to-ambient-air 
temperature difference, and rh is the aerodynamic resistance to heat transfer.  A 1-D radiative 
transfer and energy budget algorithm is incorporated into the 2-D model calculation to make it 
possible to determine the heat source for any time of day.  To do this, the formulations outlined 
by Rachele and Tunick (18) are used to calculate the incoming total radiation at the canopy top 
as a function of latitude, longitude, day of year, and time of day (i.e., these input are needed to 
determine the solar declination, hour, and zenith angles).  Then, the equations provided by Weiss 
and Norman (19) are used to calculate the spectral components for short-wave (i.e., direct beam 
and diffuse, visible and near-infrared) radiation as a function of the total downward short-wave 
flux at canopy top because extinction and reflection through the forest canopy are different for 
each.  The remainder of the 1-D radiative transfer subroutine for the forest canopy (i.e., 
transmission, reflection, absorption, and emission of the solar flux) is derived from the 
formulations given in the texts by Campbell (20) and Campbell and Norman (21). 

Returning now to equations 5 and 6, the triple-velocity-temperature products contained therein 
can be expressed in the form described by Mellor (14) and Mellor and Yamada (15, 16) as 
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In addition, the pressure interaction term can be modeled as 
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Finally, the molecular dissipation of heat can be modeled as 
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This completes the basic equation set and modeling assumptions for the 2-D forest canopy 
model.  

2.3 Second-Order Turbulence Closure Model for 2-D Forest Canopies 
The 2-D computer model currently being developed is relatively unique.  This is because higher-
order closure models reported in the literature (e.g., 11–13, 22) have generally focused on 
estimates of 1-D, adiabatic wind flow, and turbulence within and above homogeneous (uniform) 
forest canopies.  In contrast, the new model may be applied night or day to both uniform and 
nonuniform stands (and forest edges, possibly).  The new model, which is based on the earlier 
works of Katul and Albertson (11), Meyers and Paw U (12), Wilson and Shaw (13), and 
Donaldson (17), calculates the 2-D, steady state, canopy wind flow, temperatures, turbulent 
variances, Reynolds stress, and heat flux.  The parameterized 2-D model equations for 
continuity, the mean flow–longitudinal u , the mean flow–vertical w , Reynolds stress 

wu ′′ , longitudinal 2u′ , lateral 2v′ , and vertical velocity 2w′  variances, the mean 

temperature θ , vertical heat flux θ ′′w , horizontal heat flux θ ′′u , and the turbulent 

temperature variance 2θ ′ , respectively, are as follows: 
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In the model, mean pressure is assumed approximately hydrostatic.  In contrast, the kinematic 
(fluctuation) pressure p  is determined, as discussed in the text by Ferziger and Perić (23), by 

taking the divergence of the mean flow equations, i.e.,  
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which, after some rearranging and cancellation of terms due to continuity, yields Poisson’s 
equation (i.e., pressure-velocity coupling) as 
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Also, note that the lateral velocity variance 2'v  is calculated in the current 2-D model 

(equation 23) to support the turbulence (t.k.e.) closure approximations for the triple product and 
dissipation terms. 
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2.4 Numerical Methods 

A computational grid consisting of 10 × 60 points is chosen, where the horizontal grid spacing 
( x∆ ) is 50 m and the vertical grid spacing ( z∆ ) is 0.5 m.  Hence, the model domain is 500 × 
30 m.  Vertical derivatives are solved using a lower-order central differencing scheme (23).  The 
first derivatives can be expressed as 

 ( ) ( ) ( )
zz

jijiji

∆

−
=

∂

∂ −+

2
1,1,, φφφ

    , (32) 

and the second derivatives as 

 ( ) ( ) ( ) ( )
( )2

1,,1,
2
,

2 2

zz
jijijiji

∆

+−
=

∂

∂ +− φφφφ
   . (33) 

Here, i is the horizontal grid index and j is the vertical grid index.  In contrast, the horizontal 
derivatives are solved using a lower-order upwind differencing scheme (23), such that the first 
derivatives are computed as 

 ( ) ( ) ( )
xx

jijiji

∆

−
=

∂

∂ − ,1,, φφφ
   , (34) 

and the second derivatives are given as 

 ( ) ( ) ( ) ( )
( )2

,2,1,
2
,

2 2

xx
jijijiji

∆

+−
=

∂

∂ −− φφφφ
   . (35) 

A set of simultaneous equations for each of 12 computed variables is then solved iteratively 
using the Thomas algorithm, a tridiagonal matrix solver (24).  In addition, the solution 
implements a relaxation scheme for all the computed variables, similar to that described by 
Wilson (22), i.e.,  

 ( ) 11 −−+= nn aa φφφ    , (36) 

where a = 0.05, n is the current iteration, and n – 1 is the previous iteration.  The relaxation 
scheme primarily affects the rate at which the solution converges, not how well the solution 
converges. 

Then, based on the earlier works of Meyers and Paw U (12) and Katul and Albertson (11), the 
following (model) top and bottom boundary conditions are applied: 

At  0=z :     

 0== wu  ;  15.303=θ  ; 

 0=p  ; 

 0'' =wu ; =''θw 0'' =θu  ;  
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 =2'u =2'v =2'w 0'2 =θ ; 
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5.0

2,* ''
i

wuu =  (friction velocity at z = 2∆z); 
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*
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''
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θ
θ =  (potential temperature scaling constant at z = 2∆z); 
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u
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u
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2
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2
*θθ

   (k = 0.4 is von Karman’s constant); 

 0=
∂

∂

z

w
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∂

∂

z

p
 . 

At z = 30 m:     

 ( )dzk
u

z

u

−
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∂
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∂
*θθ

   

 (d is displacement height ( hd 3
2≈ ) and h is canopy height); 
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log
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*  ( 10.7 −= msU top  ); 

 dzSQ
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h ∫=
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θ  (kinematic heat flux, ''θwQh = ); 

 
*

* u
Qh−

=θ      (potential temperature scaling constant); 

 0=
∂

∂

z

w
  and 0=

∂

∂

z

p
; 

 2
*'' uwu −= ;  hQw =''θ ; and hQu 0.3'' −=θ ;  

 2
*

2 5.3' uu =  ;  2
*

2 5.1' uv =  ;  2
*

2 5.1' uw =  ;  and 2
*

2 0.4' θθ = . 

In addition, zero-gradient conditions are assumed at the lateral boundaries.  However, a weighted 
smoother, similar to that proposed by Mahrer and Pielke (25), is applied to the first three and last 
three horizontal grid points to reduce undesired boundary effects, i.e., 

 ( ) ( ) ( ) ( )( )jijijiji ,1,1,, 25.05.0 −+ ++= φφφφ    . (37) 

Finally, lower-order Newton-Cotes formulas for numerical integration, i.e., the trapezoidal rule 
and Simpson’s one-third rule, are applied to derive the wind flow streamlines. 
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2.5 Forest Canopy Architecture 

As shown in sections 2.2 and 2.3, canopy architecture plays an important role in defining the 
momentum and heat flux divergence through the forest layer.  Following the discussions by 
Massman (26) and Meyers et al. (27), it was suggested that forest canopies may conform to one 
of three general leaf area distribution profiles, as shown in Figure 1.  It is clear that leaf area 
distributions are not always symmetric about the layer of maximum foliage density (like profile-
1) but may be more often skewed upward toward the top of the forest canopy.  By definition, leaf 

area index is ( ) dzzALAI
h

∫=
0

, where A(z) is the leaf area density through the small vertical layer 

between z and z + ∆z per unit surface area of ground below (28).  Values for leaf area index for 
forests vary but have been reported most often in the range LAI = 1 to 5 (29).  In section 3, 2-D 
model results will be shown for the case corresponding to profile-2.  Also, in this study LAI = 
3.0. 

 

 

Figure 1. Normalized vertical profiles of leaf area density for forest 
                canopies. 

3. Model Results 

3.1 Uniform Forest Stands  
In this section, several initial model results are presented for a 2-D uniform forest stand.  Figure 
2 shows the calculated fields for horizontal wind velocity, u , in units ms–1, and air 

temperature, θ , in units °C.  For this example, upper level (i.e., model top) wind velocity is 
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umax = 7.0 ms–1, leaf area index is LAI = 3, and forest canopy height is h = 10 m.  In contrast, 
Figure 3 shows individual profiles for wind velocity and air temperature derived from the current 
2-D calculation in comparison to profiles derived from an earlier 1-D modeling study (1, 2).  
Profile results from the 1-D and 2-D models agree reasonably well.  Small differences are due 
(possibly) to the expanded numerical grid.  Finally, Figure 4 shows some spurious oscillations 
that result when ∆x = 20 m.  Here, it is likely that the solution is unstable because ∆x/Z(N) < 1, 
where Z(N) is the height at the model top.  Based on an analysis of the equation set and several 
additional calculations (not shown), this condition for stability appears to be valid.  The 
computed variable in Figure 4 is horizontal wind velocity, u , in units ms–1. 

 

 
(a) (b) 

Figure 2. Model results for uniform forest stands:  (a) horizontal wind velocity, u , in units ms–1, and (b) air 

temperature, θ , in units °C.  For this example, canopy height (h) is 10 m.  
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(a) (b) 

Figure 3. Profiles of horizontal wind velocity ( u , in units ms–1) and 

air temperature ( θ , in units °C) derived from the current 

2-D calculation shown in comparison to 1-D profiles derived 
from an earlier study. 

 

Figure 4. Spurious oscillations due to numerical instability in the 
2-D model results for uniform forest stands.  The 
computed variable is horizontal wind velocity, u , in units 

ms–1. 
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3.2  Nonuniform Forest Stands 

Figures 5–7 show the current 2-D model results for a nonuniform forest stand, i.e., which 
contains a single step change in canopy height. The computed variables in Figure 5 are 
horizontal wind velocity, u , in units ms–1, and the wind flow streamlines.  A single step 
change in canopy height (h) at one grid increment past the midpoint (i.e., xX ∆+2 ) is shown via 
open rectangles, where h = 8 m on the left side and h = 10 m on the right side.  The computed 
variables in Figure 6 are vertical wind velocity, w , in units ms–1, and kinematic (fluctuation) 

pressure p , in units m–2s–2.  The computed variables in Figure 7 are air temperature, θ , in 

units °C, and the effective speed of sound, effC , in units ms–1.  Finally, Figure 8 shows 

spurious oscillations that result when ∆x = 20 m instead of ∆x = 50 m.   Here again, a 
computational instability is brought about (possibly) because ∆x/Z(N) < 1. 

 

 
(a) (b) 

Figure 5. Model results for nonuniform forest stands, i.e., those that contain a single step change in canopy height: 
(a) horizontal wind velocity, u , in units ms–1, and (b) wind flow streamlines.  A single step change in 

canopy height at X/2 + ∆x is shown using open rectangles, where h = 8 m on the left side and h = 10 m 
on the right side. 
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(a) (b) 

Figure 6. Model results for nonuniform forest stands: (a) vertical wind velocity, w , in units ms–1 and (b) 

kinematic (fluctuation) pressure p , in units m–2s–2.  A single step change in canopy height occurs at  

X/2 + ∆x, where h = 8 m on the left side and h = 10 m on the right side. 

 

 
(a) (b) 

Figure 7. Model results for nonuniform forest stands: (a) air temperature, θ , in units °C and (b) effective speed 

of sound, effC , in units ms–1.  A single step change in canopy height occurs at X/2 + ∆x, where h = 8 m 

on the left side and h = 10 m on the right side. 
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Figure 8. Spurious oscillations due to numerical instability in the 
2-D model results for nonuniform forest stands.  The 
computed variable is horizontal wind velocity, u , in 

units ms–1. 

Figures 9–11 show the current 2-D model results for a second nonuniform forest stand.  In this 
example, a larger step in canopy height is incorporated at the lower boundary, where h = 4 m on 
the left side and h = 10 m on the right side.  The computed variables in Figure 9 are horizontal 
wind velocity, u , in units ms–1, and the wind flow streamlines.  The computed variables in 

Figure 10 are vertical wind velocity, w , in units ms–1, and kinematic (fluctuation) pressure p , 

in units m–2s–2.  The computed variables in Figure 11 are air temperature, θ , in units °C, and 

the effective speed of sound, effC , in units ms–1.  Finally, Figure 12 shows that care needs to be 

taken when applying numerical (integration) schemes across sharp discontinuities (e.g., to 
calculate the streamlines).  Here, the use of Simpson’s one-third rule for both integrals, i.e., 

∫ ∫∫ +−= udzwdxdψ , resulted in a computational instability (i.e., 2∆x numerical waves).  Upon 

further analysis, these were found to be contained mainly in the solution to ∫− wdx .  A stable 
solution was later obtained by applying a simpler trapezoidal rule to solve this integral.  Note 
that while mx 50=∆  in Figure 12, the number of horizontal grid points is expanded (i.e., MPT 
= 40). 
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(a) (b) 

Figure 9. Model results for nonuniform forest stands, i.e., those that contain a single step change in canopy height: 
(a) horizontal wind velocity, u , in units ms–1, and (b) wind flow streamlines.  A single step change in 

canopy height at X/2 + ∆x is shown using open rectangles, where h = 4 m on the left side and h = 10 m on 
the right side. 

 

 
(a) (b) 

Figure 10. Model results for nonuniform forest stands: (a) vertical wind velocity, w , in units ms–1, and (b) 

kinematic (fluctuation) pressure p , in units m–2s–2.  A single step change in canopy height occurs at 

X/2 + ∆x, where h = 4 m on the left side and h = 10 m on the right side. 
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(a) (b) 

Figure 11. Model results for nonuniform forest stands: (a) air temperature, θ , in units °C, and (b) effective 

speed of sound, effC , in units ms–1.  A single step change in canopy height occurs at X/2 + ∆x, where 

h = 4 m on the left side and h = 10 m on the right side. 

 

 

(a) (b) 

Figure 12. Numerical instability, i.e., x∆2  waves, in the computation of wind flow streamlines for nonuniform 

forest stands: (a) ∫ ∫∫ +−= udzwdxdψ  and (b) ∫ ∫−= wdxdψ  only. A single step change in canopy 

height occurs at X/2 + ∆x, where h = 4 m on the left side and h = 10 m on the right side. 
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4. Summary and Conclusions 

A new and relatively unique, physics-based, meteorological computer model for 2-D forest 
canopy wind flow, temperature, and turbulence calculations has been developed.  The current  
2-D model is based on the same basic conservation-law equations and (second-order turbulence 
closure) modeling assumptions that were implemented in an earlier 1-D model study to 
mathematically represent the mechanical and thermodynamic influences on the speed of sound in 
the forest environment.  The 2-D computer model has been implemented in Fortran.  Valid 
numerical techniques from earlier works have been applied to solve for each of twelve computed 
variables, to include the mean flow vertical velocity and the kinematic (fluctuation) pressure.  
The horizontal derivatives were solved using lower-order, upwind differencing.  The vertical 
derivatives were solved using lower-order, central differencing.  Second-order, ordinary 
differential equations for the profiles were solved using a tridiagonal matrix algorithm.  Thus, 
several satisfactory solutions were achieved for uniform and nonuniform forest stands (for coarse 
horizontal grid spacing, i.e., ∆x = 50 m).  In addition, a valid condition for numerical stability 
was determined, as ∆x/Z(N) >1.   

In future modeling works, we will continue to investigate these and alternate numerical schemes, 
which are accurate, fast, and robust, to solve the computed fields within and above a realistic 
forest canopies, particularly those containing sharp discontinuities at the lower boundary (e.g., 
forest edges [30]).  Also, the presence of hills may significantly alter the flow field inside 
canopies (31).  Most turbulence models, including the model described herein, are for flat 
surfaces.  Therefore, additional 2-D forest canopy models may begin to consider uneven terrain.  
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