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Executive Summary 

In this report, a model developed to analyze the emergent operational impact of hostile 
information operations (IO) stress events directed at a network-centric battle team is presented.   
In such a battle team, there is an operational triad of military roles that combat platforms can 
fulfill; they are as follows: 

• sensors that sample the battlespace to collect data on friendly platforms, enemy 

platforms, and environmental conditions, 

• commanders that assess situational data collected by sensors in order to decide upon 

responsive military actions, and 

• actors that execute the military actions dictated by commanders.  

This triad forms the basis of a distributed “system-of-systems” of battlefield entities connected 
via information flows, where each type of entity occupies a specific operational “niche.”  It 
should be noted that the network-centric battle team is characterized by its extensive use of 
networks to share information and allow for a coherent picture of the battlefield to emerge within 
all networked battlefield entities. 

In order to simulate the operational dynamics of a military network-centric system-of-systems, 
the concept of agent-based models is introduced.  In general, an agent is an autonomous 
computational entity with a perpetuated internal state and associated set of rules governing 
behavior.  The agent’s state is usually represented as a dynamic vector describing metrics such as 
agent position, identity, current functionality, and so on.  A colony of agents can interact with 
one another by passing messages between themselves, which can represent communication, 
cooperative actions, or conflict.  Given these elements, an agent-based model is then a collection 
of interacting agents contained within a virtual “artificial world.”  J. H. Holland1 describes seven 
basic attributes of complex adaptive systems that should be reflected in a multiagent model of a 
network-centric system-of-systems; they are aggregation, nonlinearity, information flows, 
diversity, interagent tagging, access to internal models, and the use of building blocks.  Taken 
together, these attributes allow for the emergence of a combat unit of distributed agents 
(platforms) that individually boasts specific functional capabilities that can be collectively 
exploited by the unit via networked communications. 

An agent-based model of a network-centric system-of-systems can be implemented by 
incorporating local-rule-based agent dynamics patterned after cellular automata (CA) models.  In 
general, a CA consists of a possibly infinite, n-dimensional regular lattice of cells.  Each cell can  

                                                 
1 Holland, J. H.  Hidden Order:  How Adaptation Builds Complexity.  Reading, MA:  Perseus Books, pp. 10–37, 1995. 
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be in a measurable state chosen from a finite alphabet (i.e., a set of possible cell states).  The 
states of all cells in the lattice are updated simultaneously in discrete time steps using a transition 
function, which takes as its input the current state of the center cell and some finite collection of 
nearby cells that lie within a finite distance, collectively known as a “neighborhood.”  Cell 
neighborhoods may be either fixed or variable over time (but fixed within a time step); these 
neighborhoods are usually defined to be local to a center reference cell, but can extend beyond 
this conventional limit if necessary.  Within this context, agents can then be defined as mobile 
automata (with perpetuated internal states and autonomous/semiautonomous operational 
behaviors) that move throughout a CA lattice and communicate with each other via message 
passing.  Note that this combination of cell neighborhoods and agents can effectively model an 
operational environment and the entities that inhabit that environment, respectively. 

The optimal configuration of individual agents within a combat unit (network-centric or 
otherwise) can be explored through the use of genetic algorithms (GA), a class of heuristic 
search methods that mimic and exploit the genetic dynamics underlying natural evolution to 
search for optimal solutions of general combinatorial optimization problems.  Given an 
optimization problem, GAs provide a mechanism for efficiently exploring the problem solution 
space for “good solutions” based on one or more “goodness of fit” criteria called fitness 
functions.  Possible solutions to the optimization problem of interest are encoded as 
chromosomes (or sometimes as a set of correlated chromosomes called a genome), where a 
chromosome is a string of problem-relevant variables or genes.  The GA then evolves one 
population of chromosomes (or genomes) into another according to their fitness by employing an 
iterative “evolutionary” process.  For the current application, the GA will need to coevolve the 
configurations of adversarial units of Blue and Red agents engaged in combat by simultaneously 
optimizing hardware-based capability and behavior assignment to individual agents in both units 
based on combat performance. 

The first step in building a CA-based combat agent unit or battle team is to define the attributes 
of a generic combat agent within the battle team.  Within the context of a CA lattice, a combat 
agent is an autonomous or semiautonomous automaton with a dynamically-perpetuated internal 
functional state vector representing agent mobility, firepower, sensor, and communication 
capabilities, as well as a set of behavioral rules defining how an agent interacts with other 
combat agents operating within a shared two-dimensional (2-D) regular lattice.  The combat 
agent state vector maintains and updates the following information fields: 

• mobility capability status, 

• firepower capability status, 

• on-board sensor functional parameters, 

• supply status of on-board unattended ground sensor (UGS) units, radio frequency (RF) 
battery-powered “jammer bombs,” and land mines, 
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• an internal sensor message database representing the combat agent’s situational awareness 
(SA) of the virtual battlespace, 

• interagent communication capability status (transmission and reception functionality), and  

• rules of behavior that define the degree of autonomy within the combat agent. 

Combat agent movement is then modeled as the mapping of this agent state vector into adjacent 
CA lattice cells during a subsequent simulation time cycle (i.e., a periodic sequence of events 
that occurs over a contiguous set of simulation time steps). 

In addition to a dynamic state vector, each combat agent also maintains a set of functional ranges 
associated with the following capabilities: 

• the maximum distance an on-board sensor can acquire information on neighboring combat 
agents, 

• the maximum distance a transmitting agent can communicate with receiving neighboring 
agents, 

• the maximum distance an agent with firepower capability can engage a neighboring agent, 

• the maximum distance a jammer-equipped agent can jam the communication reception 
capability of neighboring agents, and 

• the maximum distance an agent can move in one simulation time cycle. 

For purposes of simplification, these ranges define a set of concentric extended Moore 
neighborhoods relative to the 2-D CA lattice, where the reference combat agent occupies the 
center cell within the neighborhood. 

The next step in building the combat agent battle team is to design a framework with which to 
represent the capabilities and behaviors of the entire team.  Invoking genetic algorithm 
terminology, the battle team genome represents the capability/behavioral configuration of the 
combat agent collective unit.  Each genome is constructed of a set of chromosomes, where a 
chromosome represents the capability/behavioral configuration of a single combat agent. Each 
combat agent chromosome, in turn, is constructed from a set of genes representing individual 
agent capability and behavioral attributes.  Finally, each gene is characterized by a finite set of 
alleles or permissible gene states.  Note that although each combat agent chromosome within a 
battle team genome is constructed by using the same schema or gene template, the allele ranges 
for specific genes can vary from chromosome to chromosome.  Once the genes within a generic 
combat agent schema have been specified, the rules governing how these genes are utilized by 
combat agents within a dynamic CA simulation can be delineated. 

Once the CA-based combat agent simulation engine has been designed, the development and 
demonstration of a software framework that utilizes the CA engine for IO-stressed Blue/Red  
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combat simulations can be discussed.  Due to the prolonged runtimes necessary to simulate 
densely packed UGS networks and multihop message relaying within the CA implementation of 
combat agent communication nets, the decision was made to codevelop two different versions of 
the IO simulation software framework. 

In the first simulation framework, combat-motivated coevolution of both Blue and Red unit 
configuration genomes is simulated within an IO-stressed virtual environment.  In this 
framework, the duration of an update time cycle within the CA simulation engine is compressed 
to facilitate the thousands of Blue/Red combat instances necessary to execute the genomic 
coevolution.  Initial populations of Blue/Red candidate genomes (or candidate combat unit 
configurations) are randomly generated and then filtered using hardware cost constraints.  These 
candidate genomes are then input into the combat_ga CA simulation engine along with a 
virtual landscape and a territorial importance gradient (that serves to motivate combat agent 
movement towards a goal), and a combat simulation is executed.  Such combat simulations are 
subsequently run for each possible Blue/Red genome pairing (or a subset thereof). 

During a Blue/Red combat simulation, a data filter dynamically calculates the dynamic 
operational “fitness” (analogous to one or more combined combat unit measures of performance 
averaged over a combat mission time interval) of each opposing combat agent unit within the 
simulation.  These combat simulations can include hostile IO actions (which, in this case, are 
limited to RF jamming by jammer-equipped combat agents).  The output of the data filter is then 
either directed into a GA or can be directly analyzed in time series format.  In the former case, 
the top five “fittest” genomes for each side are determined (based on the collective results from 
all instantiated Blue/Red combat simulations) and then used by the GA to create new “offspring” 
genome populations (through the use of algorithmic “genetic operations” performed on genome 
pairs working in combination with a cost filter).  These replenished populations are used to 
continue the coevolutionary process across successive genome “generations”; this process is 
iteratively repeated until both Blue and Red genome fitness values converge at or near a maximal 
value.  The genome populations can also be dynamically classified (as a function of hardware-
based capabilities and behaviors encoded into a genome) throughout a coevolutionary simulation 
run. 

Genomic combat fitness is the measure of performance used to guide the Blue/Red 
coevolutionary process.  The fitness of a combat unit is an operational measure of its collective 
ability to successfully execute combat actions and is analogous to one or more combined combat 
unit measures of performance.  Fitness is thus a metric that can be used to evaluate the 
operational effectiveness of a specific genomic configuration vector encoding of a combat unit’s 
hardware capabilities and behaviors.  To carry this out, a set of genome fitness functions or 
dynamic measures of performance was designed.   These functions are evaluated at the end of 
each simulation time cycle update of the CA engine and represent the collective performance of  
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all agents within a combat unit.  The linear superposition of all fitness function metrics used to 
measure the perpetuation of combat unit collective capabilities throughout a simulation is called 
the survival fitness, which provides an objective function that can be optimized by the GA. 

A coevolutionary Blue vs. Red simulation was run on a 32-CPU SGI Origin 3800 computer, with 
Blue and Red units programmed to execute defender and invader combat roles, respectively.  
Here, Blue/Red combat instances for each evolutionary generation of candidate genomes were 
run in parallel, after which calculated survival fitness values were centrally averaged and 
reported.  Three combat simulation instances were executed (and then averaged) for each 
Blue/Red genome candidate pairing, with 30 pairings per generation.  The latter situation was 
iteratively realized by randomly selecting one candidate genome from both Blue and Red 
genome pools, for a combat pairing, removing the selected genomes from their respective pools 
and repeating the random selection process until all genomes have been paired for combat.  Each 
combat simulation was run for 300 time cycles, at which point values of the time-averaged 
survival fitness for both Blue and Red genomes were evaluated and reported.   Then, for both 
Blue and Red units, the top five candidate genome scorers from each generation were used to 
produce the next generation of 30 candidate genomes via random mating pairs. 

Coevolutionary simulation results were collected across 1360 successive generations of Blue and 
Red combat unit genomes.  In these results, Red quickly “discovers” unit configurations that 
serve to maintain its average fitness within the interval [0.38, 0.43], which, in turn, motivates 
Blue to compensate with new configurations that likewise drive average Blue fitness to the 
interval [0.49, 0.59].  This coevolutionary process nicely illustrates the “Red Queen Principle” 
from evolutionary biology, where for an evolutionary system, continuing development is needed 
just in order to maintain its fitness level relative to the systems it is coevolving with.  Since, due 
to computational runtime constraints, the coevolutionary process was prematurely terminated 
before any strong evidence of survival fitness convergence was evidenced, it remains unclear 
whether the Blue and Red combat units would ever break out of the “Red Queen” oscillatory 
pattern illustrated in the figure.  If the current theory of coevolutionary neutral mutations (where 
gene mutations produce insignificant variations in relative fitness) is applicable within the 
current context, then fitness convergence might never be achievable without relaxing some of the 
gene allele and cost constraints defined for this demonstration simulation. 

Evidence of continuing development of both Blue and Red combat units throughout the 
demonstration simulation is provided by a classification analysis of Blue and Red genome 
populations.  This type of analysis involves first setting up sets of combat agent types or 
“classes” specified by agent chromosome gene values and then observing the correlated 
coevolutionary dynamics of optimal Blue and Red unit configurations relative to these sets of 
classes.  Analysis results using a first set of agent classes (based on different combinations of 
sensor/firepower ranges) show that the Blue unit configuration is observed to oscillate between 
variable mixtures of medium- and long-range sensor agents with variable-range firepower 
weapon capability, finally settling into a mode where most agents have medium-range sensor and 
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short-range firepower capability.  The Red unit, on the other hand, which must execute the more 
operationally challenging primary role of invader, coherently explores sensor/firepower classes 
until finally settling on a medium-range sensor and short-range fire for most agents. 

Next, using a second set of combat agent classes specified by agent behavioral weighting 
combinations, Blue is seen to haphazardly explore various classes, then settle on a 
passive/indecisive behavioral mode for over 600 generations, and finally switch over to a 
mixture of passive/indecisive and aggressive/ indecisive agents at the end of the coevolutionary 
run.  This is not surprising, in that Blue’s primary mission is defensive, and thus Blue agents can 
afford to be “indecisive” (effectively immobile) and less “aggressive” than Red agents.  After an 
initial exploratory period, Red, on the other hand, first “discovers” a behavioral configuration 
where all agents act in an aggressive (firing a weapon without provocation) and noncovert 
(moving directly towards Blue agents) manner that serves to maintain its operational fitness.   
Then, when Blue counters with behaviors that stress Red fitness, Red, in turn, progressively 
adopts passive and noncovert, aggressive and noncovert, aggressive but indecisive (trying to 
move both towards/away from Blue), and aggressive but covert modes of behavior, finally 
settling on the last mode (with a small fraction of the Red unit continuing to explore other 
behaviors).  Again, Red faces the greater evolutionary pressure since its primary mission is 
invasive in nature and thus benefits by coherently moving towards better strategic behavioral 
modes. 

In the second IO simulation software framework, a quasi-scripted (and thus nonevolving) combat 
agent C2 process is directly embedded into the combat_proto CA simulation engine.  This 
second and enhanced version of the CA simulation engine models the deployment and function 
of notional internetted UGS units and multihop message relaying and thus extends the network-
centric capabilities of combat_ga.  In this new framework, hand-scripted configuration 
genomes were constructed in order to represent a Blue unit of networked mobile platforms 
making up a network-centric combat unit as well as a Red unit of loosely organized 
nonnetworked platforms.  Combat simulations were run using the combat_proto CA engine 
in combination with routines to generate a simulation landscape (based on the notional 
“Fombler’s Ford” terrain designed for the Future Combat Systems concept illustration), a 
territorial importance gradient superimposed over the landscape, and to initially position Blue 
and Red combat agents.   Then, a data filter dynamically calculated preselected fitness functions 
of each opposing combat agent unit within the simulation, which can include hostile IO actions.   
Finally, the fitness function outputs of the filter were analyzed in a time series format (as 
opposed to weighting the functions and then combining them into the survival fitness objective 
function as was done in the previous framework). 

A sensitivity analysis was conducted using the combat_proto CA engine in conjunction with 
the “Fombler’s Ford” scenario in order to explore the sensitivity of the following model 
parameters to IO stress: 
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• UGS density - the average packing density of the peripheral Blue UGS network. 

• Blue fire point - the outward distance from the perimeter of Blue territory at which point 
Blue combat agents are allowed to fire on acquired Red targets. 

• Blue shots/cycle - the number of shots a firepower-equipped Blue combat agent can fire 
during one simulation time cycle. 

This sensitivity analysis was predicated on the time series response generated by the following 
four particular fitness functions as applied to specific combat units: 

• Blue and Red combat unit survival levels, 

• Blue’s ability to sense the battlefield, 

• Blue’s ability to prevent Red penetration into Blue territory, and  

• collective Blue situational awareness of Red. 

In this set of simulations, these fitness functions serve as dynamic measures of collective combat 
unit performance. 

Time series results from six different “Fombler’s Ford” scenario variants (run in both benign and 
IO-stressed operational environments) were generated in the sensitivity analysis.  In these 
scenario variants, the analyzed model parameters were set to values within the following ranges: 
(1) UGS density = 0.55 – 1.00, (2) Blue fire point = 10 ! 17 cells, and (3) Blue shots/cycle  
= 1 ! 3.  Multiple simulation instances of each scenario variant were run using the set of 20 
sequential random seeds {0, 1, 2, …, 19}, and then time series results were averaged and plotted.  
The time series results clearly illustrated a (not surprising) monotonically increasing combat 
effectiveness and survivability of the Blue unit as the model parameters were increased from 
minimal to maximal values.  The results also clearly illustrated that the amount of operational 
degradation experienced the Blue unit in the presence of Red jammer bombs was increasingly 
attenuated as a function of increasing model parameter values.  Thus, the sensitivity analysis 
demonstrated how providing the Blue unit with a combination of enhanced operational 
capabilities could act to significantly attenuate the perturbative impact of a form of IO stress that 
results in denial of communication network connectivity. 

Given that the combat agents used within the CA models are reactive in nature (with limited 
decision-making capability and no explicit “commander” type of agent able to formulate new 
tactical strategies when operationally required), the next step in model development is to provide 
agents with more deliberative behaviors, thus providing a framework for the hierarchical C2 
decision-related structures ubiquitous to all military combat units.  Current research into building 
more complex varieties of decision-making military command agents as well as hostile terrorist- 
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style agents operating within densely populated urban areas can provide a foundation for 
designing deliberative combat agents.  Further work is still required, however, in order to realize 
rapidly adaptive agents operating within a network-centric combat structure. 
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1. Introduction 

1.1 Purpose 

The cellular-automata-based combat agent model presented in this report was developed in order 
to analyze the emergent behavior exhibited by a network-centric battle team exposed to hostile 
information operations (IO) stress in the form of radio frequency (RF) communications jamming. 

1.2 Background 

1.2.1 Network-Centric Complex Adaptive Systems 

A complex system can be defined as a group of many interacting parts functioning as a unified 
whole.  Such a system is distinguishable from its environment by recognizable boundaries, 
where the global behavior of the whole system is generally not equal to the sum of the parts.   
Even if the individual behavior of an isolated part is linear, the collective behavior that emerges 
globally through networked interactions and interdependencies among the parts is often 
nonlinear.  This collective behavior arises from the detailed structure, behavior, and interpart 
relationships as they are defined on a finer scale, all of which dynamically evolve within the 
context of an irreducible whole.  Furthermore, a complex adaptive system can then be defined as 
a complex system whose interacting parts can adapt to changing operational environments. 

The paradigm of complex adaptive systems is directly applicable to a relatively new concept in 
military operations enabled by advances in information technologies known as network-centric 
warfare (NCW).  Perhaps the best way to define the concept of NCW is through listing its basic 
tenets (Herman and Hayes 1999) as follows: 

• Higher military echelons provide objectives, timelines, intent, and resource planning. 

• Bottom-up self-synchronizing execution allows all weapons and sensors to be available to 
all subscribers on the same or linked networks. 

• A high level of shared situational awareness enables execution decisions to be coordinated 
without significant upper echelon intervention. 

These tenets suggest the following operational triad of military entities (Alberts et al. 2000): 

• sensors that sample the battlespace to collect data on friendly platforms, enemy platforms, 
and environmental conditions, 

• commanders that assess situational data collected by sensors in order to decide upon 
responsive military actions, and 

• actors that execute the military actions dictated by commanders. 
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This triad is illustrated in Figure 1, which depicts a distributed “system-of-systems” of battlefield 
entities connected via information flows, where each type of entity occupies a specific 
operational “niche.”  It should be noted that NCW is not characterized as warfare by networks, or 
against networks but rather as the extensive use of networks to share information and allow for a 
coherent picture of the battlefield to emerge within all networked battlefield entities. 

Figure 1.  Triad of distributed battlefield entity types within a network-centric “system-of-systems.”  

To analyze a network-centric “system-of-systems” as a complex adaptive system operating 
within an equally-complex IO environment, the following three distinct scales define the 
structure, behavior, and relationships: (1) the microscale, which addresses interactions and 
interdependencies between information system (IS) components (e.g., 1553B data bus, combat 
net radios, and personal computers) within a platform, (2) the mesoscale, which addresses local 
interactions/interdependencies between networked battlefield platforms, and (3) the macroscale, 
which addresses the holistic global behavior of the collective system-of-systems structure (zum 
Brunnen et al. 2000).  Usually, IO threat/target system interactions occur at the micro- and/or 
mesoscale levels, affecting information flows between IS components within a platform and/or 
flows between locally networked platforms, respectively.  In the current model, the emergent 
global or macroscale impact of IO stress, which is directed at the mesoscale networked platforms 
making up a combat unit or “battle team,” is analyzed. 



 

 3

1.2.2 Agent-Based Models 

In order to simulate the operational dynamics of a military network-centric complex adaptive 
system, the concept of agent-based models is introduced next.  In general, an agent (see Figure 2) 
is an autonomous computational entity with a perpetuated internal state and associated set of 
rules governing behavior (Maes 1990).  The agent’s state is usually represented as a dynamic 
vector describing metrics such as agent position, identity, current functionality, and so on.  A 
colony of agents can interact with one another by passing messages between themselves, which 
can represent communication, cooperative actions, or conflict.  Given these elements, an agent-
based model is then a collection of interacting agents contained within a virtual “artificial world” 
(see Figure 3).  Agent interactive behavior is dictated by sets of if/then “production rules,” which 
are often specific to different agent types and define strategies for dealing with other agents as 
well as a possibly stressful operating environment.  Also, agents are often organized into some 
type of hierarchical organization.  Finally, the time-series output of an agent-based model can be 
viewed directly via a graphical user interface (GUI) or processed through a data filter. 

Figure 2.  Representation of a generic agent. 

Holland (1995) describes the following seven basic attributes common to all complex adaptive 
systems that thus should be reflected in any multiagent model of such systems: 

(1) aggregation, which involves the categorization of information at the agent level and 
emergent behavior at the macroscopic multiagent level, 

(2) nonlinearity, where the whole is often more or less than the sum of the parts, 

(3) information flows between interacting agents, 
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Figure 3.  Representation of a generic agent-based model. 

(4) diversity among agents (i.e., multiagent systems are heterogeneous), 

(5) tagging to identify individuality among agents, 

(6) internal models that specify how agents react to other agents and/or the operational 
environment, and  

(7) building blocks, which are the components or primitives used to construct agents. 

Conceptually, an agent-based model of a network-centric system-of-systems would need to 
demonstrate each of these attributes, where distributed agents (platforms) individually boast 
specific functional capabilities that can be collectively exploited by the combat unit via 
networked communications.  Existing agent-based models of land warfare such as Irreducible 
Semiautonomous Adaptive Combat (ISAAC) (Ilachinski 2000), Simulation of Information in 
Battlefield Decisions (SinBaD) (Hencke 1998), and AgentKit (Woodaman 2000) all address the 
emergent behavior of combat units of interacting Blue and Red agents, but neglect the 
aforementioned network-centric “sensor/commander/actor” operational triad.  What is still 
needed is a model where agents collect and fuse situational awareness data from distributed 
sensory devices and then execute subsequent combat actions based on these data. 

On a design level, an agent-based model of a network-centric spatially-dispersed combat unit 
would need to address both the semiautonomous dynamics of individual agents as well as the 
adaptive behavior of such agents (which is driven by the necessity for an agent to adapt to the 
adaptation patterns of other agents).  This model structure can be implemented by incorporating 
the following: 
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• local-rule-based agent dynamics patterned after cellular automata models and 

• parameterization of the local decision space and the formulation of strategy and/or tactics 
patterned after genetic algorithm models. 

These two types of models will be discussed in the next subsections. 

1.2.3 Cellular Automata 

In general, a cellular automata (CA) (von Neumann 1966) consists of a possibly infinite, n-
dimensional regular lattice of cells.  Each cell can be in a measurable state chosen from a finite 
alphabet (i.e., a set of possible cell states).  The states of all cells in the lattice are updated 
simultaneously in discrete time steps using a transition function, which takes as its input the 
current state of the center cell and some finite collection of nearby cells that lie within a finite 
distance, collectively known as a “neighborhood.”  Figure 4 displays two well-known CA cell 
neighborhoods in two dimensions, where C = center cell and N = neighbor cell.  Cell 
neighborhoods may be either fixed or variable over time (but fixed within a time step); these 
neighborhoods are usually defined to be local to a center reference cell but can extend beyond 
this conventional limit if necessary.  Within this context, agents can then be defined as mobile 
automata (with perpetuated internal states and autonomous/semiautonomous operational 
behaviors) that move throughout a CA lattice and communicate with each other via message 
passing.  Note that this combination of cell neighborhoods and agents can effectively model an 
operational environment and the entities that inhabit that environment, respectively. 

Figure 4.  CA cell neighborhoods in two dimensions:  (a) von Neumann neighborhood 
and (b) Moore neighborhood. 

1.2.4 Genetic Algorithms 

Genetic algorithms (GA) are a class of heuristic search methods that mimic and exploit the 
genetic dynamics underlying natural evolution to search for optimal solutions of general 
combinatorial optimization problems (Mitchell 1993).  Given an optimization problem (e.g., 
maximizing a function over a specific interval), GAs provide a mechanism for efficiently 
exploring the problem solution space for “good solutions” based on one or more “goodness of 
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fit” criteria called fitness functions.  Possible solutions to the optimization problem of interest are 
encoded as chromosomes (or sometimes as a set of correlated chromosomes called a genome), 
where a chromosome is a string of problem-relevant variables or genes.  The GA then evolves 
one population of chromosomes into another according to their fitness by employing an iterative 
“evolutionary” process (Figure 5).  This process involves the following iterative steps (Ilachinski 
1996): 

• Step 1:  Begin with a randomly generated population of chromosome- (or genome-) 
encoded “solutions” to a given combinatorial optimization problem. 

• Step 2:  Calculate the fitness of each chromosome/genome, where fitness is a measure of 
how well a member of the population performs at solving the problem. 

• Step 3:  Retain only the fittest members of the chromosome/genome population and discard 
the remaining members. 

• Step 4: Generate a new population of chromosomes/genomes from the remaining members 
of the old population by applying the genetic operations reproduction (the generation of a 
“child” chromosome/genome from two high-fitness “parent” chromosomes/genome), 
crossover (cutting two parent chromosomes into two subchromosomes per parent or cutting 
two parent genomes into two sets of chromosomes or subgenomes per parent and then 
mixing and reconnecting the subchromosomes or subgenomes to create two new children 
chromosomes or genomes, respectively) and mutation (randomly changing the gene values 
within a chromosome). 

• Step 5: Calculate the fitness of these new members of the chromosome/genome population, 
retain the fittest members, discard the remaining members, and reiterate the process until a 
“maximally fit” solution is achieved. 

Figure 5.  Iterative evolutionary processes within a genetic algorithm (from 
Ilachinski 1996). 
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This evolutionary process is often referred to as navigating through a fitness landscape, which is 
an n + 1-dimensional hypersurface that measures the fitness of all possible n-dimensional 
chromosome/genome configurations.  Thus, convergence of a genetic algorithm towards an 
optimal chromosome/genome configuration is analogous to moving towards a maximal fitness 
point on the fitness landscape. 

There have been several previous research efforts to apply GA technology to military 
optimization problems.  Of these, the most relevant relative to an agent-based modeling 
application is the FOX & HARE model, which addresses the optimization of behavioral course-
of-action (COA) selection within two opposed and coevolving Blue and Red military units  
(Hillis and Winkler 2000; Funes and Pollack 2000).  In a FOX & HARE simulation, Blue and 
Red unit COAs were generated by genetic algorithms, with relative COA fitness evaluated via 
unit performance in a simplified wargame model.  Then, new Blue and Red unit COAs were 
generated and played against each other, thus allowing new Blue/Red solutions to coevolve 
during each generational iteration.  However, although it will address coevolving Blue/Red 
military units of agents, the model addressed in this report will focus on optimization of 
hardware-based capability and behavior assignment to individual agents rather than COA 
optimization as handled by a unit commander. 

1.2.5 Threat 

The threats addressed within this report are hostile IO stress events (U.S. Department of the 
Army 1996) that result in denial of communication network service within a network-centric 
battle team. 

1.3 Scope 

The applicability of the CA agent-based model presented in this report is constrained by the 
following assumptions:  

• Networked platform nodes within a network-centric battle team treat all acquired 
situational awareness (SA) data as true and valid (i.e., combat actions based on the relative 
validity of data are not modeled). 

• Human-based command and control (C2) of combat agents is very limited and thus is 
restricted to the criterion that “unmanned” combat agents may fire upon acquired enemy 
targets provided that the SA target data they use are provided to them by “manned” combat 
agents. 

• IO stress will only impact a node’s ability to receive SA messages from other neighboring 
nodes and not affect internal information flows within a platform node. 

• All combat agents are modeled as reactive in nature, where each agent decision process 
maps to one, and only one, possible output. 
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2. The Cellular Automata-Based Combat Agent Model 

2.1 The Cellular Simulation System 

The CA-based combat agent model is implemented through the use of the Cellular simulation 
system, an easy-to-use toolkit for the modeling of physical systems with cellular automata.  The 
Cellular system consists of several modules as follows: 

• a programming language, Cellang, and associated compiler, cellc, 

• an abstract virtual cellular automata machine (avcam) for Cellang code execution, and 

• cellview, a program for viewing simulation results in either two-dimensional (2-D) 
sections or in three dimensions with variable perspective. 

Compiled Cellang programs can be run with input provided at any specified time during the 
execution.  The results of an execution can either be viewed graphically as an output stream of 
cell locations and values or passed through a custom filter before being reported.  The output 
stream, or a similar stream produced by a custom filter, can also be directed into cellview for 
viewing or may be passed through other programs that compile statistics, massage the data, or 
merely act as a valve to control the flow of data from the cellular automata program to the 
viewer. 

Programs written in Cellang have two main components—a cell description and a set of 
statements.  The cell description determines how many dimensions there are, the vector of fields 
associated with each cell, and the range of values that can be associated with each field.  In 
addition to cell-specific fields, the cell description also specifies the various types and attribute 
fields of mobile agents that can reside in the cells.  The set of statements, on the other hand, 
encode the transition rules for all lattice cells (which can be applied homogeneously to all cells 
or heterogeneously according to cell type or the type of agent[s] currently residing in the cell).   
For more detailed information on the Cellular toolkit, see Eckart (1992a, 1992b). 

2.2 Building the Combat Agent Battle Team 

2.2.1 The Generic Combat Agent 

The first step in building a CA-based combat agent unit or battle team is to define the attributes 
of a generic combat agent within the battle team.  Within the context of a CA lattice, a combat 
agent is an autonomous or semiautonomous automaton with a dynamically perpetuated internal 
functional state vector representing agent mobility, firepower, sensor, and communication 
capabilities, as well as a set of behavioral rules defining how an agent interacts with other 
combat agents operating within a shared 2-D regular lattice.  A representation of a generic  
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combat agent is depicted in Figure 6.  As illustrated in this depiction, a combat agent state vector 
maintains and updates the following information fields: 

• mobility capability status, 

• firepower capability status, 

• on-board sensor functional parameters, 

• supply status of on-board unattended ground sensor (UGS) units, RF battery-powered 
“jammer bombs,” and land mines, 

• an internal sensor message database representing the combat agent’s SA of the virtual 
battlespace, 

• interagent communication capability status (transmission and reception functionality, and 

• rules of behavior that define the degree of autonomy within the combat agent. 

Combat agent movement is then modeled as the mapping of this agent state vector into adjacent 
CA lattice cells during a subsequent simulation time cycle (i.e., a periodic sequence of events 
that occurs over a contiguous set of simulation time steps). 

In addition to a dynamic state vector, each combat agent also maintains a set of functional ranges 
associated with the following capabilities: 

• the maximum distance an on-board sensor can acquire information on neighboring combat 
agents, 

• the maximum distance a transmitting agent can communicate with receiving neighbor 
agents, 

• the maximum distance an agent with firepower capability can engage a neighbor agent, 

• the maximum distance a jammer-equipped agent can jam the communication reception 
capability of neighboring agents, and 

• the maximum distance an agent can move in one simulation time cycle. 

For purposes of simplification, these ranges define a set of concentric extended Moore 
neighborhoods relative to the 2-D CA lattice (see Figure 4b), where the reference combat agent 
occupies the center cell within the neighborhood.   Also, the range hierarchy depicted in Figure 6 
is but one realization of permissible configurations (in other words, the ranges are flexible 
relative to one another). 
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Figure 6.  A generic combat agent. 

2.2.2 Combat Agent Battle Team Representation 

The next step in building the combat agent battle team is to design a framework with which to 
represent the capabilities and behaviors of the entire team.  Figure 7 illustrates this representation 
framework.  Invoking the genetic algorithm terminology first introduced in section 1.2.4, the 
battle team genome represents the capability/behavioral configuration of the combat agent 
collective unit.  Each genome is constructed of a set of chromosomes, where a chromosome 
represents the capability/behavioral configuration of a single combat agent.  Each combat agent 
chromosome, in turn, is constructed from a set of genes representing individual agent capability 
and behavioral attributes.  Finally, each gene is characterized by a finite set of alleles or 
permissible gene states.  Note that, although each combat agent chromosome within a battle team 
genome is constructed by using the same schema or gene template, the allele ranges for specific 
genes can vary from chromosome to chromosome. 

Figure 7.  Representation framework for a combat agent battle team 
configuration. 
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Given a viable battle team framework within which to encode agent hardware capabilities and 
behaviors, the specific genes within a combat agent chromosome can now be assigned.   The 
genetic schema template for encoding combat agent capability and behavioral states is shown in 
Figure 8.  Within this schema, there are hardware-based capability classes addressing combat 
agent firepower, passive self-protection, on-board sensor, communications, on-board RF jammer, 
carried supplies of UGS units, mines, and RF jammer bombs, and mobility.  Also included is a 
characterization of the combat agent’s acquisition signature, as well as a behavioral “personality 
vector” encoding the battlefield tendencies of the agent to attack, retaliate, and move 
towards/away from friends/enemies and or friendly/enemy territory. 

Figure 8.  The genetic schema representing hardware and behavioral attributes of a generic combat agent. 

2.3 Combat Agent Dynamics 

Once the genes within a generic combat agent schema have been specified, the rules governing 
how these genes are utilized by combat agents within a dynamic CA simulation can be 
delineated.  In the following subsections, these CA transition rules (involving chromosome genes 
within the capability, signature, and behavioral classes) are discussed in detail. 

2.3.1 Firepower 

The firepower weapon maintained by a combat agent is defined by maximum weapon range 
(gene G0), single-shot probability of hitting an engaged target (gene G1), fired projectile 
“strength” (gene G2), and the number of rounds remaining of the initial number of rounds (gene 
G3).   The weapon dynamics are described by the following pseudocode: 
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IF target range < G0 AND random%1.00 < G1 AND remaining rounds > 0 THEN 

 remaining rounds = remaining rounds – 1 

 IF target armor strength < G2 THEN 

  target is killed 

 ELSE IF target armor strength > G2 THEN 

  target armor strength = target armor strength – G2 

  target survives encounter 

 END 

ELSE 

 weapon is not fired 

END. 

Here, random is a random whole number, so that random%1.00 represents a random fraction 
sampled from the range [0, 1.0].  In other words, the firing combat agent will kill an engaged 
target based on a probability of hit Phit = G1 given that (a) the target is within firing range, (b) the 
engaging combat agent has at least one remaining round left, and (c) the target’s armor strength 
is less than the engaging weapon strength G2.  In all other cases, the target will survive the 
encounter. 

2.3.2 Passive Self-Protection 

Combat agents are self-protected by conventional passive (as opposed to active) armor 
characterized by the initial armor strength G4.  Then, upon engagement, the combat agent’s 
armor strength is reduced by the engaging agent’s firepower strength until the residual armor 
strength < 0 (at which point, an engaged combat agent “dies”). 

2.3.3 On-Board Sensor 

The single on-board sensor (representing some type of notional multimodal sensor suite) 
maintained by a combat agent is defined by maximum sensor range (gene G5), probability of 
target detection (i.e., the likelihood of sensing a neighboring agent when it is present [gene G6]), 
and probability of false alarm (i.e., the likelihood of reporting an agent’s presence when it is 
really not present [gene G7]).  In addition, if the neighboring combat agent is an enemy of the 
sensing agent, then the acquisition signature of the target agent (gene G15 [see section 2.3.7]) is 
also utilized.  During a simulation time cycle, each combat agent that remains “alive” or 
functional sends out a “health status” message reporting its CA lattice location and identity (i.e., 
Blue or Red).  This status message is then “sensed” by a sensor-equipped combat agent as 
described by the following pseudocode: 
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IF distance to sensed entity < G5 AND random%1.00 < G6 AND ((sensed entity is an 
enemy of sensing agent AND random%1.00 < G15) OR sensed entity is an ally of sensing 
agent) THEN 

 acquire “health status” message from sensed entity 

END. 

Again, random%1.00 represents a random fraction sampled from the range [0, 1.0] so that an 
entity is sensed with probability of detection Pdetect = G6 given that it is within the sensing agent’s 
sensor range. 

At the same time, the sensing combat agent’s sensor may generate a false positive as described 
by the following: 

IF G5 > 0 AND random%1.00 < G7 THEN 

acquire self-generated false “health status” message with randomly selected CA 

lattice location and sensed entity identity 

END. 

Here, the sensor will generate a false “health status” message (that the sensing agent believes to 
be correct data) with probability of false alarm Pfalse alarm = G7 given that the sensor range > 0. 

2.3.4 Communications 

Combat agent intercommunication is defined by the maximum communication range (gene G8).   
This range reflects the transmitter power limitations of a message-transmitting combat agent so 
that a receiving combat agent will be able to accept a transmitted message given that (a) the 
receiver lies within the extended Moore CA neighborhood of size (2*G8 + 1) × (2*G8 + 1) cells 
relative to the transmitter agent and (b) the receiving agent is not currently being jammed.  The 
communication capability is employed only between allied combat agents in order to share SA 
data messages (which report the identities and positions of both friendly and enemy agents) 
acquired by sensor-equipped agents. 

2.3.5 On-Board RF Jammer 

Combat agent on-board communications jamming capability is defined by the maximum 
jamming range (gene G9).  As with communication, this range reflects the RF power limitations 
of a jamming combat agent, so that a receiving combat agent will not be able to accept messages 
from another transmitting agent given that the receiver lies within the extended Moore CA 
neighborhood of size (2*G9 + 1) by (2*G9 + 1) cells relative to the jamming agent.  This notional 
on-board jammer is assumed to be able to disrupt transmissions equally across all RF 
communication bands. 
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2.3.6 Supplies of UGS Units/Mines/Jammer Bombs 

The supply and deployment of UGS units, land mines, and RF jammer bombs carried by a 
combat agent are defined by the numbers of carried UGS units, land mines, and jammer bombs 
(the initial numbers of which are encoded in genes G10, G11, and G12, respectively), maximum 
UGS deployment range (gene G13), and the probability of deploying a UGS/mine/jammer bomb 
unit in a currently unit-free lattice cell (gene G14).  For land mines and jammer bombs, the 
maximum deployment range is assumed to be equal to zero (i.e., a combat agent can only 
emplace a mine or jammer bomb into the lattice cell the agent currently occupies, where the 
mine or bomb will remain after the agent chooses to move on at some future time).  The overall 
deployment process is described by the following pseudocode: 

IF number of remaining UGS units > 0 AND random%1.00 < G14 THEN 

 number of remaining UGS units = number of remaining UGS units − 1 

 place a UGS unit into a cell if the distance to the target cell < G13 

END. 

IF number of remaining land mines > 0 AND random%1.00 < G14 THEN 

 number of remaining land mines = number of remaining land mines − 1 

 place a land mine into the current cell 

END. 

IF number of remaining jammer bombs > 0 AND random%1.00 < G14 THEN 

 number of remaining jammer bombs = number of remaining jammer bombs − 1 

 place a jammer bomb into the current cell 

END. 

It should be noted that although the probability of deploying a unit into a unit-free cell is the 
same for UGS, land mine, and jammer bomb units, the decisions to deploy each type of unit are 
executed independently of each other.  Also, it is assumed that UGS units, land mines (which 
impact combat agents only), and jammer bombs (which do not affect a UGS unit’s sensing 
capability) will not functionally interfere with each other if placed within the same cell. 

In the following subsections, the specific functional dynamics of UGS units, land mines, and RF 
jammer bombs are described in detail. 

2.3.6.1 UGS Units 

Within the context of the current CA model, a UGS unit is a set of fields that is attached to a cell, 
representing the placement of a notional autonomous sensor onto a ground location within the 
battlespace (Followill et al. 1997; Haider 1998).  A combat agent transmits a UGS unit to a target 
cell by sending a “UGS missile” message to the cell.  This message represents a notional missile 
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packed with one or more individual UGS units on board, which are dispersed to fill a 
neighborhood surrounding the target cell once the “UGS missile” message reaches its target.   
Then, upon reaching a cell (or neighborhood of cells), the “UGS missile” message maps the 
UGS fields UGS range, UGS owner (i.e., Blue or Red), and UGS transmit/receive functionality 
(for internetted data sharing) into that cell.  As discussed in section 2.3.6, the size of the extended 
Moore CA neighborhood that a combat agent may fire “UGS missile” messages to is defined by 
chromosome gene G13.  The size of the neighborhood surrounding a UGS target cell, however, is 
preset within the CA code (see section 3.2.3 for an example of UGS deployment via “UGS 
missile” messages). 

Once a UGS unit has been positioned in a CA lattice cell (where it will remain for the duration of 
a simulation run), the unit begins to function as a remote sensor.  Figure 9 illustrates the 
operational dynamics of a UGS unit.  In Figure 9a, the UGS unit senses its local environment, 
which consists solely of the lattice cell it occupies.  Then, in Figure 9b, as a Red combat agent 
moves into the cell and is sensed by the UGS unit, an SA data message that reports the x/y lattice 
position and identity (i.e., Blue or Red) of the sensed agent is transmitted to the adjacent 
north/south/east/west cells making up a von Neumann CA neighborhood.  Finally, if these 
adjacent cells are occupied by allied internetted UGS units that are currently unjammed, the 
messages are received and retransmitted across new von Neumann neighborhoods surrounding 
the relaying UGS units.  In this manner, SA reports can propagate across a network or “web” of 
UGS units, thus allowing sensor-equipped combat agents with limited sensor range to access SA 
information from local nodes within the UGS web. 

2.3.6.2 Land Mines 

Unlike UGS units, land mines can only be deployed into the lattice cell currently occupied by a 
dispensing combat agent.  This is done by directly attaching the characteristic land mine 
parameter field mine owner alliance (i.e., Blue or Red) to the cell occupied by the mine.  This 
parameter serves a twofold purpose—it identifies the battlefield alliance of the dispensing agent 
(1) for combat agent damage purposes (see the following) and (2) to prevent other agents from 
the same alliance from dropping additional mines into the cell.  Once deployed, the land mine 
dynamics are described by the following pseudocode: 

 IF a combat agent enters the land mine cell AND combat agent alliance ≠ mine owner  

alliance AND random%1.00 < 0.5 THEN 

  Reset agent chromosome gene G17 (maximum speed) = 0 

 END. 
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Figure 9.  Operational dynamics of a UGS unit:  (a) UGS unit senses 
its local environment and (b) UGS unit transmits an SA 
report on the sensed agent across a von Neumann CA 
neighborhood. 

Thus, if a combat agent enters a lattice cell also occupied by a land mine previously planted there 
by another agent belonging to the enemy alliance relative to the first agent, there is a 50% 
probability that the entering combat agent will lose its mobility capability (by setting G17 = 0 
within the agent’s chromosome).  Here, the assumption is made that combat agents represent 
mobile hardware platforms as opposed to infantry so that land mines result in degraded agent 
capability as opposed to death.  It is also assumed that a land mine will not affect the mobility of 
agents belonging to the same battlefield alliance responsible for first planting the mine.  Finally, 
it is assumed that each land mine is actually a cluster of bomblets spread across a lattice cell so 
that a land mine continues to function (essentially perpetually) after multiple detonations. 

2.3.6.3 RF Jammer Bombs 

As with land mines, RF jammer bombs can only be deployed into the lattice cell currently 
occupied by a dispensing combat agent.   Again, this is done by directly attaching the 
characteristic jammer bomb parameter fields bomb owner alliance and total jammer bomb 
lifetime (in simulation time cycles) to the cell occupied by the bomb.  The first bomb parameter 
is used to prevent other members of the same alliance as the bomb-dispensing agent from 
dropping additional jammer bombs into the cell, while the second parameter is used to set the 
lifetime of the battery powering the jammer bomb (which is decremented by 1 once every 
simulation time cycle).  Once deployed, a jammer bomb acts to jam the communication reception  
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capability of all combat agents (irregardless of battlefield alliance) and internetted UGS units 
within a predefined extended Moore CA neighborhood given that the residual bomb’s lifetime  
> 0.  Figure 10 depicts the jamming neighborhood of a jammer bomb whose jamming range  
= 2 (this parameter can be adjusted within the CA code). 

Figure 10.  The extended Moore CA neighborhood 
surrounding a notional RF jammer bomb. 

2.3.7 Signature 

The acquisition signature of a combat agent is represented as the probability that the agent will 
be detected by an enemy combat agent equipped with an on-board sensor (gene G15).  As 
described in section 2.3.3, this gene works in conjunction with a sensor-equipped enemy agent to 
determine whether the identity and position of the sensed combat agent is indeed acquired.  It 
should be noted that, since UGS units are constrained to sense only a very limited local 
environment (i.e., a single lattice cell), these types of sensors are assumed to acquire targets 
irregardless of the target agent’s signature gene allele value. 

2.3.8 Human-Based Attributes 

Within the context of combat agents, the functional role of human soldiers (which can be thought 
to occupy a combat agent platform) is simply to constrain the engagement opportunities of 
“unmanned” combat agents.  This type of constraint is implemented via gene G16, which encodes 
the number of human crews within a combat agent.  Basically, the constraint allows an 
unmanned agent (where G16 = 0) to fire upon an acquired target only when the target SA data has 
been supplied to the unmanned agent by another allied agent with one or more human crews 
(where, for the latter agent, G16 > 0).  Although meant to suggest human-based control of all 
target engagements, the cognitive capabilities of combat agents in the current model are purely 
reactive in nature.  Thus, the only impact of gene G16 on combat unit effectiveness is either to (a) 
force the unit to rely heavily on its allied communication network (when most agents in the unit 
are unmanned) or (b) force the unit configuration to evolve to a point where most agents are 
manned (and thus operate autonomously with minimal interagent cooperation). 
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2.3.9 Mobility 

Combat agent mobility is characterized by a maximum allowable speed (gene G17) and mode of 
transportation (gene G18).  Since combat agents are allowed to move (either north, south, east, or 
west) one cell length per simulation time cycle at most, relative agent speed reflects the 
probability that an agent will move one cell length during that time cycle.  Thus, the probability 
of agent movement during the nth simulation time cycle is 
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where |v(tn)| is the agent “speed” (the magnitude of the velocity v) during the nth time cycle.   
Possible modes of transportation include (a) ground, wherein agents must move around “terrain 
impediment” cells added to the CA lattice (representing impassible mountains, rivers, and 
buildings), and (b) air, wherein agent movement is unrestricted by terrain.  Combat agent 
movement is then described by the following pseudocode: 

IF G17 > 0 AND random%1.00 < current agent speed/G17 THEN 

 IF G18 = ground THEN 

  IF terrain in direction of intended movement is passable THEN 

   move one cell in direction of intended movement 

  ELSE IF terrain is impassible THEN 

   rotate 180° and then move in that new direction 

  END 

 ELSE IF G18 = air THEN 

  move one cell in direction of intended movement 

 END 

ELSE 

 remain in the current cell 

END. 

Calculation of the direction of intended combat agent movement is described in detail in the next 
section. 
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2.3.10 Behavior 

Combat agent behavior is encoded into a vector within the agent chromosome representing the 
“personality” of that agent.  In the following subsections, modes of combat agent behavior that 
define combat engagement actions, goal-driven mobility, and agitation-driven mobility are 
discussed. 

2.3.10.1  Combat Engagement Actions 

Engagement actions demonstrated by a combat agent are characterized by (a) the probability that 
the combat agent will initiate a firepower attack against an enemy agent Pattack (gene G20) and (b) 
the probability that the agent will retaliate against an enemy once attacked Pretaliate (gene G19).   
The application of Pattack and Pretaliate to instantiating a combat action is described by the 
following pseudocode: 

IF G0 (firepower range) > 0 AND number of remaining firepower rounds > 0 AND a 
combat agent has acquired and selected a target to engage THEN 

IF distance between engaging combat agent and target < G0 AND random%1.00 
< Pattack THEN 

   fire one round at target 

  END 

IF agent has just received fire AND distance between engaged agent and attacking agent 
< G0 AND random%1.00 < Pretaliate THEN 

   fire one round at attacking agent 

 END 

END. 

Here, G0 = 0 indicates a combat agent without firepower capability, and the number of remaining 
firepower rounds < G3.   Also, a combat agent will select to engage the first target agent it 
acquires (i.e., the agent reported in the first queued SA message within the agent’s internal 
message database) provided that (a) the target is within engagement range and (b) the engaging 
agent perceives the target agent as an enemy. 

2.3.10.2  Goal-Driven Mobility 

Combat agent mobility is motivated by spatially-oriented goal points towards which agents are 
coded to either approach or avoid.  These goal points are of two basic types: (1) the center of 
mass (CM) position of a cluster of combat agents and (2) a mission-related territorial objective  
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location within the CA lattice.  Here, the first goal point type is dynamic (i.e., a function of 
collective combat agent speed and direction), whereas the second type is preassigned to a lattice 
cell (or a local cluster of contiguous cells) and thus remains static throughout a simulation. 

In movement motivated by the first type of mobility goal point, a combat agent is either 
attracted, repulsed, or both attracted and repulsed by the CM of the unit to which the agent 
belongs (i.e., the friendly combat unit) as well as the CM of the enemy force (i.e., the foe combat 
unit).   An agent’s attraction to and repulsion from the friendly unit CM is based on weighting 
factors (within the range [0, 100]) that are stored in chromosome genes G21 and G22, respectively.   
Likewise, the agent’s attraction to and repulsion from the foe unit CM is based on similar 
weighting factors that are stored in chromosome genes G23 and G24, respectively.  Employing 
these attraction/repulsion weights as encoded in genes G21 through G24 of the ith combat agent’s 
chromosome, the x and y lattice coordinates of the superimposed friendly and foe CMs relative to 
that agent are as follows: 
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respectively, where xfriend(tn) and yfriend(tn) are the x and y lattice coordinates at the nth time cycle, 
respectively, of a neighboring agent friendly to the ith agent; xfoe(tn) and yfoe(tn) are the x and y 
lattice coordinates at the nth time cycle, respectively, of a neighboring agent hostile towards the 
ith agent; and xagenti(tn) and yagenti(tn) are the x and y lattice coordinates at the nth time cycle, 
respectively, of the ith agent itself.  Thus, equations 2 and 3 calculate the net combined 
friendly/foe combat unit CM location relative to the ith agent by summing over the difference in 
position of all other friendly and enemy agents from the position of the ith agent, multiplying 
these sums by the net attraction (which can be less than 0, indicating a repulsion) of the ith agent 
towards friendly and foe unit CMs, and then adding the results. 

In movement motivated by territorial objective goal points, a combat agent is either attracted, 
repulsed, or both attracted and repulsed by a mission-related territorial importance gradient that 
defines the relative mission importance of a lattice cell (or local cluster of contiguous cells) 
relative to a predefined objective point within the lattice.  In the current model implementation, 
an importance gradient is assigned to territory “owned” or controlled by either a Blue or Red  
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combat unit (i.e., Blue or Red territory, respectively), where each gradient has a maximally-
important lattice location representing combat unit “headquarters” towards which an enemy 
agent might want to approach (or avoid) and a set of contiguous minimally-important locations 
representing unclaimed neutral territory. As with movement driven by combat unit CMs, a 
combat agent’s attraction to and repulsion from both the friendly and foe headquarter locations 
(i.e., the mission objective points) is based on weighting factors that are stored in chromosome 
genes G25 through G28, respectively.  Employing these attraction/repulsion weights, the x and y 
lattice coordinates of a new type of CM based on the ith agent’s reaction to local territorial 
subgradients within both friendly and foe importance gradients are as follows: 
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respectively, where Importancecell is the local value of a territorial importance gradient within a 
lattice cell (i.e., an integer ranging from 0 up to 128), xcell and ycell are the x and y lattice 
coordinates, respectively, of the lattice cell under examination, and xagenti(tn) and yagenti(tn) again 
are the x and y lattice coordinates at the nth time cycle, respectively, of the ith agent.  Here, 
equations 3a and 3b calculate the superposition of the friendly and foe local importance 
subgradient CM locations relative to the ith agent by multiplying the difference in position of 
neighboring subgradient cells from the position of the ith agent by the importance of each 
subgradient cell and the net attraction of the ith agent towards friendly and foe subgradient CMs 
and then summing these results over all cells within a preset subgradient neighborhood.  An 
important distinction is made between subgradient cells owned by the ith agent’s friends (in 
which case, the logical relation cell.owner = agent.alliance evaluates to TRUE) vs. cells owned 
by foes (in which case, the logical relation cell.owner ! = agent.alliance evaluates to TRUE). 

Once the agent cluster and importance subgradient CM locations have been calculated for the ith 
agent, they are combined into a total net CM location according to the following: 
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and 
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where α and β are weighting constants representing the relative degree to which the ith agent 
desires to move toward (or avoid) friendly/enemy agent clusters vs. friendly/enemy territorial 
objective points.*  Thus, itotal

xCM  and itotal
yCM  provide the x and y coordinates, respectively, 

towards which the ith agent intends to move during the next simulation time cycle. 

In addition to deciding upon a next direction of travel, a combat agent will also adjust its speed 
of movement relative to the total CM coordinates described in equations 6 and 7 (where this net 
CM is a function of both dynamic agents and static territory).  This speed adjustment is set as a 
function of the “acceleration” of the ith agent at the nth time cycle 
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where tn − tn-1 is the duration of one simulation time cycle (i.e., one unit) and |velocityagenti(tn)|  
is the magnitude of the agent velocity (i.e., the speed) at the nth time cycle.  Since agent speed is 
more akin to the probability of moving a fixed distance per time step rather than a true physical 
speed, the “acceleration” proposed in equation 8 is actually an artificial construct that can be 
used to maintain the position of the ith agent as close as possible to the total CM location 
throughout a simulation (i.e., by adjusting agent speed so that ( ) ( )1/ −−∗ nn

total
y

total
x ttCMCM ii   

= |velocityagenti(tn)|2 or ∆speedagenti(tn) = 0).  Thus, the new speed of the ith agent at the (n+1)th 
time cycle is given by the following: 

 

 ( )

( ) ( )
( )

( ) ( )
( )










>
−≤−

<
≥+

=+ ,

0t speedand
∆speedt∆speed when1tspeed

speedt speedand
∆speedt∆speed when1tspeed

tspeed

nagent

minnagentnagent

maxnagent

minnagentnagent

1nagent

i

ii

i

ii

i
(9) 

where ∆speedmin defines a minimal threshold value of ∆speedagenti(tn) that triggers a speed 
adjustment when achieved or surpassed and speedmax is the maximum allowable agent speed.   
Both ∆speedmin and speedmax are adjustable but must remain fixed upon commencement of a 
simulation run.  Interestingly, the algorithms described in equations 2–9 model a variety of agent 
“flocking” behavior that was first demonstrated by Reynolds in his Boids model (Reynolds 
1987). 

                                                 
* In the current model implementation, these weights are fixed at α = β = 0.5, representing equal prioritization between agent- 

and territorial-oriented mobility goals. 
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2.3.10.3  Agitation-Driven Mobility 

In addition to the goal-motivated movement discussed in section 2.3.10.2, combat agents can 
also be driven to move by “agitation.”  An agitated agent is thus characterized by Pagitation, the 
probability that the agent will randomly select and pursue a new direction of travel (while 
maintaining the same speed as calculated using equations 8 and 9) per simulation time cycle 
(gene G29).  The application of Pagitation to instantiate random movement within a combat agent is 
described by the following pseudocode: 

IF random%1.00 < Pagitation THEN 

  new direction = random%4 

 IF new direction = 0 THEN 

  move north 

 ELSE IF new direction = 1 THEN 

  move east 

 ELSE IF new direction = 2 THEN 

  move south 

 ELSE IF new direction = 3 THEN 

  move west 

 END 

END. 

It should be noted that an agitated agent will revert back to the nonagitated state at the start of 
each new time cycle (and will again move randomly based on Pagitation), and thus the behavioral 
dynamics of agitated movement is modeled as a random process with no memory. 

3. Combat Agent Simulations 

Now that the elements of the CA simulation engine have been described, the development and 
demonstration of a software framework that utilizes the CA engine for IO-stressed Blue/Red 
combat simulations can be discussed.  Due to the prolonged runtimes necessary to simulate 
densely-packed UGS networks and multihop message relaying within the CA implementation of 
combat agent communication nets, the decision was made to codevelop two different versions of 
the IO simulation software framework.  In the first framework (section 3.1), combat-motivated 
coevolution of both Blue and Red unit configuration genomes is simulated within an IO-stressed  
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virtual environment.  In this framework, the duration of an update time cycle within the CA 
simulation engine is compressed to facilitate the thousands of Blue/Red combat instances 
necessary to execute the genomic coevolution.  In the second framework (section 3.2), the CA 
engine time cycle duration is expanded to allow for the simulation of UGS networks and 
multihop message relaying previously mentioned. 

3.1 Blue/Red Unit Combat-Driven Coevolution 

3.1.1 Genomic Coevolution Framework 

The first software framework was developed in order to explore the dynamics of two opposing 
but coevolving units of networked autonomous combat agents (Figure 11).  Within this 
framework, “friendly” (Blue) and “foe” (Red) agents are encoded within the combat unit 
configuration genome introduced in section 2.2.2, where the metrics within a genome represent 
notional agent hardware-based capabilities and combat-oriented behaviors.  In this context, the 
genome represents an instantiation of a possible configuration of networked mobile platforms 
making up a network-centric combat unit.  Initial populations of Blue/Red candidate genomes (or 
candidate combat unit configurations) are randomly generated by the random_genome routine 
working in combination with a cost filter (see section 3.1.5).   These candidate genomes are then 
input (via the place routine) into the combat_ga CA simulation engine, along with a virtual 
landscape (generated by the terrain routine) and a territorial importance gradient (generated by 
the territory routine), and a combat simulation is executed.  Such combat simulations are 
subsequently run for each possible Blue/Red genome pairing (or a subset thereof). 

During a Blue/Red combat simulation, a data filter dynamically calculates the dynamic 
operational “fitness” (analogous to one or more combined combat unit measures of performance 
averaged over a combat mission time interval) of each opposing combat agent unit within the 
simulation (the functions used to calculate dynamic fitness are described in detail in section 
3.1.4).  These combat simulations can include hostile IO actions (which, in this case, are limited 
to RF jamming by jammer-equipped combat agents).  The output of the data filter is then either 
directed into a GA (i.e., the reproduce routine) or can be directly analyzed in time series 
format.  In the former case, the top five “fittest” genomes for each side are determined (based on 
the collective results from all instantiated Blue/Red combat simulations) and then used by the 
GA to create new “offspring” genome populations (through the use of algorithmic “genetic 
operations” performed on genome pairs [section 3.1.4] working in combination with the cost 
filter previously mentioned).  These replenished populations are used to continue the 
coevolutionary process across successive genome “generations;” this process is iteratively 
repeated until both Blue and Red genome fitness values converge at or near a maximal value.  
The genome populations can also be dynamically classified (as a function of hardware-based 
capabilities and behaviors encoded into a genome) throughout a coevolutionary simulation run 
by the classify routine (for a demonstration of this routine, see section 3.1.6.2). 
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The Blue/Red coevolutionary process described in the previous paragraphs is executed by 
running the Evolve Perl script.  There are two other available routines for running coevolution 
simulations that are functionally redundant with Evolve (indicated by the “||” symbol at the top 
of Figure 11) but can also take advantage of parallel processing computer hardware capability 
when available.  The first of the redundant routines is parAvgEvolve, a Perl script identical to 
Evolve except that each simulation instance of a Blue/Red genome pairing is partitioned and run 
on different parallel processor threads.  Then, results from multiple instances of the genome 
pairing are averaged in parallel.  The second of the redundant routines is parGenEvolve, another 
Perl script identical to Evolve except that now a sequence of nonpartitioned simulation instances 
of a specific Blue/Red genome pairing is assigned to a processor, and then instance sequences 
covering different genome pairings are run in parallel.   After that, the results from each 
sequence run are averaged on the respective processor, and averaged results from all genome 
pairings are centrally collected. 

Figure 11.  Software framework for simulating Blue/Red combat unit genomic 
coevolution. 

3.1.2 The combat_ga CA Simulation Engine 

Written in Cellang (see section 2.1), the combat_ga CA simulation engine (so named to 
indicate its specific design for implementation within the GA-based coevolutionary simulation 
framework) models the interaction between two opposing units of combat agents.  The 
operational dynamics of this simulation engine are cyclic in design, where a repetitive sequence 
of actions is executed in parallel for each cell within the CA universe during each successive 
simulation time cycle.  This sequence is depicted in Figure 12, which illustrates the following 
cycle of processes (where a process can unfold over one or more sequential simulation time 
steps): 
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• Combat agents move into an adjacent cell within their local von Neumann neighborhood 
based on their goal-driven movement decisions (see section 2.3.10.2).  This process is 
executed over one time step. 

• Combat agent communication reception is jammed by neighboring enemy agents equipped 
with on-board RF jamming capability (i.e., gene G9 within the enemy agent chromosome  
> 0 [see section 2.3.5]).  This process is executed over one time step, which runs 
concurrently with the first time step of the subsequent process discussed next. 

• Messages transmitted from combat agents to neighboring agents are propagated across the 
CA universe.  These messages can include (a) acquired data traveling from sensed entities 
to sensor-equipped agents, (b) sensor data shared amongst allied agents over their 
communication network, and (c) firepower payloads moving from an engaging agent 
towards an acquired target.  This process is executed over nine sequential time steps. 

• Engaged targets react to received fire (i.e., either die or survive engagement with reduced 
armor capability).  This last process is executed over one time step. 

Figure 12.  Cyclic dynamics of the combat_ga CA simulation engine. 

Thus, one entire cycle of simulation processes unfolds over 11 sequential time steps, which are 
iteratively repeated throughout a combat simulation instance. 

The third process or phase within the combat_ga simulation time cycle depicted in Figure 12 
involves the propagation of messages between stationary combat agents positioned in cells 
located anywhere across the CA lattice.  In order to minimize the duration of the message 
propagation phase, an intelligent relay network (IRN) algorithm was developed to handle 
message delivery to receiving agents.  This algorithm essentially builds a series of relay stations 
into the underlying fabric of the CA universe, where the relays are assigned to cells and are 
distributed in a regular and uniform manner on a rectangular grid throughout the CA lattice.  
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The collective relay network is “intelligent” in that it guarantees that each cell within the CA 
lattice only receives one copy of any particular message by the end of the message propagation 
phase. 

Figure 13 provides a demonstration of an IRN implemented within a limited 12 × 12 cell CA 
lattice.  In this implementation, the lattice is partitioned into 16 nonoverlapping Moore 
neighborhoods, where the center cell within each neighborhood functions as a local relay station. 

In the northwest quadrant of the CA lattice is a transmitter combat agent (represented by a “T”) 
that launches a message intended for all neighboring receiver agents (represented by an “R”).   
This message is disseminated to all receiving agents in five successive phases.  First, from time 
steps tn to tn+1, a copy of the message is transmitted horizontally from the T cell to the center cell 
of the right-hand adjacent Moore neighborhood.  Next, from time steps tn+1 to tn+2, copies of the 
message are again transmitted horizontally from the T cell and the previous message destination 
site to the center cells of the left- and right-hand adjacent Moore neighborhoods, respectively.   
In the third phase, from time steps tn+2 to tn+3, copies of the message are transmitted vertically 
downward from the center cells within the four Moore neighborhoods in the second row (each of 
which contains either the original message or a copy thereof) to the center cells of adjacent lower 
Moore neighborhoods.  Following this, from time steps tn+3 to tn+4, copies of the message are 
transmitted both vertically upward and downward to the center cells of adjacent Moore 
neighborhoods.  Finally, from time steps tn+4 to tn+5, copies of the message are transmitted from 
the center cells within all 16 Moore neighborhoods (each of which again contains either the 
original message or a copy thereof) to those intraneighborhood cells that contain receiver agents.  
In general, given an IRN consisting of M symmetric neighborhoods (where M must be an even 
number) with N cells per neighborhood (and thus a symmetric CA lattice with M*N total cells)* 
the following occurs: 

• the first “horizontal transmission” and second “vertical transmission” phases unfold over  
M 

½ /2 time steps, and 

• the third and final “intraneighborhood transmission” phase unfolds over one time step. 

Given that the IRN within the combat_ga simulation engine was designed with M = 64 (8 
horizontal × 8 vertical neighborhoods) and N = 289 (a symmetric neighborhood of 17 horizontal 
× 17 vertical cells), the entire message propagation process unfolds over M ½ + 1 = 9 time steps. 

                                                 
* The symmetric neighborhoods depicted in Figure 13 happen to be of the nine-cell Moore type but can be made larger as the 

size of the CA lattice increases.  The downside of this is that the degree of maximally allowed CA lattice parallelization scales 
inversely with neighborhood size N so that P ∝ N –1, where P = maximum number of parallel computational threads the CA 
lattice may be assigned to. 
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Figure 13.  Demonstration of the intelligent relay network as implemented within  
combat_ga.
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A subtle point that needs to be further discussed is the superposition of different processes that 
occur during the message propagation phase depicted in Figure 12.  There is an inherent 
sequential causality in the three message propagation processes, where (1) propagation of signals 
from sensed entities to sensor-equipped combat agents is followed by (2) sensor data sharing 
over a communication net, and finally (3) the exchange of fire between engagers and targets.  
Since the combat_ga CA engine was purposefully designed to minimize simulation run times, 
a causal sequence of events involving processes 1–3 can actually unfold over three successive 
time cycle updates.  Since combat agents are allowed to move one cell at the start of every time 
cycle, an engaged target could be two cells removed from the location fired at by an agent acting 
on data received during a previous time cycle.  To work around this problem, tags are used to 
link fired payloads with acquired targets.  A tag is simply a unique positive integer assigned to 
each Blue and Red combat agent for identification purposes (see section 1.2.2).  The following 
pseudocode describes the algorithm used by combat_ga to ensure that payloads are delivered 
to targeted agents: 

IF a fired round has reached a targeted cell THEN 

 delta_x = agent x position – target x position 

when agent x position > target x position 

   = target x position – agent x position otherwise 

 delta_y = agent y position – target y position 

when agent y position > target y position 

   = target y position – agent y position otherwise 

IF agent tag = target tag AND delta_x + delta_y < 2 THEN  

IF current agent armor strength < round fire strength THEN 

   engaged agent is killed 

  ELSE 

   engaged agent’s new armor strength = 

current agent armor strength – round fire strength 

   END 

 END 

END. 
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Thus, the fired round essentially searches a symmetric diamond-shaped CA neighborhood 
centered on the target cell and then delivers the fire to an agent whose tag matches the target tag 
encoded into the round. 

3.1.3 Genomic Operational Fitness 

In Figure 11, the data filter is shown to dynamically calculate the operational fitness of each 
opposing combat agent unit within a combat_ga simulation (and then either directly output the 
time series fitness data or route it into the GA).  The “fitness” of a combat unit is an operational 
measure of its collective ability to successfully execute combat actions and is analogous to one 
or more combined combat unit measures of performance.  Fitness is thus a metric that can be 
used to evaluate the operational effectiveness of a specific genomic configuration vector 
encoding of a combat unit’s hardware capabilities and behaviors.  To carry this out, a set of 
genome fitness functions or dynamic measures of performance was designed.  These functions 
are evaluated at the end of each simulation time cycle update of the CA engine and represent the 
collective performance of all agents within a combat unit.  The linear superposition of all fitness 
function values at the nth time cycle tn is called the survival fitness. 

 Fsurv(tn) = W1F1(tn) + W2F2(tn) + W3F3(tn) + … + WN FN (tn), (10) 

where F1(tn), F2(tn), F3(tn), …, FN (tn) are the values of the N fitness functions at tn, W1, W2, W3, 
…, WN  are fitness function weights (where Σi Wi = 1), and 0 < Fi(tn) < 1 for all functions.  The 
survival fitness (so-named for its representation of perpetuated unit performance under stress) 
thus provides an objective function that can be optimized by the GA. 

Figure 14 illustrates the process that the data filter uses to evaluate Fsurv(tn) across a Blue/Red 
combat simulation time window.  For a combat simulation unfolding over M discrete time 
cycles, values of Fsurv(tn) are sampled at the end of each time cycle and then summed and 
normalized to the time window length tM.  This results in the time-averaged survival fitness  
〈Fsurv〉, where 0 < 〈Fsurv〉 < 1.  It is this last measure that finally defines the relative fitness of 
both Blue and Red unit genome candidates within a multigenerational coevolutionary simulation.   
By constructing a multidimensional genomic hypersurface (representing combat interactions 
between different Blue and Red genome candidates), where each point on the hypersurface is 
weighted by Blue and Red values of 〈Fsurv〉 associated with the corresponding combat 
interaction, the GA has a “fitness landscape” which it can navigate in its search to cooptimize 
both Blue and Red unit operational fitness. 

In the following subsections, the individual fitness functions making up Fsurv(tn) are discussed 
in detail.  In these fitness functions, the terms “friendly” and “enemy” are used to distinguish 
between combat agents within the same unit vs. agents within an adversarial unit, respectively.   
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Figure 14.  Evaluation of collective combat unit time-averaged survival fitness 〈Fsurv〉. 

Thus, the terms are relative to a specific unit and can be used in the context of either Blue or Red 
combat agents (e.g., the Blue unit is the “enemy” of the Red unit, while Red agents are all 
members of the same “friendly” unit). 

3.1.3.1 F1(tn): Prevent Enemy Penetration Into Friendly Territory 

The first fitness function measures the degree to which a unit of defensive combat agents 
prevents enemy agents from penetrating into the defender’s battlefield territory throughout the 
course of a simulation.  The function is expressed as 
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where importancefriendly cell is the territorial importance of a defender-owned lattice cell 
(quantified as a number between 0 and 128), kenemies in cell(tn) is the number of enemy agents in the 
defender-owned lattice cell at the nth simulation time cycle, importancemax is the maximum 
possible territorial importance of a cell (where importancemax > 0), and kinitial alive enemies is the total 
number of enemy agents within the simulation at the start of a simulation instance (where kinitial 

alive enemies > 0).   The numerator of F1(tn) is calculated by summing values of the product 
importancefriendly cell*kenemies in cell(tn) over all defender-owned cells within the CA lattice.  This 
fitness function utilizes the territorial importance gradient introduced in section 2.3.10.2 and 
ranges from a value of 1 (when all defender territory is clear of invasive enemy agents) to 0 
(when all enemy agents are still alive and clustered at the most “important” cell within the 
defender unit’s territory). 
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3.1.3.2 F2(tn): Penetrate Into Enemy Territory 

The second fitness function measures the degree to which a unit of invasive combat agents 
successfully penetrates into an enemy’s battlefield territory throughout the course of a 
simulation.   The function is expressed as 
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where importanceenemy cell is the territorial importance of an enemy-owned lattice cell (quantified 
as a number between 0 and 128), kfriends in cell(tn) is the number of friendly invasive agents in the 
enemy-owned lattice cell at the nth simulation time cycle, importancemax is the maximum possible 
territorial importance of a cell (where again importancemax > 0), and kinitial alive friends is the total 
number of friendly invasive agents within the simulation at the start of a simulation instance 
(where kinitial alive friends > 0).  Similar to F1(tn), the numerator of F2(tn) is calculated by summing 
values of the product importanceenemy cell*kfriends in cell(tn) over all enemy-owned cells within the 
CA lattice.  This fitness function also utilizes the territorial importance gradient and ranges from 
a value of 0 (when all enemy territory is clear of invasive friendly agents) to 1 (when all friendly 
agents are still alive and clustered at the most “important” cell within the enemy unit’s territory). 

3.1.3.3 F3(tn): Friendly Combat Unit Survival 

The third fitness function measures the fraction of friendly combat agents within an allied unit 
that remain alive during the course of a simulation.   The function is expressed as 
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where kalive friends(tn) is the number of friendly agents within an allied unit that remain alive at the 
nth simulation time cycle and kinitial alive friends is the same as was defined in equation 9 (where 
again kinitial alive friends > 0).  It should be noted that all agents have the same weighting relative to 
kalive friends(tn) (i.e., a value of 1 given that the agent is alive) irregardless of the specific 
capabilities or combat role that any particular agent might have. 

3.1.3.4 F4(tn): Enemy Combat Unit Casualties 

The fourth fitness function measures the fraction of enemy combat agents within an adversarial 
unit that are killed during the course of a simulation.  The function is expressed as 
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where kdead enemies(tn) is the number of enemy agents within an adversarial unit that have been 
killed by the nth simulation time cycle and kinitial alive enemies is the same as was defined in equation 



 

 33

11 (where again kinitial alive enemies > 0).  As is the case with F3(tn), all agents contributing to F4(tn) 
have the same weighting relative to kdead enemies(tn) (i.e., a value of 1 given that the agent has been 
killed) irregardless of the specific capabilities or combat role that any particular agent might 
have. 

3.1.3.5 F5(tn): Sense the Battlefield 

The fifth fitness function measures the fraction of the total CA universe collectively sensed by all 
sensor-equipped agents (in combination with stand-alone UGS units when available) within a 
combat unit during the course of a simulation.  The function is expressed as 
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where ksensed cells(tn) is the number of lattice cells within the CA universe collectively sensed by a 
combat unit during the nth simulation time cycle and ktotal cells is the total number of cells within 
the CA universe.  It should be noted that this fitness function only measures whether a cell has 
been sensed and not the degree to which the sensed information is shared amongst agents within 
the combat unit. 

3.1.3.6 F6(tn): Jam Enemy Communications 

The sixth fitness function measures the fraction of combat agents within a unit whose 
communication reception capability has been jammed by agents within an opposing unit during 
the course of a simulation.  The function is expressed as 
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where kjammed enemies(tn) is the number of enemy agents whose communication reception has been 
jammed by an opposing unit of friendly agents during the nth simulation time cycle and  
kalive enemies(tn) is the total number of surviving enemy agents evaluated at the same time cycle.  In 
the case where kalive enemies(tn) = 0, F6(tn) is set equal to 1, it should be noted that communications 
jamming is accomplished either by jammer-equipped combat agents or by stand-alone jammer 
bombs (when available for deployment). 

3.1.3.7 F7(tn): Prevent Enemy Penetration Into Friendly Territory With Dynamic 
Renormalization 

The seventh fitness function is identical to F1(tn) (i.e., prevent enemy penetration into friendly 
territory) except that the denominator in the second term is now adaptively renormalized to the 
population of surviving enemies at a simulation time cycle rather than the initial enemy agent 
population.  The function is expressed as 
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where all variable definitions are the same as in equation 11 except for kalive enemies(tn), which is 
the same as defined in equation 16.  As with F6(tn), F7(tn) is set equal to 1 when kalive enemies(tn)  
= 0.  This dynamic renormalization provides evolutionary pressure that forces the defensive 
combat unit to prevent any degree of enemy unit penetration into friendly territory throughout 
the duration of a simulation instance (i.e., friendly unit fitness is minimized as long as there is at 
least one surviving enemy agent and all surviving enemies penetrate into the defensive unit’s 
most important territory). 

3.1.3.8 F8(tn): Penetrate Into Enemy Territory With Dynamic Renormalization 

The eighth fitness function is identical to F2(tn) (i.e., penetrate into enemy territory) except that 
the denominator in the second term is now adaptively renormalized to the population of 
surviving friends at a simulation time cycle rather than the initial friendly agent population.  The 
function is expressed as 
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where all variable definitions are the same as in equation 12 except for kalive friends(tn), which is the 
same as defined in equation 13.  Here, F8(tn) is set equal to 0 when kalive friends(tn) = 0.  This 
dynamic renormalization provides evolutionary pressure that forces the invasive combat unit to 
infiltrate enemy territory at almost any casualty cost to the invaders (i.e., friendly unit fitness is 
maximized as long as there is at least one surviving friendly agent and all surviving friends 
penetrate into the enemy’s most important territory). 

3.1.3.9 F9(tn): Collective Friendly Situational Awareness of Friends 

The ninth fitness function measures the fraction of surviving combat agents within a unit whose 
current situational status (i.e., location, identity, and capability status) is known by all other 
agents within the unit (due to network-centric sensor data sharing via the unit communication 
network).  The function is expressed as 

 ( )
( )

( )[ ]
,2

ndsalive frie

cellsall
g friends concerninA messagesfriendly S

9
n

n

n tk

tm
tF

∑
=  (19) 

 

where mfriendly SA messages concerning friends(tn) is the number of SA data messages residing in a cell, 
which were broadcast by friendly agents reporting on other sensed friends within the combat unit  
at the nth simulation time cycle, and kalive friends(tn) is the same as defined in equation 13.  As with 
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F8(tn), F9(tn) is set equal to 0 when kalive friends(tn) = 0.  Since nonpropagating SA messages are 
associated with combat agents and each agent has at most one copy of an SA message reporting 
on a specific friendly agent, dividing the total number of friendly agent reports (collected 
throughout all cells within the CA universe) by the square of the number of friendly agents 
measures the degree of collective friendly situational awareness within a combat unit. 

3.1.3.10 F10(tn): Collective Friendly Situational Awareness of the Enemy 

The 10th and final fitness function measures the fraction of surviving combat agents within an 
enemy unit whose current situational status (i.e., location, identity, and capability status) is 
known by all agents within the opposing friendly unit (due to network-centric sensor data sharing 
via the friendly unit communication network).  The function is expressed as 
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where mfriendly SA messages concerning enemies(tn) is the number of SA data messages residing in a cell, 
which were broadcast by friendly agents reporting on sensed enemies within the opposing 
combat unit at the nth simulation time cycle, and kalive friends(tn) and kalive enemies(tn) are the same as 
defined in equations 13 and 16, respectively.  Here, F10(tn) is set equal to 0 when kalive friends(tn)  
= 0 and is set equal to 1 when kalive enemies(tn) = 0.  Similar to the case with F9(tn) regarding 
friendly agent awareness, dividing the total number of friendly agent reports regarding enemy 
agents (again collected throughout all cells within the CA universe) by the product of the number 
of surviving friendly and enemy agents allows F10(tn) to measure the degree of collective friendly 
unit situational awareness of the enemy. 

3.1.4 Genetic Operations 

As described in section 3.1.1, the GA instantiated within the reproduce routine acts to 
generate new combat unit configuration genome candidates by operating upon the fittest “parent” 
genomes (based on the preselected fitness functions introduced in the previous section).  There 
are two different types of genetic operators built into the GA code; they are as follows: 

• crossover - a process that exchanges sets of contingent chromosome vectors between two 
parent genomes, and 

• point mutation - a process that randomly changes the allele values of individual genes 
within a chromosome. 

An example illustrating the application of these genetic operators to two parent genomes is 
depicted in Figure 15.  In this example, a point within the crossover variance is selected within 
each parent chromosome.  The crossover variance indicates the preset positional range within a 
genome measured outward from the center point where the genome can be separated into two  
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Figure 15.  Genetic operations on two candidate combat unit genomes. 

sets of constituent chromosomes.*  These chromosome sets (indicated in the figure by the white 
and gray shadings) are exchanged between candidate genomes nos. 1 and 2, resulting in two new 
genomes made up of the same chromosome “primitives” that form the bodies of the parent 
genomes.  Then, point mutations are executed on randomly-selected genes within each 
chromosome, which essentially acts to create new types or “species” of combat agents.  It should 
be noted that the crossover operator treats individual chromosome vectors as indivisible so that 
chromosomes within a parent genome remain intact after crossover.  Changes within a 
chromosome can thus only occur via point mutation, which acts to ensure perpetuated diversity 
of battlefield capabilities among the agents making up a combat unit (Ilachinski 1996). 

3.1.5 Genome Cost Filtering 

The final process still to be addressed within the Blue/Red coevolutionary cycle described in 
section 3.1.1 is cost-constrained evolution, where each “hardware-based” gene within all agent 
chromosomes in a genome (i.e., chromosome genes G0 through G18 inclusive) is allowed to 
mutate within a preset cost-constrained interval.  In order to incorporate cost-constrained 
evolution into the GA, the cost-filtering routine was introduced into the coevolution software 
framework (see Figure 11).  This routine works in conjunction with both the random_genome 
and reproduce routines and a shared GA configuration file to filter each newly-created 
candidate genome based on its compliance with a set of cost constraints.  Genomes that pass the  

                                                 
* Although both parent genomes must share the same crossover variance, the genome separation point (which must lie within 

the crossover variance range) need not be the same for both parent genomes. 
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cost filter compliance test are directed into the Blue and Red genome candidate populations as 
appropriate, while failure to comply causes the genome candidate to be rejected.  The cost 
constraints making up the cost filter are discussed next. 

The cost filter assumes that the total cost of a genome is simply 
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where costgene is the implementation cost (in generic economic cost units) of a particular 
hardware gene.  The implementation cost function used to calculate costgene is illustrated in 
Figure 16.  Here, the implementation cost of a gene is characterized by the following two 
parameters:  (1) the installation cost install

genecost , which is the cost required to initially “install” or 

turn on the hardware gene, and (2) the incremental cost increment
genecost , which is the cost required 

to increase the gene allele value by one unit.  The final gene cost is then 

 ( ) ,1kallelegene
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where kallele is the integer value of the gene allele.  Then, the set of cost constraints making up the 
genome cost filter includes (a) max

chromosomecost  (the maximally allowed total cost of an individual 

chromosome) and (b) max
genomecost  (the maximally allowed cost of a genome).  Upon generation 

by either the random_genome or reproduce routines, constraint (b) is first applied to a 
genome candidate after its cost is calculated via equations 21 and 22.  Given that the genome 
candidate cost < max

genomecost , constraint (a) is next applied.  If the genome candidate cost  

< max
chromosomecost , then the candidate is added to the Blue or Red genome pool as appropriate. 

Figure 16.  GA cost function for hardware-specific genes within a 
chromosome. 
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3.1.6 Information Operations Simulations 

In the following subsections, the combat scenario, GA configuration conditions, and simulation 
outputs for IO simulations utilizing the coevolutionary software framework and constituent 
software elements described in sections 3.1.1–3.1.5 are presented and discussed. 

3.1.6.1 Combat Scenario 

The combat scenario depicted in Figures 17 and 18 was used in conjunction with the 
coevolutionary software framework depicted in Figure 11 to run GA benchmark tests.  Figure 17 
illustrates the flat virtual battlefield terrain (generated by running the terrain routine with the 
“empty” option selected) occupied by Blue and Red combat agents, which begin a simulation run 
in the southwest and northeast quadrants of the terrain, respectively.  Combat agents are initially 
positioned at the start of a simulation instance in randomly selected cells within adjustable  
subquadrants of the CA universe by running the place routine with the “corners” option 
selected.   

Figure 17.  Basic Blue/Red combat scenario set on a flat plane. 

Figure 18 illustrates the territorial “importance” gradient that is superimposed over terrain and is 
used to motivate combat agent movement towards a goal (as previously discussed in section 
2.3.10.2).  Within this gradient, blue-colored terrain is “neutral” and thus minimally important, 
while red-colored terrain represents operationally “critical” territory.  Thus, combat agent 
territory unfolds from the “no-man’s-land” along the center diagonal towards critical Blue- and 
Red-controlled objective points in the southwest and northeast corners of the 2-D battlespace, 
respectively.  Based on the allele values assigned to genes G25 through G28 within a combat agent 
chromosome, an agent will be driven to either advance or retreat along successive importance 
gradient contours. 



 

 39

Figure 18.  Territorial importance gradient associated with the basic Blue/Red combat 
scenario. 

3.1.6.2 Coevolutionary Simulation Configuration 

Once the combat scenario has been properly delineated, the GA, survival fitness function, and 
Blue/Red genome configuration files are defined.  These configuration files are presented in 
Tables 1–3, respectively.  The parameters listed in Table 1 are used by the GA to control the 
coevolutionary dynamics of both the Blue and Red candidate genome populations.  The second 
parameter (maximal number of allowed successive generations) provides an automated 
termination point for a coevolutionary simulation; the user can, however, manually terminate a 
simulation prior to this point if so desired. 

Next, the parameters listed in Table 2 are used to set the duration of a Blue/Red combat instance 
and to construct the respective survival fitness objective functions for both Blue and Red combat 
units.  Here, Blue’s primary mission objective is to prevent any level of surviving enemy 
penetration into friendly territory (characterized by the fitness function F7[tn]) with a secondary 
objective to invade the enemy’s territory no matter what the friendly attrition cost (characterized 
by the fitness function F8[tn]), while the reverse is true for Red.  These survival fitness objective 
functions force both combat units to search for capability configurations and tactical behaviors 
that serve to achieve a multiobjective goal. 

Finally, the parameters listed in Table 3 define the size, cost, and gene allele value constraints 
that are imposed upon both Blue and Red genome candidates throughout the entirety of a 
multigenerational coevolutionary simulation run.  The first constraint was chosen to imply that 
Blue was logistically constrained to maintaining a small unit, while Red was not.  The net 
genome cost constraint was chosen to imply that Blue, although logistically constrained, had  
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Table 1.  The GA configuration file used in the coevolutionary simulation. 

Parameter Description Value 
Size of the CA lattice. 136 cells × 136 cells 
Maximal number of successive generations allowed 
within a coevolutionary simulation. 

2400 generations 

The size of both the Blue and Red candidate genome 
pools that should be maintained throughout a 
coevolutionary simulation. 

30 genomes 

The number of fittest genomes to use as parents for 
genetic breeding of new genome candidates. 

5 genomes 

The number of simulation instances to run for each 
Blue/Red genome combat pairing. 

3 instances 

The crossover variance for both Blue and Red parent 
genomes used in genetic breeding. 

0.30 

The probability that a particular chromosome within a 
genome is selected for gene mutation. 

0.20 

The probability that a particular gene within a 
chromosome will undergo mutation given that the 
chromosome has been selected for this operation. 

0.01 

Table 2.  The survival fitness configuration file used in the coevolutionary simulation. 

Parameter Description Value 
Total simulation run time. 300 time cycles 
Fsurv(tn) fitness function weights. Blue genome Red genome 
F1(tn): prevent enemy penetration into  
            friendly territory. 

0 0 

F2(tn): penetrate into enemy territory. 0 0 
F3(tn): friendly combat unit survival. 0 0 
F4(tn): enemy combat unit casualties. 0 0 
F5(tn): sense the battlefield. 0 0 
F6(tn): jam enemy communications. 0 0 
F7(tn): prevent enemy penetration into  
            friendly territory with dynamic renormalization. 

0.7 0.3 

F8(tn): penetrate into enemy territory with dynamic 
renormalization. 

0.3 0.7 

F9(tn): collective friendly situational awareness of       
friends. 

0 0 

F10(tn): collective friendly situational awareness of the 
enemy. 

0 0 

greater economic resources at its disposal than did Red.  The allele value constraints inform the 
GA of maximal-allowed values of specific mutable genes within a chromosome (i.e., speed, 
sensor range, fire range, fire strength, armor strength, carried fire rounds, carried land mines, and 
carried RF jammer bombs), as well as the intentionally fixed allele values assigned to seven 
immutable genes (i.e., sensor detection probability, sensor false alarm probability, carried UGS 
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Table 3.  The genome configuration file used in the coevolutionary simulation. 

Parameter Description Blue Genome Red Genome 
Maximum allowable number of chromosomes within 
a genome. 

25 1024 

Maximum allowable net genome cost. 800,000 cost units 500,000 cost units 
Maximum allowable combat agent fire range (G0). 10 cells 10 cells 
Maximum allowable combat agent fire strength (G2). 20 20 
Maximum allowable number of carried firepower 
rounds (G3). 

255 255 

Maximum allowable combat agent armor strength 
(G4). 

20 20 

Maximum allowable combat agent sensor range (G5). 40 cells 20 cells 
Maximum allowable number of carried land mines 
(G11). 

255 255 

Maximum allowable number of carried RF jammer 
bombs (G12). 

255 255 

Maximum allowable combat agent speed (G17). 10 10 
Fixed sensor probability of target detection (G6). 0.95 0.95 
Fixed sensor probability of false alarm (G7). 0.05 0.05 
Fixed combat agent communication range (G8). 40 cells 20 cells 
Fixed combat agent RF jamming range (G9). 5 cells 5 cells 
Fixed number of carried UGS units (G10). 0 0 
Fixed UGS unit deployment range (G13). 0 0 
Fixed probability of retaliating against an enemy 
(G19). 

1.00 1.00 

 

units, UGS deployment range, communication and RF jamming ranges, and retaliation 
probability).*  Chromosome genes that are not specifically addressed in this figure are thus 
allowed to mutate without allele constraints (except for preconstrained genes such as 
probabilities and behavioral weights).  The allele value constraints were chosen to imply that 
Blue also had access to superior sensor and communication hardware than did Red. 

3.1.6.3 Simulation Results 

A coevolutionary Blue-vs.-Red simulation (using the scenario and GA/fitness/genome 
configurations described in sections 3.1.6.1 and 3.1.6.2, respectively) was run on a 32-CPU SGI 
Origin 3800 computer.  Here, Blue/Red combat instances for each evolutionary generation of 
candidate genomes were run in parallel, after which calculated survival fitness values were 
centrally averaged and reported.  Three combat simulation instances were executed (and then 
averaged) for each Blue/Red genome candidate pairing with 30 pairings per generation.  The 
latter situation was iteratively realized by randomly selecting one candidate genome from both 
Blue and Red genome pools for a combat pairing and then removing the selected genomes from 
their respective pools and repeating the random selection process until all genomes have been 

                                                 
* These seven genes were predefined as immutable, implying a scenario where sensor, communication, and RF jamming 

hardware capabilities were constrained by currently available commercial off-the-shelf (COTS) technology (which is not 
assumed to include UGS technology) and an agent will always return fire when engaged. 
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paired for combat.  Each combat simulation was run for 300 time cycles (see Table 2), at which 
point values of the time-averaged survival fitness 〈Fsurv〉 for both Blue and Red genomes were 
evaluated and reported.  Then, for both Blue and Red units, the top five candidate genome 
scorers from each generation (see Table 1) were used to produce the next generation of 30 
candidate genomes via random mating pairs. 

Figure 19 depicts the coevolutionary dynamics of Blue/Red average and maximal time-averaged 
survival fitness levels (y-axis) measured across 1360 generations (x-axis), where Blue and Red 
values of 〈Fsurv〉 are based on the fitness function weights presented in Table 2.   Here, Red 
quickly “discovers” unit configurations that serve to maintain its average fitness within the 
interval [0.38, 0.43] which, in turn, motivates Blue to compensate with new configurations that 
likewise drive average Blue fitness to the interval [0.49, 0.59].  This coevolutionary process 
nicely illustrates the “Red Queen Principle” from evolutionary biology, where for an 
evolutionary system, continuing development is needed just in order to maintain its fitness level 
relative to the systems it is coevolving with (Van Valen 1973).  Since, due to computational 
runtime constraints, the coevolutionary process was prematurely terminated before any strong 
evidence of survival fitness convergence was evidenced, it remains unclear whether the Blue and 
Red combat units would ever break out of the “Red Queen” oscillatory pattern illustrated in the 
figure.  If the current theory of coevolutionary neutral mutations (where gene mutations produce 
insignificant variations in relative fitness [Bar-Yam 1997; Whitfield 2002]) is applicable within 
the current context, then fitness convergence might never be achievable without relaxing some of 
the gene allele and cost constraints defined in Table 3. 

Further evidence of continuing development of both Blue and Red combat units throughout the 
coevolutionary process displayed in Figure 19 is provided by a classification analysis of Blue 
and Red genome populations.  Table 4 defines a set of combat agent types or “classes” specified 
by agent sensor and firepower ranges, while Figure 20 illustrates the correlated coevolutionary 
dynamics of optimal Blue and Red unit configurations relative to this set of classes.  Sensor 
classes include zero-, short-, medium-, and long-range sensor capability, while firepower classes 
are restricted to zero-, very short-, and short-range fire.  The plots in Figure 20 measure, for the 
maximal-fitness genome in both populations, the number of Blue/Red combat agents within a 
particular sensor/firepower class (y-axis) across the 1360 generations making up the 
coevolutionary process (x-axis). *  Here, Blue unit configuration is observed to oscillate between 
variable mixtures of medium- and long-range sensor agents with variable-range firepower 
weapon capability, finally settling into a mode where most agents have midrange sensor and 
short-range firepower capability.  The Red unit, on the other hand, which must execute the more 
operationally challenging primary role of invader, coherently explores sensor/firepower classes 

                                                 
* A curve-smoothing algorithm has been applied to these plots (that averages class population levels over 10 successive 

generations) to make them easier to read. 
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Figure 19.  Coevolutionary dynamics of Blue/Red time-averaged survival fitness levels (y-axis) 
measured across 1360 coevolutionary generations (x-axis). 

Table 4.  Definition of a set of combat agent classes based on sensor/firepower range combinations. 

Combat Agent Class Gene G5 
(Sensor Range) 

Gene G0  
(Firepower Range) 

No sensor/no firepower 0 0 
Short-range sensor/no firepower 1–10 cells 0 
Medium-range sensor/no firepower 11–25 cells 0 
Long-range sensor/no firepower 26–40 cells 0 
No sensor/very short-range firepower 0 1–5 cells 
Short-range sensor/very short-range firepower 1–10 cells 1–5 cells 
Medium-range sensor/very short-range firepower 11–25 cells 1–5 cells 
Long-range sensor/very short range firepower 26–40 cells 1–5 cells 
No sensor/short-range firepower 0 6–10 cells 
Short-range sensor/short-range firepower 1–10 cells 6–10 cells 
Medium-range sensor/short-range firepower 11–25 cells 6–10 cells 
Long-range sensor/short-range firepower 26–40 cells 6–10 cells 

until finally settling on a medium-range sensor and short-range fire for most agents.  It should be 
noted that total unit populations are variable across successive generations due to genome size 
and cost filtering. 

Next, Table 5 defines a second set of combat agent classes specified by agent behavioral 
weighting combinations, while Figure 21 illustrates the correlated coevolutionary dynamics of 
optimal Blue and Red unit configurations relative to this new set of classes.  Behavioral classes 
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(a) 

(b) 
Figure 20.  Coevolutionary dynamics of optimal Blue and Red unit configurations relative 

to the set of combat agent sensor/firepower range classes with class population 
(y-axis) vs. coevolutionary generation (x-axis):  (a) Blue unit and (b) Red unit. 
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Table 5.  Definition of a set of combat agent classes based on behavioral gene weighting combinations. 

Combat Agent Class 
Gene G20 (Prob. of 
Initiating Attack) 

Gene G23 (Attraction 
Towards Enemy CM) 

Gene G24 (Repulsion 
From Enemy CM) 

Passive/noncovert < 0.50 > 0.50 < 0.50 
Passive/covert < 0.50 < 0.50 > 0.50 
Passive/indecisive < 0.50 > 0.50 > 0.50 
Passive/unconcerned < 0.50 < 0.50 < 0.50 
Aggressive/noncovert > 0.50 > 0.50 < 0.50 
Aggressive/covert > 0.50 < 0.50 > 0.50 
Aggressive/indecisive > 0.50 > 0.50 > 0.50 
Aggressive/unconcerned > 0.50 < 0.50 < 0.50 

 

are formed by combining binary gene values (i.e., allele levels that are either < 0.50 or > 0.50) of 
agent attack initiation probability and attraction towards/repulsion from enemy unit CM.  Similar 
to Figure 20, the plots in Figure 21 measure (again for the maximal-fitness genome in both 
populations) the number of Blue/Red combat agents within a particular behavioral class across 
the coevolutionary process.  In this case, Blue seems to haphazardly explore various classes, then 
settling on a passive/indecisive behavioral mode for over 600 generations, and finally switching 
over to a mixture of passive/indecisive and aggressive/indecisive agents at the end of the 
coevolutionary run.  This is not surprising, in that Blue’s primary mission is defensive and thus 
Blue agents can afford to be “indecisive” (effectively immobile) and less “aggressive” than Red 
agents.  After an initial exploratory period, Red, on the other hand, first “discovers” a behavioral 
configuration where all agents act in an aggressive (firing a weapon without provocation) and 
noncovert (moving directly towards Blue agents) manner that serves to maintain its operational 
fitness.  Then, when Blue counters with behaviors that stress Red fitness, Red, in turn, 
progressively adopts passive and noncovert, aggressive and noncovert, aggressive but indecisive 
(trying to move both towards/away from Blue), and aggressive but covert modes of behavior, 
finally settling on the last mode (with a small fraction of the Red unit continuing to explore other 
behaviors).  Again, Red faces the greater evolutionary pressure since its primary mission is 
invasive in nature and thus benefits by coherently moving towards better strategic behavioral 
modes. 

The preceding classification examples were presented to illustrate two limited perspectives on 
Blue/Red coevolutionary dynamics by focusing on specific genes within the combat agent 
chromosome.  A true picture of the coevolutionary dynamics can only emerge by portraying the  
20-dimensional response hypersurface generated by class population levels based on the 19 
mutable genes within the agent chromosome (with genome generation providing the last degree 
of freedom).*  While this is, of course, impossible to illustrate, it is feasible to provide  
2-D “slices” of the response hypersurface depicting class population levels (as a function

                                                 
* This also assumes that the behavioral attraction weights contained in genes G21, G23, G25, and G27 can be combined with the 

repulsion weights contained in genes G22, G24, G26, and G28, respectively, thus reducing the number of dimensions required to 
track mutable genes from 23 down to 19. 
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(a) 

(b) 
Figure 21.  Coevolutionary dynamics of optimal Blue and Red unit configurations relative 

to a set of combat agent behavioral classes with class population (y-axis) vs. 
coevolutionary generation (x-axis):  (a) Blue unit and (b) Red unit. 
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of gene-specific classes) across the multigenerational coevolutionary process.   Plots of these 
slices are included in the Appendix. 

Careful examination of these gene classification plots reveals, as was initially suggested by the 
plots in Figures 20 and 21, that Red’s hardware capability evolution was generally more directed 
than Blue’s.  At the end of the 1360-generation coevolutionary simulation, both Blue and Red 
units end up with the maximal-permitted fire range (i.e., “short range” firepower), “high” fire 
strength, two crew members,* “fast” maximum speed, and air-travel capability.† 

However, Blue firepower round supply moves up and then down, while Red supply steadily 
increases.  Both Blue and Red armor strengths start “high” and then decrease (with Red starting 
to rise again at the end of the coevolutionary simulation).  Blue sensor range continuously jumps 
up and down, while Red settles on a “moderate” sensor range and stays there.  The values of 
Blue’s land mine supply and mine/jammer bomb Pdeploy also jump up and down, while Red again 
settles on a “moderate” level for both these genes well before the end of the simulation. 

There are other specific asymmetric capability levels between Blue and Red that probably play a 
key role in facilitating Blue’s superior survival fitness levels.  Although Blue (principally the 
defender) ends up with a “low” firepower Phit level while Red (principally the invader) finishes 
with a “high” value of that gene, Blue quickly settles on and stays with a “very large” jammer 
bomb supply while the poorer Red is forced to stay with a “moderate” supply level.  This allows 
the defensive Blue unit greater capability to disrupt acquired target data sharing amongst agents 
in the invasive Red unit.  Also, Blue’s signature strength is maintained at a “low” level, while 
Red signature strength is forced to stay at a “high” level (due to lower levels of available 
financing).  This asymmetry allows the Blue unit to generally avoid Red acquisition and fire 
(even though Red’s capability to deliver a target hit is greater), while the Red unit’s acquisition 
and subsequent engagement by Blue forces is relatively guaranteed by comparison. 

The evolution of the behavioral modes within the Blue and Red units is a more complicated 
issue.  Blue adopts and stays with a “moderate” likelihood of initiating an attack, while Red 
gradually settles on a “high” initiate attack probability; this makes sense given their respective 
defender and invader roles.  However, although both Blue and Red end, up acting “indecisive” 
about moving towards/away from friendly agent clusters, Red quickly adopts a tactic to covertly 
avoid enemy agent clusters (while Blue remains indecisive regarding this tactic).  While neither 
the Blue nor Red units are prone to stay on their own territory, in the end, Blue wants to invade 
Red’s territory (even though the former’s primary mission is defensive) while Red is again 
“indecisive” regarding enemy territory invasion (thus, only penetrating the outer reaches of Blue 
territory).  Finally, both Blue and Red perpetuate a “low” probability of randomly changing  

                                                 
* There is a mutational bias in the GA so that an agent will essentially never have only one crew member (this was 

programmed to conform to the convention of functional redundancy in the human crew of a military platform). 
† This mode of travel is likely a code artifact, since the flat terrain used in this simulation provides no operational advantage 

of using air flight over ground transport. 
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speed and direction, suggesting that occasional unpredictable movement on the part of an agent 
can help to maintain the survival fitness of its unit within a volatile environment.  It is possible 
that the Red unit’s generally inferior hardware capabilities prevent it from settling upon a 
straightforward set of behavioral tactics (i.e., the simultaneous attraction/repulsion behavior 
characteristic of indecision doesn’t tend to facilitate achievement of a strategic goal).  It is also 
very likely that the static nature of agent behavioral modes during a simulation instance doesn’t 
provide the adaptive capability necessary for a unit to strategically exploit situations that evolve 
during the simulated combat. 

It is interesting to try to characterize the degree of speciation within these results, where 
speciation refers (in the current context) to the process where agents within a combat unit evolve 
differentiated hardware capabilities and behavioral modes within the same evolutionary 
generation.  The degree of agent speciation can be qualitatively assessed over the coevolutionary 
multigenerational simulation run via visual inspection of the classification plots in the Appendix.  
The difference in speciation between the Blue and Red combat units is immediately obvious.  
While neither Blue nor Red units consistently engage in the speciation process, Blue is 
considerably more active in this regard than Red.  In fact, the Red unit appears to coherently 
avoid speciation across all chromosome genes except when adopting a new gene class (in which 
case, transient speciation occurs only as all agents within the unit progressively switch from one 
class to another).  This is likely due to the mechanics of the GA (i.e., crossover within an agent 
chromosome is avoided) in combination with Red’s more strategically complex role as the 
invader (where agent speciation must be combined with dynamic C2 in order to be operationally 
effective). 

In the next section, the embedding of a quasiscripted combat agent C2 process directly into the 
CA simulation engine (and the subsequent IO simulation results) is explored in detail. 

3.2 Enhanced Network-Centric Quasiscripted Simulation 

The second and enhanced version of the CA simulation engine, “combat_proto” (so named 
for its utility in prototyping more complex combat agent behaviors) models the deployment and 
function of notional internetted UGS and multihop message relaying, and thus extends the 
network-centric capabilities of combat_ga.  However, since combat_proto (also written in 
the Cellang programming language) employs a semiscripted time-dependent C2 process directly 
built into the associated code, this CA simulation engine cannot be used in conjunction with the 
GA (which assumes combat agents to maintain stationary behaviors throughout a combat 
simulation instance). 

3.2.1 Simulation Framework 

Since the simulation of UGS networks and multihop message relaying necessitates the extensive 
addition of new time steps into the CA update time cycle, combat_proto is ill-suited for use 
within a multigenerational coevolutionary simulation.  In addition, the introduction of a 
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quasiscripted C2 process directly into the CA code overrides the static behavioral modes that 
characterize Blue/Red combat in the previously-discussed simulation framework.  Thus, in the 
framework discussed in this section, the GA has been removed, and the dynamic genome pools 
are replaced by static Blue and Red combat unit genomes. 

In the new framework depicted in Figure 22, hand-scripted configuration genomes are 
constructed in order to represent a Blue unit of networked mobile platforms making up a 
network-centric combat unit as well as a Red unit of loosely organized, nonnetworked platforms.   
Combat simulations are run using the combat_proto CA engine in combination with the 
terrain, territory, and place routines to respectively generate a simulation landscape 
and a territorial importance gradient superimposed over the landscape and to initially position 
Blue and Red combat agents.  Then, the data filter dynamically calculates preselected fitness 
functions (the entire set of which was described in section 3.1.3) of each opposing combat agent 
unit within the simulation, which can include hostile IO actions.  Finally, the fitness function 
outputs of the filter are analyzed in a time series format (as opposed to weighting the functions 
and then combining them into the survival fitness objective function as was done in the previous 
framework). 

Figure 22.  Software framework for running the enhanced Blue/Red quasiscripted combat 
simulation. 

3.2.2 The combat_proto CA Simulation Engine 

As mentioned in the preceding section, the combat_proto CA simulation engine (also written 
in Cellang [Eckart 1992a, 1992b]) extends the combat agent network-centric capabilities 
encoded into the combat_ga simulation engine by also modeling the deployment and function 
of notional UGS networks and multihop message relaying between allied agents.  As with 
combat_ga, the dynamics of combat_proto involve a cyclic sequence of events that is 
executed during each iterated update of a combat simulation.  This sequence is depicted in Figure 
23, which illustrates the following cycle of processes (where a process can unfold over one or 
more sequential simulation time steps):
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Figure 23.  Cyclic dynamics of the combat_proto CA simulation engine. 

• Combat agents move into an adjacent cell within their local von Neumann neighborhood 
based on their goal-driven movement decisions (see section 2.3.10.2).  This process is 
executed over one time step. 

• Combat agent and internetted Blue UGS unit communication reception are jammed based 
on proximity to previously deployed RF jammer bombs with residual battery power.  In 
this version of the CA engine, (a) combat agents are not equipped with on-board jamming 
capability (i.e., gene G9 within all agent chromosomes is set equal to 0), and (b) jammer 
bomb communication disruption is restricted to conventional nine-cell Moore 
neighborhoods (Figure 24).  Next, Blue UGS units sense their local environment (i.e., a 
single lattice cell).  Both of these events occur within a single time step. 

• Blue UGS units broadcast their acquired local situational data to other units within the 
UGS network (based on the UGS dynamics discussed in section 2.3.6.1).  This process 
unfolds over 199 sequential time steps (at the conclusion of which all connected portions of 
the UGS network should share the same SA data). 
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Figure 24.  Reduced RF jammer bomb 
neighborhood consisting of  
the center bomb cell plus  
eight neighboring cells. 

• Sensor-equipped combat agents acquire SA data transmitted from sensed battlefield 
entities.  In addition, Blue sensor-equipped agents can also acquire SA data from Blue UGS 
network access nodes.*  This data transmission process utilizes artificial “square waves” 
(which are easy to implement within the regular CA lattice) that travel at a speed of one 
cell per time step and can be blocked by terrain obstacles such as mountains or buildings.  
Thus, target sensing by combat agents is assumed to function in a “line-of-sight” mode.  
This process unfolds over 149 sequential time steps (at the conclusion of which all sensor-
equipped agents with uninterrupted line-of-sight pathways to sensed entities should have 
acquired their data). 

• Blue combat agents share acquired sensor data via their allied communication network 
(while Red agents do not intercommunicate), where an agent will rebroadcast each new 
data report it receives over the network to ensure that all Blue agents share a coherent 
battlefield situational awareness.  The communication network also transmits data via 
square waves that travel at a speed of one cell per time step; in this case, however, 
transmission is not limited to line-of-sight interaction (and, thus, terrain obstacles have no 
effect on message propagation).  This process unfolds over 199 sequential time steps (at the 
conclusion of which all nonjammed Blue agents should share the same SA data). 

• Combat agents fire upon acquired targets (where multiple agents may engage the same 
target).  Fired rounds travel at a propagation speed of one cell per time step until the target  

                                                 
* The use of specific access nodes within the UGS network was notionally engineered to avoid the cumbersome message 

saturation that would result if sensor-equipped Blue agents were allowed to acquire stored SA data from all of the nodes within 
the network. 

Jammer
Bomb
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cell is reached and are also not restricted by line-of-sight between engager and target.  This 
process unfolds over 150 sequential time steps (at the conclusion of which all engaged 
target agents should have received fire). 

• Engaged targets react to received fire (i.e., either die or survive engagement with reduced 
armor capability).  This last process is executed over one time step. 

Thus, one entire cycle of simulation processes unfolds over a total of 700 sequential time steps, 
which are iteratively repeated throughout a combat simulation instance. 

3.2.3 “Fombler’s Ford”-Inspired Scenario 

Figure 25 depicts the virtual battlefield terrain (inspired by the Defense Advanced Research 
Projects Agency’s notional “Fombler’s Ford” scenario [Gorman 2000] created to illustrate 
notional Future Combat Systems operations) within which Blue agents are positioned in the 
center defending their territory from Red invaders advancing inward from the outer edge of the 
CA lattice.  Associated with this terrain is the territorial “importance” depicted in Figure 26. In 
this scenario, geographical terrain features such as hills (medium gray), buildings (dark gray 
regular lattice of cells), a mountain (black), and a river (aqua blue) are added to impact combat 
agent mobility and UGS placement.  As was the case with the importance gradient previously 
introduced in section 3.1.6.1, the Fombler’s Ford gradient shown in Figure 26 is superimposed 
over the associated terrain and is used to motivate combat agent movement towards a goal 
(where blue-colored terrain is “neutral,” and red-colored terrain represents operationally 
“critical” territory).  Here, combat agent territory unfolds from the “no-man’s-land” along the 
periphery of the CA lattice to a critical Blue-controlled objective point at the center of the 2-D 
battlespace towards which Red agents advance.  Finally, Red-controlled territory is not used in 
this scenario (and, thus, the Red unit can be thought to represent a collection of loosely organized 
guerillas or terrorists). 

The hand-scripted combat agent chromosomes making up the respective Blue and Red combat 
unit genomes are shown in Figures 27–32.  In this scenario, the Blue unit is composed of the 
following types of combat agents: 

• Three “command and control vehicle” (C2V) agents (Figure 27) equipped with short-range 
sensor, short-range firepower, and long-range interagent communication capabilities, as 
well as a nonzero value of the human crew gene G16.  Since the only autonomous C2 
capability built into this type of agent is to allow other Blue agents without human crew to 
engage acquired targets, the C2V agents are functionally redundant (i.e., they do not 
control specific teams within the Blue unit).  Thus, “unmanned” Blue firepower-equipped 
agents can engage targets provided (1) at least one C2V agent survives and (2) the 
engaging agent’s communication reception remains unjammed.  Finally, these agents, 
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Figure 25.  Notional Fombler’s Ford terrain imposed onto the CA lattice. 

Figure 26.  Territorial importance gradient associated with the Fombler’s Ford-inspired 
combat scenario. 

although designated as “ground vehicles,” are not given mobility capability in this scenario 
(since they were specifically designed to maintain a static defensive posture throughout the 
duration of a combat simulation instance). 
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Figure 27.  Blue C2V agent chromosome. 

Figure 28.  Blue short-range direct-fire (DF) agent chromosome. 
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Figure 29.  Blue long-range sensor agent chromosome. 

Figure 30.  Blue “rockets-in-a-box” agent chromosome. 
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Figure 31.  Red “pickup truck” agent chromosome. 

Figure 32.  Red medium-range DF agent chromosome. 
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• Three C2V agents (Figure 27) equipped with short-range sensor, short-range firepower, and 
long-range interagent communication capabilities, as well as a nonzero value of the human 
crew gene G16.  Since the only autonomous C2 capability built into this type of agent is to 
allow other Blue agents without human crew to engage acquired targets, the C2V agents 
are functionally redundant (i.e., they do not control specific teams within the Blue unit).  
Thus, “unmanned” Blue firepower-equipped agents can engage targets provided (1) at least 
one C2V agent survives and (2) the engaging agent’s communication reception remains 
unjammed.  Finally, these agents, although designated as “ground vehicles,” are not given 
mobility capability in this scenario (since they were specifically designed to maintain a 
static defensive posture throughout the duration of a combat simulation instance). 

• Two DF agents (Figure 28) equipped with the same capabilities assigned to the C2V agent 
except for the lack of a human crew (i.e., this DF agent type represents an unmanned 
ground vehicle).  This type of agent also maintains a static defensive posture throughout a 
simulation run and thus serves as a “sacrificial diversion” that draws enemy fire away from 
more important targets. 

• Three unmanned sensor agents (Figure 29) equipped only with long-range sensor and 
communication capabilities.  These agents also maintain static defensive postures 
throughout a simulation run. 

• Four rockets-in-a-box agents (Figure 30) equipped with short-range sensor, long-range 
firepower, long-range communication, and mobility capabilities, as well as a plentiful 
supply of 270 UGS missiles (with nine deployable UGS units packed into a missile).   
These agents are provided with mobility to facilitate their deployment of the Blue UGS 
network (see the next paragraph), where agent movement is motivated by attraction to a 
combination of Blue agent CM and Blue territory (to move into their defensive postures 
after UGS network deployment).  Finally, gene G20 (i.e., probability of initiating an attack) 
is set equal to 0.20 for all of these agents to imply an inherent difficulty in distinguishing 
viable Red targets apart from indigenous “neutral” agents (which are assumed to be present 
but are not explicitly modeled in the scenario). 

The total Blue force thus consists of 12 different combat agents drawn from 4 different agent 
classes or “species.” 

On the other hand, the Red unit is composed of the following types of combat agents: 

• Twenty pickup truck agents (Figure 31) equipped with very short-range sensor (i.e., human 
vision provided by the “driver” and “passenger” riding in the truck bed), very short-range 
firepower (i.e., a machine gun belonging to the truck’s “passenger”), and mobility 
capabilities, as well as a nonzero value of the human crew gene G16 and a supply of RF 
jammer bombs (that will be deployed from the truck bed by the “passenger”).  These agents  
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do not intercommunicate or communicate with other Red agents and thus function in an 
operationally autonomous fashion.  Finally, agent movement is motivated only by an 
attraction to Blue territory. 

• Ten DF agents (Figure 32) equipped with medium-range sensor, medium-range firepower, 
and mobility capabilities.  These agents also do not intercommunicate or communicate with 
Red pickup truck agents and thus are operationally autonomous.  Unlike the Blue rockets-
in-a-box agents, these DF agents have no difficulty in positively identifying enemy agents 
once acquired.  Finally, agent movement is motivated only by an attraction to Blue 
territory. 

The total Red force thus consists of 30 different combat agents drawn from two different agent 
species. 

As was previously mentioned, a C2 process was directly built into the combat_proto CA 
simulation engine that guides combat agent activities via a semiscripted time-dependent schedule 
called a synchronization matrix (Figure 33).  In this C2 process, each specific type or class of 
Blue and Red combat agent is identified, along with a schedule of combat “orders” assigned to 
that agent type as a function of mission time (represented by the time axis below the matrix).  
The C2 activity commences some 830 time steps prior to mission commencement.  Here, Blue 
rockets-in-a-box agents equipped with “UGS missiles” fire UGS units into place within the 
neutral terrain surrounding Blue territory, while other Blue agents maintain a stationary 
defensive posture.  This UGS network deployment process is depicted in Figure 34 as a sequence 
of simulation window snapshots.  Each of the four Blue rockets-in-a-box agents is initially 
positioned in the center of a battlefield quadrant, from which vantage point they launch the UGS 
missiles.  Upon landing at a target cell, a UGS missile acts to populate a 3 × 3 cell sublattice with 
internetted UGS units following an average 75% packing density (i.e., the probability that a cell 
within the nine-cell UGS sublattice receives a UGS unit is equal to 0.75).*  Once the UGS 
network is in place, the rockets-in-a-box agents move to defensive postures and remain there.  
Then, at time t = 0, a “first wave” of the Red seemingly-neutral pickup truck agents (many of 
which are acquired and fired upon/destroyed by the network-centric Blue unit) drop jammer 
bombs as they penetrate into the peripheral Blue UGS network.  Finally, at time step t = 4200 
(i.e., the commencement of the seventh simulation time cycle), a “second wave” of the Red 
agents equipped with medium-range firepower capability advances toward Blue in the 
undetected “shadow zones” within the UGS network created by the dispersed jammer bombs.  
The simulation is then allowed to run until a steady-state end condition is achieved (i.e., either 
Blue successfully kills all Red invaders or all surviving Red agents reach the center of the 
Fombler’s Ford terrain). 

                                                 
* The UGS packing density is a variable control parameter that will be utilized in a sensitivity analysis presented in a 

subsequent section of the report. 
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Figure 33.  Synchronization matrix for the Fombler’s Ford-inspired combat scenario. 

Starting at t = 0 and then moving forward in time, a combat simulation is instantiated by running 
the combat_proto CA engine in combination with the Fombler’s Ford terrain, associated 
territorial importance gradient, and the synchronization matrix.  Figure 35 depicts the resultant 
events or phases that unfold throughout one simulation update cycle of a CA simulation run.  In 
Figure 35a, Red combat agents enter the peripheral neutral territory surrounding Blue territory 
and are sensed by the notional UGS network (blue cells).  Once a UGS unit senses a combat 
agent that has entered its cell, it transmits agent identity (Red) north/south/east/west neighboring 
UGS units (represented by the flowing green “message fronts”); this allows for situational 
awareness reports to propagate throughout connected portions of the extensive UGS “web.”  In 
Figure 35b, sensor messages are sent out by UGS “access nodes” and Blue agents; these 
messages are then “sensed” and received by sensor-equipped combat agents.  In the next 
snapshot (Figure 35c), sensor data are shared among Blue agents via their communication 
network.  Sensor and communication messages travel as artificial “square waves” to ensure 
symmetric signal propagation throughout the CA lattice.  Finally, as shown in Figure 35d, a Blue 
agent fires upon an acquired Red target (where the black line illustrates payload trajectory). 

The propagation dynamics of locally sensed SA data throughout the deployed UGS network is 
illustrated in greater detail as a sequence of simulation window snapshots in Figure 36.  In this 
simulation instance, Red pickup truck agents enter the outer edges of the UGS network from the 
north, south, east, and west.  Then, as time progresses, local UGS data are shared across 
connected network nodes (where the network cell color indicates the total number of SA data  
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Figure 34.  Four successive snapshots illustrating the deployment of a notional UGS network across 
neutral territory within the Fombler’s Ford landscape. 

messages resident within a node at that point in time).  A final equilibrium condition is achieved 
within the network when all interconnected UGS nodes possess the same set of SA data 
messages (time snapshot no. 4 in Figure 36).  In the current UGS network configuration, there 
are three distinct disconnected subnetworks that emerge as a function of terrain features (i.e., 
Nichevo Mountain and the Ogenchornya River) that naturally subdivide the overall network. 

 

(4)

(2)(1) 

(3) 
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Figure 35.  Four phases within a combat_proto simulation cycle using the Fombler’s Ford-inspired 
scenario:  (a) Red agents detected within the peripheral UGS network, (b) sensor data 
propagates from sensed entities to sensor-equipped Blue agents, (c) acquired sensor data are 
shared over the Blue communication network, and (d) Blue fires on Red target. 

The previously discussed UGS network packing density, which is directly correlated with 
deployed UGS web interconnectivity, is related to site percolation.  A concept borrowed from  

(a) (b) 

(c) (d) 
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Figure 36.  Four successive snapshots illustrating the propagation dynamics of SA data throughout the UGS 
network. 

statistical mechanics, site percolation refers to the uninterrupted flow of a resource (in this case, 
information) through a contiguous medium comprised of nodes within a 2-D regular lattice and 
is known to emerge in certain types of CA with heterogeneous cell transition rules (Wolfram 
1985).  Associated with this process is a critical packing density threshold, pc ≅ 0.593, at which  

(1) (2) 

(3) (4) 
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point the information flow between nodes changes from locally to globally continuous (Ziff 
1992).  Thus, the UGS network packing density, which is meant to represent factors such as local 
environment metrology or terrain that might tend to disrupt orderly UGS unit deployment, 
should always be maintained at a level well above pc. 

Finally, in addition to setting up the UGS network across the neutral territory surrounding the 
central Blue territory prior to mission commencement, the Blue unit is also assumed to have 
configured a field of land mines along the outer edges of its territory prior to commencement of a 
simulation run.  This preconfigured minefield is depicted in Figure 37.  In the “unlikely” event of 
Red agents reaching the periphery of Blue territory, the minefield is intended to prevent further 
penetration of invader agents via immobilization (see section 2.3.6.2).  Since the probability of a 
Red agent losing its mobility capability upon entering a mined cell is equal to 0.5 and the 
minefield is three cells in width, the probability of the agent getting through the minefield with 
mobility intact is 0.53 = 0.125. 

Figure 37.  Preconfigured land mine field surrounding Blue territory. 

The principal objective of the Red unit in this combat scenario is to allow their medium-range 
DF agents to infiltrate through the UGS network and reach the periphery of Blue territory 
without being detected (from which vantage point the Red DF agents can engage Blue targets).   
Thus, the intent of Red is to create unsensed “rips” within Blue’s UGS network (through jammer 
bomb deployment) through which the Red medium-range DF agents may move undetected.   
This “sensor web rip” operation by Red is illustrated in Figure 38, which depicts the channels 
within the UGS network wherein communication reception has been jammed during the 12th 
simulation time cycle.  Here, the color of the UGS network nodes again indicates the number of  
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Figure 38.  The status of Red’s sensor web rip 
operation by the end of the 12th 
time cycle within a 
combat_proto simulation 
instance. 

SA data messages resident in a node (see Figure 36 for an explanation of the color code).  Given 
that jammer bomb battery lifetimes have been preset to a duration of 10 successive time cycles 
subsequent to bomb deployment, the rips in the UGS network are sufficiently perpetuated to 
allow the Red medium-range DF agents ample opportunity to reach the edge of Blue territory. 

3.2.4 Simulation Results 

Combat agent simulations were run using the software framework depicted in Figure 22 in 
combination with the Fombler’s Ford scenario described in section 3.2.3 in order to explore the 
sensitivity of the following model parameters to IO stress: 

• UGS density - the average packing density of the peripheral Blue UGS network. 

• Blue fire point - the outward distance from the perimeter of Blue territory at which point 
Blue combat agents are allowed to fire on acquired Red targets. 

• Blue shots/cycle - the number of shots a firepower-equipped Blue combat agent can fire 
during one simulation time cycle. 

This sensitivity analysis was predicated on the time series response generated by 4 of the 10 
fitness functions (introduced in section 3.1.3) as applied to the following specific combat units: 

• Blue and Red combat unit survival (F3[tn]; equation 13), 

• Blue’s ability to sense the battlefield (F5[tn]; equation 15), 
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• Blue’s ability to prevent Red penetration into Blue territory with dynamic renormalization 
(F7[tn]; equation 17), and  

• collective Blue situational awareness of Red (F10[tn]; equation 20). 

In this set of simulations, these fitness functions serve as dynamic measures of collective combat 
unit performance. 

Time series results from the first of six different Fombler’s Ford scenario variants are depicted in 
Figures 39 and 40.  The purpose of this initial scenario variant is to illustrate the operational 
impact within an IO-stress-free environment (and, thus, Red “pickup truck” agents do not deploy 
jammer bombs in this variant) of Blue deploying a UGS network with a packing density less than 
the critical site percolation density pc (see section 3.2.3).  In this scenario, the model parameters 
are set to (a) UGS density = 0.55, (b) Blue fire point = 10 cells, and (c) Blue shots/cycle = 1.   
Multiple simulation instances of the scenario are run using the set of 20 sequential random seeds 
{0, 1, 2, …, 19},* and then time series results are averaged and plotted.  The Blue unit’s average 
fractional survival (Figure 39a) is significantly reduced to a post-combat level of 0.63, while the 
Red unit’s average survival rapidly drops to a near-zero level following the commencement of 
combat (and then soon achieves total attrition by time cycle 41).  Blue’s average fractional 
sensor coverage of the virtual 2-D battlespace (Figure 39b) is reduced from ~0.86 to a bit higher 
than 0.67 through the loss of sensor-equipped Blue agents.  The Blue unit’s average “defender 
fitness” capability to prevent Red penetration into Blue territory (Figure 40c) also seriously 
underperforms as a result of the subcritical UGS network packing density, where Red medium-
range DF agents are able to penetrate the periphery of Blue territory (starting at time cycle 20) 
and significantly engage Blue targets until the Red agents are killed off (by time cycle 41).  
Finally, the Blue unit’s average situational awareness of Red (Figure 40d) remains below a level 
of 0.70 out until about time cycle 30 (again attributable to the subcritical UGS density), by which 
time enough Red agents reach locations at the edge of Blue territory where engagement of Blue 
targets is possible. 

In the second Fombler’s Ford scenario variant, the UGS network packing density is raised to a 
level well above pc, while other parameters remain as before.  Simulation results from this 
scenario (again averaged over 20 simulation instances using the standard set of random seeds) 
are depicted in Figures 41 and 42.  Thus, in these runs, the model parameters are now set to (a) 
UGS density = 0.75, (b) Blue fire point = 10 cells, and (c) Blue shots/cycle = 1.  Also, in order to 
quantitatively illustrate the dynamic impact of IO stress on both Blue and Red combat unit 
operational performance, two sets of simulations are run using these model parameters.  In the 
first set, Red pickup truck agents operate without jammer bombs.  In the second set, these Red 
agents are each equipped with a supply of jammer bombs, as delineated in Figure 31. 

                                                 
* Since this sequence of 20 random seeds will also be used in subsequent scenario variant simulation runs for consistency 

purposes, it will henceforth be referred to as the “standard set of random seeds.” 



 

 66

 

                                      simulation time cycle 
(a) 

                                      simulation time cycle 
(b) 

Figure 39.  Fombler’s Ford simulation results, with UGS density = 0.55, Blue fire point = 10 cells, 
and 1 Blue shot/cycle:  (a) combat unit survival and (b) Blue sensor coverage.
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                                      simulation time cycle 

(c) 

                 
                                      simulation time cycle 

(d) 

Figure 40.  Fombler’s Ford simulation results, with UGS density = 0.55, Blue fire point = 10 
cells, and 1 Blue shot/cycle:  (c) Blue’s ability to prevent Red penetration into Blue 
territory and (d) Blue situational awareness of Red. 
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                                      simulation time cycle 

(a) 

                
                                      simulation time cycle 

(b) 

Figure 41.  Fombler’s Ford simulation results, with UGS density = 0.75, Blue fire point = 10 
cells, and 1 Blue shot/cycle:  (a) combat unit survival and (b) Blue sensor coverage. 
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                                      simulation time cycle 
(c) 

                  
                                      simulation time cycle 

(d) 

Figure 42.  Fombler’s Ford simulation results, with UGS density = 0.75, Blue fire point = 10 cells, 
and 1 Blue shot/cycle:  (c) Blue’s ability to prevent Red penetration into Blue territory 
and (d) Blue situational awareness of Red. 
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As one would expect, the operational impact of simply increasing Blue’s UGS packing density 
from 0.55 to 0.75 is considerable.  Blue’s average post-combat survival level (Figure 40a) within 
an IO-benign environment increases to 0.80, while Red’s attrition rate is slightly increased.  The 
post-combat fractional Blue sensor coverage (Figure 41b) also increases to a bit over 0.80.  
Blue’s average defender fitness level (Figure 42c) only degrades to a level of ~0.985 (indicating 
a reduction in Red’s ability to penetrate Blue territory).  Finally, Blue’s situational awareness of 
Red (Figure 42d) is sustained at levels greater than 0.70. 

However, the addition of IO stress (by equipping the Red pickup truck agents with jammer 
bombs) is seen to significantly degrade the performance of all of the time series metrics depicted 
in Figures 41 and 42.  Blue’s post-combat survival level is reduced by almost 25% under stress, 
while Red’s survival increases shortly the after the second invasion wave commencement at the 
seventh time cycle.  Blue’s sensor coverage is reduced by ~10% under stress.  Blue’s defender 
fitness is slightly degraded by the IO stress, with Red agents able to remain within the outer 
regions of Blue territory for an additional 7–8 simulation time cycles over the unstressed 
occupation time duration.  Lastly, Blue’s situational awareness of Red is significantly degraded 
by the rips induced within UGS web continuity via the Red jammer bomb deployment, 
essentially returning to levels observed in the previous scenario variant. 

In the third Fombler’s Ford scenario variant, Blue’s fire point is increased so that Red targets are 
now engaged as soon as they are introduced at the edge of the CA lattice (with other parameters 
remaining as before).  Simulation results from this scenario (again averaged over the standard set 
of random seeds) are depicted in Figures 43 and 44.  In these runs, the model parameters are next 
set to (a) UGS density = 0.75, (b) Blue fire point = 17 cells, and (c) Blue shots/cycle = 1; again, 
two sets of simulations are run (with and without jammer bombs).  Here, Blue’s average 
unstressed post-combat survival level (Figure 43a) increases to 0.92, with Red’s attrition rate 
even slightly greater than in the previous scenario; again, the addition of IO stress degrades the 
former performance and improved the latter.  The post-combat fractional Blue sensor coverage 
(Figure 43b) increases to a level of ~0.88 without stress and then drops to 0.837 under stress.  
Next, Blue’s average defender fitness (Figure 44c) virtually remains at ~1.00 without IO stress 
and is then degraded down to similar levels as seen in the previous scenario variant upon the 
introduction of stress.  Finally, unstressed Blue situational awareness of Red (Figure 44d) is 
sustained at levels now greater than 0.80; again, these levels drop significantly when Red agents 
are allowed to use their jammer bombs. 

In the fourth Fombler’s Ford scenario variant, Blue’s fire point is reduced to its original value 
while that unit’s firepower engagement rate is increased.  Simulation results from this scenario 
(averaged over the standard set of random seeds) are depicted in Figures 45 and 46.  In these 
runs, the model parameters are next set to (a) UGS density = 0.75, (b) Blue fire point = 10 cells, 
and (c) Blue shots/cycle = 3; again, sets of simulations with and without IO stress are run.  In this 
case, Blue’s average performance within both unstressed and IO-stressed environments 
regarding post-combat survival level (Figure 46a), fractional sensor coverage (Figure 45b), 
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                                      simulation time cycle 

(a) 

                
                                      simulation time cycle 

(b) 

Figure 43.  Fombler’s Ford simulation results, with UGS density = 0.75, Blue fire point = 17 
cells, and 1 Blue shot/cycle:  (a) combat unit survival and (b) Blue sensor coverage. 
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                                      simulation time cycle 
(c) 

                  
                                      simulation time cycle 

(d) 

Figure 44.  Fombler’s Ford simulation results, with UGS density = 0.75, Blue fire point = 17 
cells, and 1 Blue shot/cycle:  (c) Blue’s ability to prevent Red penetration into Blue 
territory and (d) Blue situational awareness of Red. 
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                                      simulation time cycle 

(a) 

                
                                      simulation time cycle 

(b) 

Figure 45.  Fombler’s Ford simulation results, with UGS density = 0.75, Blue fire point = 10 
cells, and 3 Blue shots/cycle:  (a) combat unit survival and (b) Blue sensor 
coverage. 
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                                      simulation time cycle 
(c) 

 
                                      simulation time cycle 

(d) 

Figure 46.  Fombler’s Ford simulation results, with UGS density = 0.75, Blue fire point  
= 10 cells, and 3 Blue shots/cycle:  (c) Blue’s ability to prevent Red penetration 
into Blue territory and (d) Blue situational awareness of Red. 



 

 75

defender fitness (Figure 46c), and Blue situational awareness of Red (Figure 46d) is actually 
inferior to the previous scenario variant (where Blue fire point = 17 cells).  Red’s average 
operational performance, on the other hand, is improved within this variant compared to that 
unit’s performance in the previous scenario.  Comparison of Blue and Red unit performance 
within this scenario relative to the previous scenario suggests that allowing Blue an earlier 
opportunity to engage invasive Red agents is more operationally significant than increasing the 
former’s firepower engagement rate. 

In the fifth Fombler’s Ford scenario variant, the packing density of Blue’s UGS network is 
further increased to a maximal level (with other parameters reflecting values from the second 
scenario variant).  Simulation results from this scenario (averaged over the standard set of 
random seeds) are depicted in Figures 47 and 48.  Now, the model parameters are next set to (a) 
UGS density = 1.00, (b) Blue fire point = 10 cells, and (c) Blue shots/cycle = 1; again, sets of 
simulations are run with and without jammer bombs.  In this scenario, both Blue and Red 
average post-combat survival (Figure 47a) reflect levels observed in the fourth scenario variant 
simulations within both benign and IO-stressed environments.  Blue’s post-combat fractional 
sensor coverage (Figure 47b) in both benign and stressed environments is slightly improved over 
levels seen in the previous scenario variant (as would be expected given the maximal UGS 
network density).  Interestingly, Blue’s average defender fitness (Figure 48c), although reflecting 
similar levels as in the previous scenario, is degraded under stress for a much shorter time 
interval than that observed in all previous scenario variants.  This is likely attributable to 
improved Blue situational awareness of Red agents crossing over the UGS network (resulting 
from the maximal UGS packing density).  This is indeed confirmed in the plot depicting Blue’s 
situational awareness of Red (Figure 48d), where IO-stressed Blue unit awareness is sustained at 
levels comparable to those seen in the third scenario variant (where fewer Red agents have the 
opportunity to cross the UGS network due to Blue’s employment of an “early response” maximal 
fire engagement point). 

In the sixth and last Fombler’s Ford scenario variant, the values for Blue fire point, Blue 
shots/cycle, and UGS packing density used in the third, fourth, and fifth scenario variants, 
respectively, are combined to create an optimal Blue unit configuration (within the limits of the 
sensitivity analysis).  Simulation results from this final scenario (averaged over the standard set 
of random seeds) are depicted in Figures 49 and 50.  In this particular run, the model parameters 
are set to (a) UGS density = 1.00 (maximum density), (b) Blue fire point = 17 cells (i.e., Red 
agents are engaged as they are introduced at the edge of the CA lattice), and (c) Blue shots/cycle 
= 3 (with Red shots/cycle still equal to 1).  Blue’s average post-combat survival level  
(Figure 49a) is, in this case, only reduced by a little over 5% under IO stress (maintaining a new 
peak level of ~0.90), with an associated peak attrition rate of Red agents under these conditions.  
The average post-combat Blue sensor coverage (Figure 49b) is only reduced from ~0.932 to a 
little over 0.916, reflecting enhanced survivability of sensor-equipped Blue agents.  Blue’s 
defender fitness (Figure 50c) almost remains unchanged going from a benign to IO-stressed 
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                                      simulation time cycle 

(a) 

                
                                      simulation time cycle 

(b) 

Figure 47.  Fombler’s Ford simulation results, with UGS density = 1.00, Blue fire point = 10 cells, and 
1 Blue shot/cycle:  (a) combat unit survival and (b) Blue sensor coverage. 
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                                      simulation time cycle 

(c) 

                 
                                      simulation time cycle 

(d) 

Figure 48.  Fombler’s Ford simulation results, with UGS density = 1.00, Blue fire point = 10 cells, and 
1 Blue shot/cycle:  (c) Blue’s ability to prevent Red penetration into Blue territory and (d) 
Blue situational awareness of Red. 
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                                      simulation time cycle 

(a) 

                
                                      simulation time cycle 

(b) 

Figure 49.  Fombler’s Ford simulation results, with UGS density = 1.00, Blue fire point = 17 
cells, and 3 Blue shots/cycle:  (a) combat unit survival and (b) Blue sensor 
coverage. 
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                                      simulation time cycle 

(c) 

                 
                                      simulation time cycle 

(d) 

Figure 50.  Fombler’s Ford simulation results, with UGS density = 1.00, Blue fire point = 
17 cells, and 3 Blue shots/cycle:  (c) Blue’s ability to prevent Red penetration 
into Blue territory and (d) Blue situational awareness of Red. 



 

 80

environment, while the Red agent sustains penetration into Blue territory reaching a minimal 
level (relative to model parameter constraints).  Finally, Blue’s situational awareness of Red 
(Figure 50d) is still degraded by jammer-bomb-induced UGS web discontinuities, but the 
sustained magnitude and duration of Blue’s awareness here achieves peak levels relative to all 
other scenario variants studied under the sensitivity analysis.  These plots quantitatively illustrate 
how providing the Blue unit with a combination of enhanced operational capabilities can act 
together to significantly attenuate the perturbative impact of a form of IO stress that results in 
denial of communication network connectivity. 

Further insight into how enhanced Blue unit operational capabilities act to improve Blue’s 
situational awareness of Red can be gained by characterizing the sustainment of the latter metric 
throughout a combat simulation.  This is done through the use of a return map, which is (in the 
current context) a 2-D scatter plot of BSAR (i.e., Blue’s situational awareness of Red) evaluated 
at simulation time cycle tn+1 vs. BSAR evaluated at time cycle tn.  A return map illustrates the 
dynamics of a one-dimensional time series (i.e., a time series with just one independent variable) 
in a recursive rather than successive format.  Figures 51–53 illustrate BSAR return maps for the 
first, second, and sixth Fombler’s Ford scenario variants, respectively (where each return map 
displays a superposition of data collected from the 20 simulation instances run for each variant).   
In Figure 51, the perpetuated BSAR levels (measured in an unstressed benign environment) 
resultant from the Blue UGS network deployed with a (subcritical) average packing density of 
0.55 form a fairly dispersive point cluster with a CM located at 0.489 and 0.493.*  This benign-
environment BSAR cluster is seen to move towards the upper right-hand corner of the plot when 
the UGS packing density is increased to 0.75 (the blue square points in Figure 52), with the point 
cluster CM now located at 0.848 and 0.850.  However, the introduction of IO stress into this 
scenario variant serves to slide the BSAR cluster back towards the lower left-hand corner (the 
red cross points in Figure 52), where the cluster CM degrades to a location of 0.555 and 0.554.   
Finally, as demonstrated in Figure 53, the implementation of maximal levels of UGS packing 
density, Blue fire point, and Blue shots per time cycle drives the benign-environment BSAR 
cluster (blue square points) far into the upper right-hand corner, with a point cluster CM located 
at 0.979 and 0.978.  As previously stated (and is now clearly observable in this last return map), 
the introduction of IO stress into this last scenario variant has minimal impact on perpetuated 
BSAR levels, where the point cluster CM now only degrades to 0.953 and 0.952. 

                                                 
* All return map data are collected up to and including simulation time cycle 41 to reflect the maximal time window of 

nonzero Red combat agent survival levels observed across the Fombler’s Ford scenario variants. 
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Figure 51.  BSAR return map for the Fombler’s Ford simulation, with UGS density 
= 0.55, Blue fire point = 10 cells, and 1 Blue shot/cycle. 

Figure 52.  BSAR return map for both benign environment (blue squares) and IO-
stressed (red crosses) Fombler’s Ford simulations, with UGS density  
= 0.75, Blue fire point = 10 cells, and 1 Blue shot/cycle. 
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Figure 53.  BSAR return map for both benign environment (blue squares) and IO-
stressed (red crosses) Fombler’s Ford simulations, with UGS density 
 = 1.00, Blue fire point = 17 cells, and 3 Blue shots/cycle. 

4. Conclusions 

In this research, a CA-based software model of IO-stressed network-centric battle units has been 
developed and demonstrated.  The resulting model serves to demonstrate both coevolutionary 
unit configuration optimization of sparring Blue/Red network-centric combat units 
(combat_ga/GA combination) and enhanced network-centric operations of a Blue combat unit 
in a defensive posture against Red invaders (combat_proto).  In the former case, the 
nonconvergence of fitness levels is due (at least in part) to the limited network-centric 
functionality built into combat_ga, where Blue’s access to greater communication ranges still 
doesn’t guarantee that all Blue combat agents will always share the same collective situational 
“picture” of the battlespace.  The combined CA/GA model does, however, demonstrate 
coevolutionary exploration of different combat agent classes based on hardware capability and 
behavioral configurations.  In the case of the enhanced CA simulation engine, combat_proto 
serves to quantitatively demonstrate network-centric operations of a Blue combat unit in a 
defensive posture against Red invaders.  In particular, the enhanced CA engine illustrates the 
operational impact of IO stress on Blue unit performance and the ways in which Blue can 
maintain operational robustness when encountering such stress. 
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Given that the combat agents used within the CA models are reactive in nature (with limited 
decision-making capability and no explicit “commander” type of agent able to formulate new 
tactical strategies when operationally required), the next step in model development is to provide 
agents with more deliberative behaviors, thus providing a framework for the hierarchical C2 
decision-related structures ubiquitous to all military combat units.  Current research into building 
more complex varieties of decision-making military command agents (Zhang et al. 2001) as well 
as hostile terrorist-style agents operating within densely-populated urban areas (Harper 2000) 
can provide a foundation for designing deliberative combat agents.  Further work is still required, 
however, in order to realize rapidly adaptive agents operating within a network-centric combat 
structure. 
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Appendix.  Blue/Red Genome Classification for the Coevolutionary 
Simulation 

In this appendix, plots of the coevolutionary dynamics of both Blue and Red combat unit 
genomes across 1360 successive generations are presented in Figures A-1 through A-19.  In 
these plots, the coevolutionary dynamics are expressed relative to genome membership in 
various sets of combat agent classes (Tables A-1 through A-19) based on one or more 
chromosome genes.  In all, 19 different types of combat agent classes are defined (based on the 
23 chromosome genes preconfigured as mutable in the Blue/Red coevolution example presented 
in section 3.1.6), with a table summarizing the agent classes relative to a gene (or combination of 
genes) and associated plot of population per class (partitioned into Blue and Red agent 
populations) as a function of coevolutionary generation.   In the cases where gene values are 
partitoned into a set of classes defined by very low, low, moderate, high, and very high levels, 
allele ranges per class are proportional to the unit interval partition used by Guzie for 
vulnerability risk assessment.1 

                                                 
1 Guzie, G. L.  “Vulnerability Risk Assessment.”  ARL-TR-1045, U.S. Army Research Laboratory, White Sands Missile 

Range, NM, pp. 21–32, June 2000. 
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(a) 

                  
(b) 

Figure A-1.  Coevolutionary dynamics of firepower range classes with class population (y-axis) 
vs. coevolutionary generation (x-axis):  (a) Blue unit and (b) Red unit. 
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(a) 

                    
(b) 

Figure A-2.  Coevolutionary dynamics of single-shot Phit classes with class population (y-axis) 
vs. coevolutionary generation (x-axis):  (a) Blue unit and (b) Red unit. 
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(a) 

                
(b) 

Figure A-3.  Coevolutionary dynamics of firepower strength classes with class population (y-axis) 
vs. coevolutionary generation (x-axis):  (a) Blue unit and (b) Red unit. 

 



 

 91

 

                  
(a) 

                  
(b) 

Figure A-4.  Coevolutionary dynamics of firepower round limit classes with class 
population (y-axis) vs. coevolutionary generation (x-axis):  (a) Blue unit and 
(b) Red unit. 
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(a) 

                 
(b) 

Figure A-5.  Coevolutionary dynamics of armor strength classes with class population (y-axis) vs. 
coevolutionary generation (x-axis):  (a) Blue unit and (b) Red unit. 
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(a) 

                  
(b) 

Figure A-6.  Coevolutionary dynamics of sensor range classes with class population (y-axis) vs. 
coevolutionary generation (x-axis):  (a) Blue unit and (b) Red unit. 



 

 94

 

                
(a) 

                 
(b) 

Figure A-7.  Coevolutionary dynamics of carried land mine classes with class population (y-axis) vs. 
coevolutionary generation (x-axis):  (a) Blue unit and (b) Red unit. 
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(a) 

 
(b) 

Figure A-8.  Coevolutionary dynamics of carried RF jammer bomb classes with class population 
(y-axis) vs. coevolutionary generation (x-axis):  (a) Blue unit and (b) Red unit. 
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(a) 

                  
(b) 

Figure A-9.  Coevolutionary dynamics of mine/jammer bomb deployment probability with 
class population (y-axis) vs. coevolutionary generation (x-axis):  (a) Blue unit 
and (b) Red unit. 
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(a) 

 
(b) 

Figure A-10.  Coevolutionary dynamics of signature classes with class population (y-axis) vs. 
coevolutionary generation (x-axis):  (a) Blue unit and (b) Red unit. 
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(a) 

                  
(b) 

Figure A-11.  Coevolutionary dynamics of crew classes with class population (y-axis) vs. 
coevolutionary generation (x-axis):  (a) Blue unit and (b) Red unit. 
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(a) 

                  
(b) 

Figure A-12.  Coevolutionary dynamics of maximum speed classes with class population (y-
axis) vs. coevolutionary generation (x-axis):  (a) Blue unit and (b) Red unit. 
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(a) 

                  
(b) 

Figure A-13.  Coevolutionary dynamics of transportation mode classes with class population (y-
axis) vs. coevolutionary generation (x-axis):  (a) Blue unit and (b) Red unit. 
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(a) 

                  
(b) 

Figure A-14.  Coevolutionary dynamics of attack initiation classes with class population  
(y-axis) vs. coevolutionary generation (x-axis):  (a) Blue unit and (b) Red unit. 
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(a) 

                  
(b) 

Figure A-15.  Coevolutionary dynamics of friendly attraction/repulsion classes with class 
population (y-axis) vs. coevolutionary generation (x-axis):  (a) Blue unit and (b) 
Red unit. 



 

 103

 

 
(a) 

                  
(b) 

Figure A-16.  Coevolutionary dynamics of enemy attraction/repulsion classes with class population  
(y-axis) vs. coevolutionary generation (x-axis):  (a) Blue unit and (b) Red unit. 
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(a) 

                   
(b) 

Figure A-17.  Coevolutionary dynamics of friendly territory attraction/repulsion classes with 
class population (y-axis) vs. coevolutionary generation (x-axis):  (a) Blue unit 
and (b) Red unit. 



 

 105

 

                   
(a) 

                   
(b) 

Figure A-18.  Coevolutionary dynamics of enemy territory attraction/repulsion classes with class 
population (y-axis) vs. coevolutionary generation (x-axis):  (a) Blue unit and (b) 
Red unit. 
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(a) 

                  
(b) 

Figure A-19.  Coevolutionary dynamics of agitation classes with class population (y-axis) vs. 
coevolutionary generation (x-axis):  (a) Blue unit and (b) Red unit. 
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Table A-1.  Combat agent classes based on gene G0 (firepower range). 

Combat Agent Class Gene G0 (Firepower Range) 
no firepower 0 

very short-range firepower 1–5 cells 
short-range firepower 6–10 cells 

Table A-2.  Combat agent classes based on gene G1 (single-shot Phit). 

Combat Agent Class Gene G1 (Single-Shot Phit) 
very low Phit 0 < G1 < 0.20 

low Phit 0.20 < G1 < 0.40 
moderate Phit 0.40 < G1 < 0.60 

high Phit 0.60 < G1 < 0.80 
very high Phit 0.80 < G1 < 1.00 

Table A-3.  Combat agent classes based on gene G2 (firepower strength). 

Combat Agent Class Gene G2 (Firepower Strength) 
very low-fire strength 0 < G2 < 4 

low-fire strength 4 < G2 < 8 
moderate-fire strength 8 < G2 < 12 

high-fire strength 12 < G2 < 16 
very high-fire strength 16 < G2 < 20 

Table A-4.  Combat agent classes based on gene G3 (firepower number of rounds). 

Combat Agent Class Gene G3 (Firepower Number of Rounds) 
very low-fire limit 0 < G3 < 51 

low-fire limit 51 < G3 < 102 
moderate fire limit 102 < G3 < 153 

high-fire limit 153 < G3 < 204 
very high-fire limit 204 < G3 < 255 

Table A-5.  Combat agent classes based on gene G4 (armor strength). 

Combat Agent Class Gene G4 (Armor Strength) 
very low-armor strength 0 < G4 < 4 

 low-armor strength 4 < G4 < 8 
moderate-armor strength 8 < G4 < 12 

high-armor strength 12 < G4 < 16 
very high-armor strength 16 < G4 < 20 
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Table A-6.  Combat agent classes based on gene G5 (sensor range). 

Combat Agent Class Gene G5 (Sensor Range) 
very short-range sensor 0 < G5 < 8 cells 

short-range sensor 8 cells < G5 < 16 cells 
medium-range sensor 16 cells < G5 < 24 cells 

long-range sensor 24 cells < G5 < 32 cells 
very long-range sensor 32 cells < G5 < 40 cells 

Table A-7.  Combat agent classes based on gene G11 (carried land mines). 

Combat Agent Class Gene G11 (Carried Land Mines) 
very few land mines 0 < G11 < 51 

few land mines 51 < G11 < 102 
moderate number of land mines 102 < G11 < 153 

many land mines 153 < G11 < 204 
very many land mines 204 < G11 < 255 

Table A-8.  Combat agent classes based on gene G12 (carried RF jammer bombs). 

Combat Agent Class Gene G12 (Carried RF Jammer Bombs) 
very few jammer bombs 0 < G12 < 51 

few jammer bombs 51 < G12 < 102 
moderate number of jammer bombs 102 < G12 < 153 

many jammer bombs 153 < G12 < 204 
very many jammer bombs 204 < G12 < 255 

Table A-9.  Combat agent classes based on gene G14 (probability of mine/jammer bomb deployment in cell). 

Combat Agent Class Gene G14 (Probability Mine/Jammer Bomb Deployment) 
very low Pdeploy 0 < G14 < 0.10 

low Pdeploy 0.10 < G14 < 0.40 
moderate Pdeploy 0.40 < G14 < 0.60 

high Pdeploy 0.60 < G14 < 0.90 
very high Pdeploy 0.90 < G14 < 1.00 

Table A-10.  Combat agent classes based on gene G15 (signature). 

Combat Agent Class Gene G15 (Signature) 
very low visibility 0 < G15 < 0.10 

low visibility 0.10 < G15 < 0.40 
moderate visibility 0.40 < G15 < 0.60 

high visibility 0.60 < G15 < 0.90 
very high visibility 0.90 < G15 < 1.00 
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Table A-11.  Combat agent classes based on gene G16 (number of human crews). 

Combat Agent Class Gene G16 (Number of Crews) 
no crew 0 

one crewmember 1 
two crewmembers 2 
three crewmembers 3 

more than three crewmembers > 3 

Table A-12.  Combat agent classes based on gene G17 (maximum speed). 

Combat Agent Class Gene G17 (Maximum Speed) 
immobile 0 
very slow 1 – 2 

slow 3 – 4 
moderate 5 – 6 

fast 7 – 8 
very fast 9 – 10 

Table A-13.  Combat agent classes based on gene G18 (mode of transportation). 

Combat Agent Class Gene G18 (Mode of Transportation) 
ground vehicle 0 (signifying a ground-based agent) 

air vehicle 1 (signifying an air-based agent) 

Table A-14.  Combat agent classes based on gene G20 (probability of initiating an attack). 

Combat Agent Class Gene G20 (Probability Initiating Attack) 
very low Pinitiate attack 0 < G20 < 0.10 

low Pinitiate attack 0.10 < G20 < 0.40 
moderate Pinitiate attack 0.40 < G20 < 0.60 

high Pinitiate attack 0.60 < G20 < 0.90 
very high Pinitiate attack 0.90 < G20 < 1.00 

Table A-15.  Combat agent classes based on a combination of genes G21 (friendly attraction) and G22 (friendly 
repulsion). 

Combat Agent Class Genes G21 and G22 (Friendly Attraction/Repulsion) 
collaborative G21 > 0.50 and G22 < 0.50 

noncollaborative G21 < 0.50 and G22 > 0.50 
indecisive G21 > 0.50 and G22 > 0.50 

uninterested G21 < 0.50 and G22 < 0.50 

Table A-16.  Combat agent classes based on a combination of genes G23 (enemy attraction) and G24 (enemy 
repulsion). 

Combat Agent Class Genes G23 and G24 (Enemy Attraction/Repulsion) 
noncovert G23 > 0.50 and G24 < 0.50 

covert G23 < 0.50 and G24 > 0.50 
indecisive G23 > 0.50 and G24 > 0.50 

unconcerned G23 < 0.50 and G24 < 0.50 
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Table A-17.  Combat agent classes based on a combination of genes G25 (friendly territory attraction) and G26 
(friendly territory repulsion). 

 
Combat Agent Class 

Genes G25 and G26 (Friendly Territory 
Attraction/Repulsion) 

defensive G25 > 0.50 and G26 < 0.50 
nondefensive G25 < 0.50 and G26 > 0.50 

indecisive G25 > 0.50 and G26 > 0.50 
unconcerned G25 < 0.50 and G26 < 0.50 

Table A-18.  Combat agent classes based on a combination of genes G27 (enemy territory attraction) and G28 (enemy 
territory repulsion). 

 
Combat Agent Class 

Genes G27 and G28 (Enemy Territory 
Attraction/Repulsion) 

invasive G27 > 0.50 and G28 < 0.50 
noninvasive G27 < 0.50 and G28 > 0.50 
indecisive G27 > 0.50 and G28 > 0.50 

uninterested G27 < 0.50 and G28 < 0.50 

Table A-19.  Combat agent classes based on gene G29 (probability of agitation). 

Combat Agent Class Gene G29 (Probability of Agitation) 
very low Pagitation 0 < G29 < 0.10 

low Pagitation 0.10 < G29 < 0.40 
moderate Pagitation 0.40 < G29 < 0.60 

high Pagitation 0.60 < G29 < 0.90 
very high Pagitation 0.90 < G29 < 1.00 
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