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1. Introduction 
~ . 

. 

I . 

Prediction of the in-flight motion of projectiles requires the determination of the aerodynamic 
forces and moments that act on the body during the course of its trajectory. These aerodynamic 
forces and moments may be determined from free-flight aerodynamics ranges (I), wind tunnel 
experiments (2), or theoretical approaches, such as computational fluid dynamics (0). In the 
supersonic flight regime, static aerodynamic coefficients such as drag and pitching moment have 
been routinely computed using CFD for a number of years (3,4). Much less routine are 
predictions of dynamic aerodynamic coefficients, such as the pitch damping and Magnus 
coefficients. A computational capability for predicting the Magnus forces and moments for 
smooth medium- and large-caliber flight bodies has existed since the early 1980s (3,4). With 

-the recent development of capabilities for predicting the damping derivatives (5), it is now 
possible to predict the stability characteristics and free-flight motion for projectiles using data 
that are derived solely from CFD. 

While previous research work has focused on predictions of the individual aerodynamic 
coefficients, this report focuses on the predictions of aerodynamic performance, in particular, 
aerodynamic stability. This report attempts to demonstrate, through a particular case study, the 
suitability and accuracy of Navier-Stokes computational techniques for the prediction of 
projectile performance and stability. Until recently, this was not possible since methods had not 
been implemented to predict all the necessary coefficients. 

As a demonstration of the capability, this report will present results for a family of axisymmetric 
projectiles in supersonic flight. The particular configuration selected for this computational 
study has been extensively tested in aeroballistic ranges, and high-quality experimental data have 
been obtained (I). The configuration consists of 5-,7-, and g-caliber length versions. By 
varying the mass distribution, three different centers of gravity (CG) were tested for each body 
length. A schematic of the configuration is shown in Figure 1. 

The computational results were obtained by applying a parabolized Navier-Stokes (PNS) 
approach to compute the attached viscous flow over the forebody of the projectile. Aerodynamic 
forces and moments were then extracted from the computed flow fields by integration of the 
predicted pressure and shear stresses acting on the projectile surface. To compute the 
recirculating flow at the base of the projectile and subsequently the base drag, a time-marching 
Navier-Stokes approach was applied. 

Using the predicted aerodynamics coefficients, parameters that characterize the in-flight motion 
are subsequently evaluated, including the gyroscopic and dynamic stability factors and the 
projectile’s fast and slow mode frequencies and damping coefficients. These parameters are then 



ALL DIMENSIONS IN CALIBERS (ONE CALIBER = 20 mm) 

Figure 1. Schematic of Army-Navy Spinner rocket (ANSR) configuration. 

used to predict the free-flight motion of the projectile. In each case, the computational approach 
is validated by comparison with experimental data. 

2. Computational Approach 

The supersonic viscous flow field about the projectile configuration was obtained by applying a 
parabolized Navier-Stokes technique to determine the attached flow field over the projectile 
forebody and a time-marching Navier-Stokes technique to determine the recirculating flow in the 
base region. Both of these numerical techniques are briefly described in the following 
subsections. 

2.1 The PNS Approach 

Computation of the attached viscous flow field about the projectile forebody was accomplished 
by solving the thin-layer Navier-Stokes equations using the PNS technique of Schiff and Steger 
(6). Using the PNS technique, computational results are obtained by marching through the grid 
from the projectile nose to the base. This technique is applicable in the supersonic flow regime 
and requires that the flow field contain no regions of flow separation in the axial direction. 
Because the computational approach requires only a single sweep through the computational 
grid, it is very efficient, compared with time-marching approaches that require many sweeps 
through the grid. 

As is standard practice, prediction of the static aerodynamic coefficients, such as pitching 
moment and normal force coefficients, are performed by computing the flow field about the 
projectile at a constant angle of attack. The Magnus coefficients are obtained from a 
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computation of the flow field at a constant angle of attack and spin rate. Since the static 
aerodynamics for spinning axisymmetric bodies are generally invariant with spin rate, it is 
possible to obtain the static aerodynamic coefficients and the Magnus coefficients Tom a single 
computation. The pitch-damping coefficients are determined from the side force and moment 
acting on the projectile undergoing steady coning motion. Steady coning motion is defined as 
the motion performed by a missile flying at a constant angle with respect to the freestream 
velocity vector and undergoing a rotation at a constant angular velocity about a line parallel to 
the freestream velocity vector and coincident with the projectile’s CG. Coning motion is, in fact, 
a specific combination of two orthogonal planar pitching motions plus a spinning motion. From 
linear flight mechanics theory, it can be shown that the pitch-damping coefficients are related to 
the side force and moment due to steady coning motion (5). 

The flow field predictions of the projectile in steady coning motion have been performed in a 
novel rotating coordinate frame that rotates at the roll rate or coning rate of the projectile. The 
fluid flow relative to the rotating coordinate frame does not vary with time, allowing the steady 
(non-time varying) Navier-Stokes equations to be applied. To implement the rotating coordinate 
frame, the governing equations have been modified to include the effect of centrifugal and 
Coriolis forces. The steady, thin-layer Navier-Stokes equations are shown in equation 1: 

Here, I?, F, and 6 are the inviscid flux vectors, S is the viscous flux vector, and H is the 
source term containing the Coriolis and centrifugal force terms, which result from the rotating 
coordinate frame. Each of these matrices is a function of the dependent variables represented by 
the vector q(p, pu, pv, pw, e), where p and e are the density and the total energy per unit volume, 
and u, v, and w, are the velocity components in x, y, and z directions. Further details of the flux 
terms and the source term containing the Coriolis and centrifugal forces are given by Schiff and 
Steger (6) and Weinacht et al. (5), respectively. 

The thin-layer equations are solved using the PNS technique of Schiff and Steger (6). Following 
the approach of Schiff and Steger, the governing equations, which have been modified here to 
include the Coriolis and centrifugal force terms, are solved using a conservative, approximately 
factored, implicit finite-difference numerical algorithm as formulated by Beam and Warming (7). 
A fully turbulent boundary layer has been modeled using the Baldwin-Lomax turbulence model 
(8X 

The computations presented here were performed using a shock-fitting procedure reported by 
Rai and Chaussee (9). This procedure solves the five Rankine-Hugoniot jump conditions, two 
geometric shock-propagation conditions, and one compatibility equation to determine the values 
of the five dependent variables immediately behind the shock, as well as the position of the 
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shock. The shock-fitting procedure was appropriately modified when coning motion was 
employed (5). 

The computational results presented here were obtained using a grid that consisted of 60 points 
between the body and the shock. In the circumferential direction, gridding was performed over 
the entire body 360” using 36 points spaced at 10’ increments. Approximately 75 axial 
marching steps were used for each caliber of body length. Because several of the aerodynamic 
coefficients are strongly influenced by viscous effects, the boundary layer was adapted by 
monitoring the nondimensional boundary layer coordinate, y”, along the leeside of the body and 
adjusting the normal grid spacing so that the y’ was -3. This approach has been successfully 
applied in previous studies (3). 

The computations have been performed on a variety of computer platforms. Typical solutions 
for a single set of conditions (Mach number, coning rate, angle of attack, etc.) required 5-10 min 
total CPU time on a Cray SVl computer. 

The selection of grid parameters for the current study is consistent with those used in the 
previous studies that focused on the individual aerodynamics coefficients (3-5). The grid 
requirements shown in these previous studies indicate that accurate results for the complete set of 
aerodynamics coefficient can be obtained with a single grid. As part of the current effort, a grid 
refinement study for the length-to-diameter-ratio ([LJD] = 9) body, middle CG position was also 
performed. A more refined grid with 90 points between the body and the shock, 72 
circumferential points and 150 axial marching steps for each caliber of body length was utilized. 
A comparison of the results obtained with the baseline and refined grids indicated a maximum 
difference of 4.5% between the two complete sets of aerodynamic coefficients. 

2.2 The Time-Marching Approach 

For the recirculating flow in the base region of the flow field, the PNS technique can no longer 
be used, and a more generally applicable approach such as the time-marching technique must be 
applied. The time-marching technique is based on the unsteady or time-dependent Navier- 
Stokes equations. For steady flow applications, such as those discussed here, the solution is 
obtained by marching an initial “guessed” solution to a final converged solution in a time- 
iterative manner. This requires the entire flow field to be updated at each time step and 
numerous time steps are required as the solution evolves to the converged steady-state result. 
Because of this, the time-marching approach is much more computationally intensive in terms of 
its run-times and computer memory requirements than the PNS technique. 

For the predictions presented here, the time-dependent approach was applied to compute the 
axisymmetric (zero angle of attack) base flow as a means of evaluating the zero-yaw drag. The 
small, but measurable, effect of yaw on drag was not considered in this study. The effect of the 
base flow on the other coefficients was also assumed to be small. 
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The particular time-marching technique applied here is the implicit, partially flux-split, upwind 
numerical scheme developed by Steger and his colleagues (10, II). The technique is based on 
the flux-splitting approach of Steger and Warming (12) and is often referred to as the F3D 
technique. The upwind scheme provides natural numerical dissipation, better stability properties 
and better computational efficiency compared with implicit central differencing schemes 
(l&12). 

The technique is based on the time-dependent thin-layer Navier-Stokes equations shown in 
equation 2: 

The flux-splitting algorithm of the F3D approach reduces the computational requirements by 
eliminating one of the three implicit inversions associated with the central difference Beam- 
Warming algorithm (7). The two-factor implicit algorithm involves two sweeps through the grid 
at each time step. The first sweep involves inverting the block tridiagonal system of equations in 
the r-direction along grid lines of constant 4 and 77 to determine the intermediate solution 
variable. During the second sweep, a second block tridiagonal system of equations is inverted in 
the v-direction along grid lines of constant c and <to determine the dependent variable. 

The particular version of the code applied here has a multizone capability that allows the 
computational grid to be decomposed into smaller blocks. This allows greater flexibility in 
gridding of flight bodies, particularly when it is desirable to preserve sharp comers. The 
multizone capability also allows the computer memory requirement for the computation to be 
reduced since only one zone needs to be in memory at a time and the other zones can be stored 
on disk. This capability was implemented by Sahu and Steger (II). 

The zonal gridding approach was used to compute the recirculating viscous flow in the base 
region. A large grid zone was located in the base region and extended axially from the projectile 
base 6.35 calibers down stream. In the radial direction, the grid extended outward from the axis 
of symmetry to a radial location 3.5 calibers above the base comer. 

To allow the flow to properly expand around the base comer, a small zone, one body diameter in 
length, was placed on the forebody upstream from the base comer. This grid had a one-plane 
overlap with the base grid and a one-to-one mapping of the grid points in the overlap region. 
The dimensions of the base grid were 120 axial points, 50 radial points along the base, and 50 
radial points above the base comer. The forebody grid had 30 axial points and 50 radial points. 
Clustering of the grid points in the radial direction was performed to resolve the boundary layer 
on the forebody and the shear layer in the base region. The algebraic turbulence model of Chow 
(13) was applied in the base region. 
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3. Results 

As a first step in evaluating the aerodynamic performance of a flight vehicle, the aerodynamic 
force and moment coefficients must be evaluated. The aerodynamic coefficients allow forces 
and moments due to complicated three-dimensional (3-D) motions to be characterized as a 
combination of aerodynamic forces and moments due to simple specific motions. The individual 
aerodynamic coefficients can provide insight into the aerodynamic performance of the flight 
vehicles. 

3.1 Aerodynamic Moments 

For symmetric missiles, the aerodynamic moments are typically modeled using the following 
moment expansion which is cast in a non-rolling coordinate frame (14). The moment 
formulation makes use of complex variables to separate the moment components, e, and e, 
which produce rotations in the vertical and horizontal planes, respectively. The moment about 
the longitudinal axis of the vehicle, Cl, can be treated separately. 

In the moment formulation, the pitching moment coefficient, Cm*, produces a moment 

proportional to the complex angle of attack, z. For small angle-of-attack flight, the cosine of 
the total angle of attack, y , is nearly 1. This allows the pitch-damping moment coefficient, 

cq +c,&, which produces moments proportional to the angular rate z’ , to be treated as a 

single coefficient. The Magnus moment coefficient, C,,= , accounts for a side moment due to 

flow asymmetries from a combination of spin and angle of attack. 

Over the past decade and a half, CFD techniques have been developed to predict the various 
aerodynamic coefficients previously discussed. The pitching moment coefficient, C,= , has 

been routinely determined for various configurations and flight regimes for well over a decade. 
The prediction of the Magnus coefficients for axisymmetric projectiles at supersonic velocities 
was demonstrated in the early 1980s (3). The Magnus problem is still a research topic for 
complicated vehicles and at transonic velocities. More recently, techniques for predicting the 
pitch-damping coefficient, C, + C,, , based on the solution of the Navier-Stokes equations 

have been developed (5). Although the development of a capability to predict each individual 
aerodynamic coefficient can be considered an important research accomplishment, it was not 
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possible to predict the stability characteristics of projectiles using CFD until a complete 
capability for predicting all the aerodynamic coefficients was developed. The prediction of the 
pitch damping coefficient represented that final step. 

Figures 2-4 show results of CFD predictions for the pitching moment, Magnus moment and 
pitch-damping moment coefficients performed as part of the current study. Results for a 
free-flight Mach number of 1.8 are shown for each of the three CG locations and body lengths. 
In general, the CFD predictions appear to be in good agreement with the experimental data 
obtained from range firings of these projectiles. Results obtained at Mach 2.5 also show similar 
agreement with the range data. 

The aerodynamic moment about the longitudinal axis of an axisymmetric vehicle can be 
modeled using a single aerodynamic coefficient. The roll-damping coefficient, C,P , represents 

the aerodynamic moment which opposes the spinning motion of the vehicle. For axisymmetric 
flight bodies, the roll-damping coefficient is produced purely by the viscous stresses acting 
circumferentially on the body surface. From a modeling standpoint, proper prediction of the roll- 
damping coefficient requires adequate grid resolution of the boundary layer. A comparison of 
the predicted roll-damping coefficient with range data is shown in Figure 5. Both the 
computational predictions and the range data show a nearly linear increase in the roll-damping 
coefficient with increasing body length. The predicted result shows an overprediction of -10%. 
Similar results were observed at Mach 2.5. The predictions showed a 4% variation in the roll- 
damping coefficient at angles of attack to 6”. 

3.2 Aerodynamic Forces 

The aerodynamic forces can also be described in a manner that is analogous to the aerodynamic 
moments. The transverse force components EY and Cz act along the “y and Z axes of the non- 
rolling coordinate frame and consist of components proportional to the complex yaw f and 
yawing rate F’. The third force component, C, , which acts along the axial direction, is loosely 
coupled to the transverse forces and can be treated separately. This force component consists 
predominantly of the drag force. 

(5) 

c, =-c,. (6) 
The normal force coefficient C,= acts normal to the longitudinal axis of the body in the pitch- 

plane. The force expansion also contains a damping force coefficient, CNg + C,, , that produces 

a force proportional to the yawing rate r’. The Magnus force coefficient CvPn accounts for the 

side force produced by a combination of spin and yaw. 
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Figure 2. Pitching moment coefficient vs. CG position, Mach = 1.8, ANSR. 
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Figure 3. Magnus moment coefficient vs. CG position, Mach = 1.8, ANSR. 
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Figures 6 and 7 show comparisons of the predicted and experimentally determined normal force 
and Magnus force coefficients at Mach 1.8 as a function of body length. The predicted normal 
force coefficient is predicted to within the scatter of the range data and shows little influence of 
body length. Both the predicted and experimentally determined Magnus force coefficient 
increase with body length. The Magnus force determined from the variation of the Magnus 
moment with CG location is -30% less than the predictions for the L,/D = 7 and L,/D = 9 bodies. 
The Magnus force coefficients determined from the swerving (CG) motion for individual shots 
shows significant scatter, indicating the difficulty in accurately determining this coefficient. The 
pitch-damping force coefficient is not shown as it does not influence the projectile motion in a 
measurable manner. Comparisons of predictions with experimental data are presented by 
Weinacht et al. (5). 

A PNS 
0 RANGE - SWERVE 
l RANGE - CMa CG VARIATION 

0.0 ; I I I 
4.0 6.0 8.0 10.0 

BODY L/D 

Figure 6. Normal force coefficient vs. body length, Mach = 1.8, ANSR. 

The drag coefficient is also very important for predicting projectile flight performance as it is 
one of the primary aerodynamic coefficients affecting range. The drag coefficient is also 
required for the stability assessment, although its effect is small. The total drag on the projectile 
is composed of contributions from the forebody and the base. The forebody drag consists of 
both pressure and viscous drag components. The base drag results from the pressure acting on 
the projectile base. The forebody drag can be predicted using the PNS technique. The 
recirculating flow in the base region is predicted using the time-marching technique from which 
the base drag can be determined. 
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Figure 7. Magnus force coefficient vs. body length, Mach = 1.8, ANSR. 

A comparison of the predicted zero-yaw drag with range results is shown in Figure 8. Drag 
predictions at Mach 1.8 and 2.5 are shown as a function of body length. Both the experimental 
results and the computational results show a slight increase in zero-yaw drag with increasing 
body length and decreasing Mach number. The computed drag coefficient is predicted to within 
the accuracy of the range data. The increase in the drag with body length is due primarily to the 
increase in the wetted surface of the longer body. The predicted results showed only minor 
variations in the base drag with body length. 

At Mach 1.8 for the LID = 9 body, the pressure and viscous forebody drag account for 39% and 
25% of the total drag with the base drag accounting for the remaining 36% of the drag. 
Predictions of the forebody pressure drag are within 1% of previous predictions using empirical 
(15) or inviscid (I) approaches. 

An estimate of the predicted skin fiction drag, CnV , can be obtained using the relation 

developed by Charters and Kent (16). 

C Dv = -4Clp. (7) 

The estimated skin friction drag determined from the predicted roll-damping coefficient 
. underestimates the predicted skin friction drag by 3%-l 0% for the predictions presented here. 

(This comparison gives an indication of the accuracy of the Charters and Kent relation.) The 
estimated skin friction obtained from the range measurements of the roll-damping coefficient is 
13%-22% less than the predicted skin friction. 
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Figure 8. Zero-yaw drag coefficient vs. CG position, Mach = 1.8, ANSR. 

Although these estimates indicate a potential 10% over-prediction of the skin friction drag, the 
contribution to the total drag would result in an overprediction of only a few percent. 

Design codes can provide a more cost-effective alternative for predicting the base drag, thus 
eliminating the need for a time-dependent base drag computation. The semi-empirical approach 
of McCoy (15) appears to overpredict the base drag by lO%-20% compared to the CFD result. 
When the estimated base drag is added to the forebody drag CFD predictions, the total drag is 
overpredicted by 4% compared to the CFD results. For stability computations, where the drag 
coefficient plays a minor role, acceptable accuracy can be obtained using base drag estimates. 

3.3 Stability and Free-Flight Motion 

Once the aerodynamic forces and moments have been determined, the equations of motion can 
be integrated and the projectile’s motion can be determined for various initial conditions. 
Because the equations of motion are nonlinear, numerical integration is usually required to 
predict the projectile motion from launch to impact. These nonlinearities are typically weak, and 
for portions of the flight trajectory the equations can be integrated and closed-form solutions for 
the projectile motion can be obtained. 

For a symmetric missile, the closed-form solution for the angular response as a function of the 
distance downrange, s, takes the following form (14): 
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F=Fs+K1+Kz=fl+ia 

K, = 60 exPH&J + #is)+ 44 (8) 

K, = ho exp[i(#20 + f%s)+ 44 
The complex variable, F, consists of the vertical and horizontal components of the angle of 
attack, c1! and fl The angular motion contains a gravity term, Fg, which is small and, for the 

remainder of the discussion, this term will be ignored. The second and third terms of equation 8 
are expressions of the amplitudes of two components of the angular motion, referred to as the 
fast and slow modes, respectively. The complex angle of attack, F, can be displayed 
graphically along with the fast and slow mode arms, Kt and K2. Graphically, the solution is 
shown by Figure 9 and is referred to as a damped epicycle. It is helpful to regard this figure as 
the path that the nose of the projectile would follow as it flies downrange. The fast and slow 
mode frequencies of the motion, 4; and &, and the damping rates, Ai and ;12 , are functions of 
the aerodynamic coefficients, projectile spin rate, and inertial properties of the body. Generally 
speaking, the frequencies are influenced by the pitching moment coefficient, while the damping 
is influenced by the Magnus and pitch damping coefficients. The equation also contains the 
initial amplitudes, Kto and K~o, and phase angles, #io and ho, which result from applying the 
initial conditions during the integration of the equations. 
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Figure 9. Projectile angular motion epicycle. 
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Using the predicted aerodynamic coefficients, the fast and slow mode damping and frequencies 
were computed for the various body lengths, CG positions, launch Mach numbers, and spin rates. 
Figure 10 shows the predicted slow mode frequency plotted against the experimentally 
determined value. (The results are plotted in this fashion due to the large number of parameters 
considered here.) Points that fall close to the solid line indicate that the predicted value is close 
to the experimentally determined value. There is good agreement between prediction and 
experiment. The slow mode frequency represents the critical comparison for the frequencies 
because the fast mode frequency is dominated by the spin rate, which is essentially an input 
parameter. 

0.0 
0.0 20 4.0 s.0 

MEASURED $; qO-3 

Figure 10. Comparison of computed slow mode frequency with measured slow mode 
frequency, ANSR. 

Figures 11 and 12 show comparisons of the predicted slow and fast mode damping of each of the 
bodies. The data are scattered about the solid line, indicating that the prediction is generally in 
good agreement with the experiment. No consistent bias between the computation and 
experimental data is seen. This indicates that there is no consistent under-prediction or 
over-prediction of the damping rates. Much of the scatter in the data is attributed to the 
uncertainty in the experimental data rather than inaccuracies in the computational approach. 

Generally, from a design standpoint, predicting and controlling damping rates, rather than the 
fkquencies, is a primary consideration. One desirable requirement is that the damping rates, hr 
and 12, be negative so that the angular motion does not grow during the projectile’s flight. 
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Figure 11. Comparison of computed fast mode damping with measured fast mode 
damping, ANSR. 
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Figure 12. Comparison of computed slow mode damping with measured slow mode 
damping, ANSR. 
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By algebraically manipulating the equations for the damping rates, three necessary conditions 
can be derived, which will ensure that the damping rates are negative. Two of these conditions 
are shown in equation 9: 

sg >I; sg =f(p,C,) 
‘g cs,(2-s,); sd =f(Cnpn,Cmq +c,)- (9) 

The first condition states that the gyroscopic stability factor, ss, must be >l for the projectile to 
be gyroscopically stable. The second condition also places an additional constraint on the 
gyroscopic stability factor through the dynamic stability factor, sd. As shown in these equations, 
the gyroscopic stability and dynamic stability factors are functions of the aerodynamic 
coefficients. Additionally, the gyroscopic stability factor is also a function of the projectile spin 
rate, p. For typical spin-stabilized projectiles that are statically unstable, the two stability criteria 
can be satisfied by adjusting the spin rate of the projectile, as long as the dynamic stability factor 
is between 0 and 2. If the dynamic stability factor is outside this bound, the projectile cannot be 
stabilized using spin. A third condition for stability essentially requires that the pitch damping 
coefficient, C, + C,, to be negative. This condition is rarely violated in practice. 

The constraints on the gyroscopic stability and dynamic stability factors discussed previously can 
be shown graphically on what is often termed a “stability plot.” Figures 13 and 14 show plots of 
the results as measured in the aerodynamics range and obtained from the computation. Shown 
on the plot are results for the each of the three CG locations for the three different length bodies, 
various spin rates, and for Mach numbers of 1.8 and 2.5. For each firing, experimental and 
computational values of the gyroscopic stability factor, ss, and the dynamic stability factor, Q, 
were computed. It is important to realize that for a given set of conditions (body length, spin rate, 
launch Mach number), the computational results will yield a unique value. However, because of 
the scatter associated with the experimental data, each firing yields a slightly different value. 
Thus, the experimental results give the appearance of having more data. It is important to realize 
this when comparing the two sets of plots. 

The computational and experimental results presented in these figures show that this family of 
projectiles is statically unstable (ss > 0), but has been made gyroscopically stable by appropriate 
selection of the spin rate (ss > 1). The results also show that all of the L/D = 5 projectiles are 
dynamically stable. (The region of dynamic stability is denoted by the shaded area on these 
plots.) The results indicate that several of the IJD = 7 and L/D = 9 projectiles are marginally 
stable, though these can be stabilized by selection of a higher spin rate because the dynamic 
stability factor is between 0 and 2. Several of the IJD = 9 bodies are dynamically unstable and 
cannot be stabilized by changing the spin rate. Further examination of the data revealed that 
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Figure 13. Stability plot for ANSR from range data. 
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Figure 14. Stability plot for ANSR from CFD predictions. 
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the IJD = 9 bodies which could not be stabilized all had the CG located in the aftmost position. 
It is important to note that the computational approach correctly predicts the stability 
characteristics of the various configurations for the conditions of dynamic stability, marginal 
dynamic stability, and dynamic instability. This demonstrates the utility of the computational 
approach for the purposes of stability prediction. 

With the prediction of the frequencies and damping rates of the angular motion, the angular 
motion itself can be predicted and compared with the motion measured in the aerodynamics 
range. Figures 15 and 16 show the angular motion of a 5-caliber-long projectile launched at 
Mach 1.8 and a 7-caliber projectile launched at Mach 2.5. These 3-D plots display the vertical 
and horizontal components of angle of attack, a and p, as a function of the distance downrange, 
Z. The thickened curve displays the 3-D motion. Two-dimensional projections of the motion in 
the vertical and horizontal planes are also shown. It is useful to regard the curves shown here as 
the path traversed by the nose of the projectile as it flies downrange. The motion predicted using 
the CFD-derived aerodynamic coefficients is denoted by the solid lines, while the motion 
obtained from the range firings is shown by the circular symbols. The agreement between the 
two motions is excellent. Comparisons of the in-flight motion at other flight conditions and for 
the other body geometries also showed good agreement with the experimental data. 

-- CFD PREDICTION 

Figure 15. In-flight angular motion, j-caliber body, Mach 1.8. 
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Figure 16. In-flight angular motion, 7-caliber body, Mach 2.5. 

4. Conclusion 

CFD provides an alternate means for determining the aerodynamic performance of projectiles. 
This will allow projectiles to be designed with a reduced requirement for manufacturing models 
and performing test firings. As a test case, the aerodynamic performance of a family of 
axisymmetric projectiles in supersonic flight was examined. The predictions showed good 
agreement with range data for individual aerodynamic coefficients. Using these coefficients, the 
frequencies and damping rates of the angular motion were computed. The results showed good 
correlation with the experimental data for various body lengths, center of gravity locations, Mach 
numbers and spin rates. The aerodynamic coefficients were also used to predict gyroscopic and 
dynamic stability factors. The computational approach correctly distinguished the conditions of 
dynamic instability, marginal dynamic stability, and dynamic stability. As a final comparison, 
the in-flight angular motion for individual firings was compared with range data and showed 
good agreement. The results are believed to properly represent the capability for predicting the 
linear aerodynamics for the high-speed low angle-of-attack flight of aerodynamically smooth 
axisymmetric projectiles. Additional computational effort (and, in some cases, additional 
research) may be required to establish the same capability at subsonic and transonic velocities or 
for complex geometries. 
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List of Abbreviations and Symbols 

aLa 

CD 

C Do 

% 

Cl 

clP 

cm 

C ma 

C mci 

% 

‘% +cmk 

C” 

C 
“pa 

GJ 

Freestream speed of sound 

Drag coefficient 

Zero-yaw drag coefficient 

Viscous drag coefficient 

Net roll moment coefficient 

Roll-damping moment coeffCnt, ac, 

Pitching moment coefficient, M 

+ pV2S,,D 

ac Pitching moment coefficient slope with respect to angle of attack, 2 
aa 

Pitch-damping moment coefficient slope, acm 

Pitch-damping moment coefficient slope, acm 

Pitch-damping moment coefficient 

Side moment coefficient 

Magnus moment coefficient, a2 c, 

aa 

Normal force coefficient, F 

fpV2S,, 
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CNa 

CN& 

aCN Normal force coefficient slope with respect to angle of attack, - 
aa 

Pitch-damping force coefficient slope, a CN 

&D 

ai-1 V 

CNq Pitch-damping force slope, a CN 

CNq +cN, Pitch-damping force coefficient - 

CX Axial force coefficient 

CY& Transverse force coefficient in y and z direction 

C Yw Magnus force coefficient 

D Reference diameter 

e Total energy per unit volume 

B,P,6 Flux vectors in transformed coordinates 

F Force 

a Source term in Navier-Stokes equations due to rotating coordinate Came 

K, 9K2 Amplitude of fast and slow yaw arms 

K,o YK20 Initial amplitude of fast and slow yaw arms 

L Body length 

M Moment I 
M Freestream Mach number 

P Spin rate, as used in roll equations 

9 Transverse angular rate of body, as used in flight mechanics equations 

9 

Re 

S 

Vector of dependent variables, as used in Navier-Stokes equations 

Reynolds number, a,p,D / p, 

Distance downrange normalized by reference length 
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sd Dynamic stability factor 

% Gyroscopic stability factor 

S 
ZD2 

ref Reference area, S,, = - 
4 

!2 Viscous flux vector 

t Time 

u,v,w Velocity components in the x, y, z directions 

V Freestream velocity 

X,Y,Z Axial, horizontal, and vertical coordinates 

Y+ Nondimensional boundary layer coordinate 

Z Dimension downrange distance 

Greek Svmbols 

Angle of attack 

Angular rate associated with angle of attack 

Yaw angle 

Cosine of total angle of attack 

Fast and slow mode damping rates 

Viscosity 

Transformed coordinates in the Navier-Stokes equations 

Complex angle of attack 

Complex angle-of-attack component induced by gravity 

Density 

Phase angle of fast and slow mode arms 

Fast and slow mode frequencies 
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SuperscriDts 

(‘1 Rate of change with respect to time 

, 
0 
(-) 

Rate of change with respect to space 

Referenced to non-rolling coordinate frame 

Subscripts 

co _ Quantity evaluated at fi-eestream conditions 
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