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1. Introduction 

Thick-section composites are widely used as the backing plate in composite integral armor 
(CIA).  The backing plate plays a crucial role in arresting the projectile by absorbing energy due 
to various interlaminar and intralaminar damage mechanisms, such as delamination, fiber 
breakage, and matrix cracking.  Therefore, prediction of damage as well as energy absorption 
and ballistic limits are critical to determining the proper thickness of composite backing plates in 
CIA.  It is assumed that the damage mechanisms in a high-velocity penetrating impact event are 
the same as those in a punch shear test (PST).  The degree of damage and time-scale of 
occurrence may be different; however, the displacement level in which each damage mechanism 
initiates has been considered comparable for both static and dynamic events (1).  The general 
approach adopted by researchers for predicting the damage in a ballistic event is to first conduct 
a PST to characterize the material and damage and the displacement levels at which they occur.  
In the next step, the impact event is simulated based on information from static tests to predict 
the residual velocities of projectiles and therefore, the ballistic limit.   

Potti and Sun (2) characterized punch shear testing by simulating the load deflection curve up to 
the plug formation for carbon/epoxy quasi-isotropic composites.  With their approach, they 
successfully predicted residual velocities of projectiles.  Jeng et al. (3) characterized material 
damage for woven graphite-epoxy plates using a similar technique to Sun and Potti (1).  For 
glass epoxy woven composites the sequence of damage mechanisms is different from  
quasi-isotropic carbon epoxy composites and hence, the load-deflection response is different as 
well.  No other approaches for modeling damage during punch-shear testing have been found in 
the literature.  Additional studies on punch shear experiments can be found in the published 
research (4–6). 

Significant work has been done on modeling damage and delamination due to low-velocity 
impacts.  Low-velocity impact tests are intended to characterize composites for nonpenetrating 
static and dynamic applications.  The major damage mechanisms involved are delamination, 
fiber tensile failure, and matrix cracking.  Williams and Vaziri (7) used damage mechanics 
principles along with matrix and fiber failure criteria to model damage for low-velocity impacts, 
in which they developed material subroutines for LS-DYNA.  Load-deflection curves and the 
damage patterns compared well with experimental results.  Yen and Caiazzo (8) implemented a 
damage model (MAT 162) by generalizing the layer failure model that exists in LS-DYNA 
(MAT 161).  The damage mechanics approach (9) incorporates progressive damage and 
softening behavior after damage initiation.  This model is implemented for single integration 
point brick elements only.  Recent works for modeling delamination can be found in Borg et al. 
(10) and Zou et al. (11). 
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Most of the investigations previously mentioned considered thin composite plates.  In the present 
report, the material and damage characterization involved in PSTs and simulations using  
LS-DYNA will be presented.  In the present investigation, thick plates are tested and modeled.  
Therefore, delamination as well as damage must be simulated accurately to model the static or 
dynamic penetration problems.  The modeling is carried out using two different approaches:   
(1) delamination and material damage are both modeled using MAT 162, and (2) MAT 162 is 
used for material damage only, while the delamination is modeled using the TIE-BREAK 
interface with fracture energy-based criterion for crack initiation, propagation, and arrest.  The 
simulated results show reasonable agreement with the experimental results.  It was found that the 
dominant damage mechanisms are delamination and fiber breakage due to shear and tension.  
This study will be useful for characterizing and predicting damage and ballistic limits of thick-
woven composites.    

2. Experimental Investigation and Observations 

Quasi-static PST is conducted using a custom-made fixture.  A PST fixture consists of a square 
support plate (50.8 mm thick) with a circular hole at the center, a relatively thin cover plate  
(12.7 mm thick) with a central hole similar to the support plate, and a cylindrical punch.  A 
rectangular support is also used in addition to the support plate.  Two sets of support plates and 
cover plates with a support span (SS) diameter (Ds) of 25.4 mm and 101.6 mm are fabricated.  
Composite plate specimens can be bolted on the PST fixture between the support plate and the 
cover plate.  A cylindrical punch of diameter (DP) 12.7 mm with a flat tip, is used.  The 
combination of one punch and two support spans provides spans to punch ratios of 2.0 and 8.0 
(SPR = DS/DP).  An Instron 1332 loading frame with a 222-kN (50-kips) load cell is used in the 
quasi-static tests.  Displacement-controlled tests are performed at a cross-head displacement rate 
of 2.54 mm/min.  The load and cross-head displacement data are acquired using the Instron 
Series IX software.   

Punch shear specimens of nominal dimension 17.8 × 17.8 cm are machined using a wet saw; 
eight holes are core drilled for bolting the specimens in the fixture.  Mechanical properties of 
composites used in this study (fabricated from two-dimensional [2-D] woven fabric and SC15 
resin) are provided in table 1 (12).  Six different composite laminates are fabricated using 1, 2, 4, 
6, 11, and 22 layers of plain weave S-2 Glass* fabric and are designated by 1L, 2L, 4L, 6L, 11L, 
and 22L, respectively.  Specimens made from these laminates are tested under punch shear 
loading with SPR = 2.0 and 8.0, as shown in figure 1.  

                                                 
* S-2 Glass is a registered trademark of Owens Corning. 
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Table 1.  Material properties of plain weave S-2 Glass/SC15 Composite laminates used in the computation. 

MID RO, kg/m3 EA, GPa EB, GPa EC, GPa PRBA PRCA PRCB 
1 1.85E + 03 27.5 27.5 11.8 0.11 0.18 0.18 

GAB, GPa GBC, GPa GCA, GPa AOPT — — — — 
2.9 2.14 2.14 2 — — — — 
XP YP ZP A1 A2 A3 — — 
0 0 0 1 0 0 — — 

V1 V2 V3 D1 D2 D3 beta — 
0 0 0 0 1 0 0 — 

SXT, MPa SXC, MPa SYT, MPa SYC, MPa SZT, MPa SFC, MPa SFS, MPa SXY, MPa 
604 291 604 291 472 800 500 58 

SYZ, MPa SZX, MPa SFFC AMODEL PHIC E_LIMT S_DELM — 
58 58 0.3 2 20 1.3 1.5 — 

OMGMAX ECRSH EEXPN CERATE1 AM1 — — — 
0.999 0.1 2 0 4 — — — 
AM2 AM3 AM4 CERATE2 CERATE3 CERATE4 — — 

4 4 4 0 0 0 — — 
 

SPR = 2.0

SPR = 8.0

INSTRON 1332

SPR = 2.0

SPR = 8.0

INSTRON 1332

 

Figure 1.  Experimental setup for quasi-static punch shear 
experiment. 

In figure 2, the load displacement curves clearly show a bilinear behavior up to a maximum load 
for thick laminates and a linear behavior for thin laminates.  A nondimensional parameter, 

2/ CSP HDD , is useful in defining thin and thick laminates, where HC is the thickness of composite 
laminates.  Under quasi-static punch shear loading, a thin laminate is defined when 

100/ 2 >CSP HDD , and a thick laminate is defined when 100/ 2 <CSP HDD .  The difference 
between a thin and thick laminate can be identified by their load displacement behavior.  Thin 
laminates show predominantly linear behavior up to failure (e.g., 1L and 2L in case of 

0.2=SPR , and 1L, 2L, 4L, and 6L in case of 0.8=SPR ); in this case, a thin laminate 
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Figure 2.  Punch shear behavior of 2-D baseline S-2 Glass/SC15 Composite laminates. 

undergoes membrane tension before local punch shear.  On the other hand, thick laminates show 
a linear behavior up to a point where the local matrix cracks, followed by the initiation of 
delamination through the thickness of the laminate that appears as a drop in load-deflection 
curve.    

The initial stiffness of the specimen, Ke, can be defined by the initial slope of the load-
displacement curve.  Further loading up to the maximum load exhibits non-linear softening and 
corresponds to the progressive matrix cracking and propagation of delamination in the laminate 
(i.e., progressive damage).  The stiffness in the progressive damage zone, Knl, can be determined 
from the slope in the bilinear portion of the load-displacement curve.  Local shear and crush of 
fibers accompanied by fiber bending and the progressive drop of the load in the punch shear zone 
represents tensile fracture during the complete punch shear process.  The plateau level of the load 
corresponds to the frictional sliding of the punch through the laminate.    

To model the punch shear behavior successfully, it is necessary to understand the evolution of 
the damage during the tests and how they are simulated in the material models.  The sequence of 
damage modes are as follows:  (1) delamination initiation, (2) delamination propagation,  
(3) fiber shear failure, and (4) fiber tensile failure.  Delamination initiates due to high transverse 
shear localized around the punch, and propagates due to transverse shear loading.  A drop in the 
load-deflection plot is observed.  During delamination propagation, the plate carries the load and 
the contact force increases, but with a lower slope in the load-displacement curve that indicates a 
loss of flexural and shear stiffness due to delamination.  After the delamination has extended to 
the full length of the plate and the plate has undergone large displacement, fiber failures begin to 
occur.  This is characterized by a continuous drop in the load-displacement curve.   

Due to the stress stiffening effect arising from large deflection, the bending deformation reduces, 
and the localized transverse shear stress begins to increase.  At this time, either pure fiber-shear 
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or combined fiber tensile/shear failure may occur.  The localized transverse shear stress is 
highest just beneath and around the punch and decreases across the thickness.  Also, the plate has 
a large tensile stress due to bending and stretching across the thickness.  Both of the 25.4 cm and 
100-mm-diameter plates showed similar behavior.  Tensile failure of fibers can occur at the 
bottom of most layers during the time when the punch is progressing, and the upper layers have 
shear failure.  For the 25.4-mm support span (figure 2a), the delamination initiated at a punch 
displacement of 0.75 mm, the start of the fiber shear failure ~3.81 mm, and the start of fiber 
tensile failure at 5.84 mm; and at 16 mm, the punch is about to exit.  For the 100-mm support 
span (figure 2b), these figures are 1.27, 8.9, 12.7, and exit at 20 mm.  As expected, the 100-mm 
span plate deforms more than the 25.4-mm span plate before the fiber shear failure initiates due 
to its lower bending rigidity than the 25.4-mm plate.    

3. Numerical Modeling 

Numerical modeling is accomplished using LS-DYNA with the newly implemented material 
model—MAT 162 and contact options.  The material model is based on the progressive failure 
principle of Hashin (13) and the damage mechanics of Matzenmiller et al. (9) that incorporate 
features for controlling strain softening after failure.  MAT 162 also accounts for strain rate 
effects in tension and shear.  The equations for various failure modes are as follows:   
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where for the fabric model, a, b, and c denote the in-plane fill, in-plane warp, and out-of-plane 
directions, respectively.  SAT and SBT are tensile strengths in the fill and warp directions, SAFS and 
SBFS are fiber shear failure strengths in a and b directions, ba εε  and  are tensile strains in a and b 
directions; bcac εε  and  are shear strains in a-c and b-c planes, and r1 and r2  are damage 
thresholds. 
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Delamination failure mode (through-thickness matrix failure) is governed by  

 0... 2
4

2

0

2

0

2
2 =−





















+

+







+

+







r

SS
G

SS
G

S
ES

SRCA

caCA

SRBC

bcbc

CT

cc εεε , (4) 

where SCT is through-thickness tensile strength, and SBCO and SCAO are interlaminar shear 
strengths in a-c and b-c planes, respectively.  S is the factor that takes into account the stress 
concentration and allows growth of delamination.  The interlaminar shear strengths are 
considered to increase through-thickness compressive stress and decrease due to through-
thickness tensile stress, according to the Mohr-Columb theory, which is given by 

 φε tan. ccSR ES −= , (5) 

where φ is equivalent to angle for internal friction and cε equals the through-thickness strain, 
which is positive when tensile. 

The property degradation model (Matzenmiller et al. [9]): 

)1(1

1
m

jre m
i

−
−=ϖ ,  1≥jr                 (6) 

and 

0)1( iii EE ϖ−= , 0)1( iii GG ϖ−= ,              (7) 
 
where rj = damage threshold, ϖi= damage variable, and m = strain softening parameter.   

If the rj values are kept constant and equal to 1.0, the model simplifies to MAT 161, which does 
not use the damage mechanics theory.  However, in MAT 162, the damage threshold rj is 
initially set to equal 1.0 to represent initial elastic deformations, but it increases as damage 
accumulates analogous to plasticity models.  The modulii are degraded as the damage increases, 
according to equations 9 and 10.  The damage variable ϖ  varies from 0 to 1.0 as the rj varies 
from 1 to infinity, according to the distribution of equation 6.  The softening parameter m is 
varied to represent post-failure behavior.   

4. Delamination Using MAT 162 

When modeling delamination using MAT 162, the model does not require a physical interface, 
but needs a definition for the interface element layer.  Once the matrix failure given by equation 
4 is satisfied in any element in the predefined layer, the elements adjacent to it are identified for 
delamination growth.  The subsequent stress components of those elements are multiplied by a 
user-defined factor—S—to account for stress concentration.  The initial values of S are unity for 
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all elements.  The S values are mesh sensitive.  After the delamination failure of an element has 
occurred, the in-plane load carrying capacity within the element is assumed to be elastic (no  
in-plane damage).  The load carrying behavior in through the thickness direction is assumed to 
depend on the opening or closing of the matrix damage surface.  For the tensile mode, zε > 0, the 
through-thickness stress components are softened and reduced to zero.  For compressive mode, 

zε < 0, the damaged surface is considered to be closed, and zε is assumed to be elastic.  In the 
mean time, the material may fail in fiber shear/tension given by equation 1 or 2.  As the damage 
grows, the through-thickness tensile and shear modulii are reduced according to equation 7. 

5. Delamination Using TIE-BREAK Interface 

Delamination can also be modeled using the TIE-BREAK interface in LS-DYNA along with 
MAT 162.  TIE-BREAK contact option 6 is used to model delamination by defining the physical 
interfaces.  This option needs a crack-opening displacement and the critical failure stress to be 
specified that corresponds to the fracture energy in either mode I or mode II.  The delamination 
propagates when the distance between the common nodes in the interface reaches a critical 
magnitude corresponding to the material fracture energy.  This represents a more realistic way of 
modeling delamination propagation than the stress-based failure criteria.  It should be noted that 
this option does not currently account for mixed-mode delamination.  However, the delamination 
in the quasi-static punch shear test is predominantly mode II.  The relationship between critical 
crack length and critical stress and fracture energy is presented in figure 3. 

6. Element Erosion 

The failed element is eroded to avoid increased solution time caused by thinning of the element 
or even generating a negative volume due to excessive deformations.  A failed element is eroded 
if any of the following conditions are satisfied:  (1) after fiber tensile failure, the tensile strain is 
greater than a specified value, (2) if compressive relative volume strain (ratio of current volume 
to initial volume) in a failed element is smaller than a specified value (e.g., 0.01), and (3) if 
tensile volume strain in a failed element is greater than a specified value (e.g., 10). 

The goal of the punch shear simulation is to match the overall load-deflection curve and 
therefore enable the partioning of absorbed energy for each damage mode to be calculated.  Due 
to the lack of a comprehensive materials database, this approach has required some tuning of the 
material and fracture properties of the material models used.  The damage modes are related to 
the experimental load-unload tests that identifies the displacement associated with the initiation 
of various damage modes.  Once the material is characterized through punch-shear simulation, 
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(a) 22L Composite Plate with 25.4-mm Support Span. 
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(b) 22L Composite Plate with 100-mm Support Span.  

Figure 3.  Comparison of contact force-displacement curves. 

they can be used for low- and high-velocity impact simulations with the proper incorporation of 
high strain rate effects. 

7. Results and Discussions 

The test circular plates (22 layers of woven glass/SC-15 epoxy) are simulated using solid 
elements (single-point integration) in LS-DYNA.  The blunt steel punch (12.7 diameter and  
50.8 mm long) is modeled as elastic material, whereas the solid supports at the top and bottom 
with circular cutouts are modeled using rigid elements.  The plates are modeled with 22 layers of 



 

 9

elements in the thickness direction and a fine mesh around the punch.  Simple contact has been 
defined between the upper (lower) supports and the plate.  Eroding single surface contact has 
been defined between the steel punch and the composite plate.  Figure 4 shows the meshed 
models for plates with 25.4- and 100-mm-diameter support span using quarter-plane symmetry.   

 

(a) 25.4-mm Support Span (b) 100-mm Support Span 

 

Figure 4.  Quarter-plate model for 25.4- and 100-mm span punch shear tests. 

For modeling the plate delamination using TIE-BREAK interface, physical interfaces were 
defined at every two layers through the thickness.  Thus, there are 10 interfaces for probable 
delamination.  For modeling using MAT 162, the interface element layers are defined by 
providing different orientation angles at specified interface layers (interface locations are kept 
the same for models with and without TIE-BREAK interface).  The material properties used in 
this simulation are presented in table 1.  Boundary conditions are defined with simple contact 
between the upper and lower supports to the plate with ends unrestrained.   

Figures 4a and 4b show the comparisons of contact force-displacement curves for the 25.4- and 
100-mm support span plates.  The simulation has been carried out with MAT 162 and  
MAT 162 with TIE-BREAK.  The overall response is captured reasonably well, but certain 
regions show some different behaviors between models and experiment.  Oscillations in the 
simulated results are mainly due to erosion of failed elements.    

From the experimental results for the 25.4-mm span plate, delamination initiated with a 1.27-mm 
displacement of the punch.  Penetration of the punch was initiated between displacements of  
1.27–3.39 mm.  As shown in figure 4a, the simulation at this region does not capture the 
experimental measurement in the case of MAT 162, which arises from the initial contact 
instability.  A sudden drop occurred once the delamination initiated.  A similar phenomenon is 
also observed in the simulation of a 100-mm span plate as well, and is shown in figure 4b.  
However, improved results can be achieved for both cases as shown in figure 4 by using the 
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TIE-BREAK interface for delamination, which can be attributed to the presence of physical 
delamination planes.  It is believed that the delamination computation alone in MAT 162 is not 
enough to capture the physical phenomenon that occurs during delamination; thus, the use of 
TIE-BREAK interfaces may be useful in ballistic modeling.  However, the minimum number of 
TIE-BREAK planes is yet to be determined.    

A displacement of up to 5.17 mm in the 25.4-mm span plate and a displacement up to 8.89 mm 
in the 100-mm span plate correspond to their ultimate load capacities, where the fiber fails due to 
high local transverse shear around the periphery of the punch; after that, the fibers fail due to the 
tensile stress developed due to bending and stretching.  The simulation shows fiber failure 
mainly due to punch shear, but also due to the initiation of tensile failure at the bottom of the 
plate.  Beyond these two conditions, extensive fiber tensile failure is observed along with the 
shear failure, followed by plug forming and pushing out.  The simulated post-failure using both 
MAT 162 and MAT 162 with the TIE-BREAK interface agree well with the experimental results 
for both plates.   

8. Conclusions 

Experimental tests were conducted on plain weave S-2 Glass/SC15 epoxy composite  
thick-section laminates under quasi-static punch shear loading.  Experimental observations and 
results were reported and compared with the simulations using LS-DYNA, with MAT 162 as a 
material model.  The TIE-BREAK interface option for modeling delamination was also 
examined.  Reasonable agreement between experimental and simulated results were obtained.
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 2 CYTEC FIBERITE 
  M LIN 
  W WEB 
  1440 N KRAEMER BLVD 
  ANAHEIM CA 92806 
 
 2 UDLP 
  G THOMAS 
  M MACLEAN 
  PO BOX 58123 
  SANTA CLARA CA 95052 
 
 1 UDLP WARREN OFC 
  A LEE  
  31201 CHICAGO RD SOUTH 
  SUITE B102 
  WARREN MI  48093 
 
 2 UDLP 
  R BRYNSVOLD 
  P JANKE MS 170 
  4800 EAST RIVER RD 
  MINNEAPOLIS MN 55421-1498 
 
 2 BOEING ROTORCRAFT 
  P MINGURT 
  P HANDEL 
  800 B PUTNAM BLVD 
  WALLINGFORD PA 19086
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 1 LOCKHEED MARTIN 
  SKUNK WORKS  
  D FORTNEY 
  1011 LOCKHEED WAY 
  PALMDALE CA 93599-2502 
 
 1 LOCKHEED MARTIN 
  R FIELDS 
  5537 PGA BLVD 
  SUITE 4516 
  ORLANDO FL 32839 
 
 1 NORTHRUP GRUMMAN CORP 
  ELECTRONIC SENSORS 
  & SYSTEMS DIV 
  E SCHOCH MS V 16 
  1745A W NURSERY RD 
  LINTHICUM MD 21090 
 
 1 GDLS DIVISION 
  D BARTLE 
  PO BOX 1901 
  WARREN MI 48090 
 
 2 GDLS 
  D REES 
  M PASIK 
  PO BOX 2074 
  WARREN MI 48090-2074 
 
 1 GDLS 
  MUSKEGON OPERATIONS 
  M SOIMAR 
  76 GETTY ST 
  MUSKEGON MI 49442 
 
 1 GENERAL DYNAMICS 
  AMPHIBIOUS SYS 
  SURVIVABILITY LEAD 
  G WALKER 
  991 ANNAPOLIS WAY 
  WOODBRIDGE VA 22191 
 
 6 INST FOR ADVANCED 
  TECH 
  H FAIR 
  I MCNAB 
  P SULLIVAN 
  S BLESS 
  W REINECKE 
  C PERSAD 
  3925 W BRAKER LN STE 400 
  AUSTIN TX 78759-5316 

 1 ARROW TECH ASSO 
  1233 SHELBURNE RD STE D8 
  SOUTH BURLINGTON VT 
  05403-7700 
 
 1 R EICHELBERGER  
  CONSULTANT 
  409 W CATHERINE ST 
  BEL AIR MD 21014-3613 
 
 1 SAIC 
  G CHRYSSOMALLIS 
  8500 NORMANDALE LAKE BLVD 
  SUITE 1610 
  BLOOMINGTON MN  55437-3828 
 
 1 UCLA MANE DEPT ENGR IV 
  H T HAHN 
  LOS ANGELES CA 90024-1597 
 
 2 UNIV OF DAYTON 
  RESEARCH INST 
  R Y KIM 
  A K ROY 
  300 COLLEGE PARK AVE 
  DAYTON OH 45469-0168 
 
 1 UMASS LOWELL  
  PLASTICS DEPT 
  N SCHOTT 
  1 UNIVERSITY AVE 
  LOWELL MA  01854 
 
 1 IIT RESEARCH CENTER 
  D ROSE  
  201 MILL ST 
  ROME NY 13440-6916 
 
 1 GA TECH RSCH INST 
  GA INST OF TCHNLGY 
  P FRIEDERICH 
  ATLANTA GA 30392 
 
 1 MICHIGAN ST UNIV 
  MSM DEPT 
  R AVERILL 
  3515 EB 
  EAST LANSING MI 48824-1226 
 
 1 UNIV OF WYOMING 
  D ADAMS 
  PO BOX 3295 
  LARAMIE WY 82071 
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 2 PENN STATE UNIV 
  R MCNITT 
  C BAKIS 
  212 EARTH ENGR 
  SCIENCES BLDG 
  UNIVERSITY PARK PA 16802 
 
 1 PENN STATE UNIV 
  R S ENGEL  
  245 HAMMOND BLDG 
  UNIVERSITY PARK PA 16801 
 
 1 PURDUE UNIV 
  SCHOOL OF AERO & ASTRO 
  C T SUN 
  W LAFAYETTE IN 47907-1282 
 
 1 STANFORD UNIV 
  DEPT OF AERONAUTICS 
  & AEROBALLISTICS 
  S TSAI 
  DURANT BLDG 
  STANFORD CA 94305 
 
 1 UNIV OF MAINE 
  ADV STR & COMP LAB 
  R LOPEZ ANIDO 
  5793 AEWC BLDG  
  ORONO ME  04469-5793 
 
 1 JOHNS HOPKINS UNIV 
  APPLIED PHYSICS LAB 
  P WIENHOLD 
  11100 JOHNS HOPKINS RD 
  LAUREL MD  20723-6099 
 
 1 UNIV OF DAYTON 
  J M WHITNEY 
  COLLEGE PARK AVE 
  DAYTON OH 45469-0240 
 
 1 NORTH CAROLINA STATE UNIV 
  CIVIL ENGINEERING DEPT 
  W RASDORF 
  PO BOX 7908 
  RALEIGH NC 27696-7908 
 
 1 DEPT OF MATERIALS 
  SCIENCE & ENGINEERING 
  UNIVERSITY OF ILLINOIS 
  AT URBANA CHAMPAIGN 
  J ECONOMY 
  1304 WEST GREEN ST 115B 
  URBANA IL 61801 

 5 UNIV OF DELAWARE 
  CTR FOR COMPOSITE MTRLS 
  J GILLESPIE 
  M SANTARE 
  S YARLAGADDA 
  S ADVANI 
  D HEIDER 
  201 SPENCER LABORATORY 
  NEWARK DE 19716 
 
 1 UNIV OF MARYLAND 
  DEPT OF AEROSPACE ENGNRNG 
  A J VIZZINI 
  COLLEGE PARK MD 20742 
 
 1 DREXEL UNIV 
  A S D WANG 
  3141 CHESTNUT ST 
  PHILADELPHIA PA 19104 
 
 3 UNIV OF TEXAS AT AUSTIN 
  CTR FOR ELECTROMECHANICS 
  J PRICE 
  A WALLS 
  J KITZMILLER 
  10100 BURNET RD 
  AUSTIN TX 78758-4497 
 
 3 VA POLYTECHNICAL 
  INST & STATE UNIV 
  DEPT OF ESM 
  M W HYER 
  K REIFSNIDER 
  R JONES 
  BLACKSBURG VA 24061-0219 
 
 1 SOUTHWEST RSCH INST 
  ENGR & MATL SCIENCES DIV 
  J RIEGEL 
  6220 CULEBRA RD 
  PO DRAWER 28510 
  SAN ANTONIO TX 78228-0510 
 
 1 BATELLE NATICK OPERATIONS 
  B HALPIN 
  313 SPEEN ST 
  NATICK MA  01760 
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ABERDEEN PROVING GROUND 
 
 1 US ARMY MATERIEL 
  SYSTEMS ANALYSIS ACTIVITY 
  P DIETZ 
  392 HOPKINS RD 
  AMXSY TD 
  APG MD 21005-5071 
 
 1 US ARMY ATC 
  W C FRAZER 
  CSTE DTC AT AC I 
  400 COLLERAN RD 
  APG MD 21005-5059 
 
 1 DIRECTOR 
  US ARMY RESEARCH LAB 
  AMSRD ARL OP AP L 
  APG MD 21005-5066 
 
 3 DIRECTOR 
  US ARMY RESEARCH LAB 
  AMSRD ARL WM MB 
  A FRYDMAN 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 90 DIR USARL 
  AMSRD ARL CI 
  AMSRD ARL CS IO FI 
   M ADAMSON 
  AMSRD ARL SL BA 
  AMSRD ARL SL BL 
   D BELY 
   R HENRY 
  AMSRD ARL SL BG 
  AMSRD ARL WM 
   J SMITH 
  AMSRD ARL WM B 
   A HORST 
   T KOGLER 
  AMSRD ARL WM BA 
   D LYON 
  AMSRD ARL WM BC 
   P PLOSTINS 
   J NEWILL 
   A ZIELINSKI 
  AMSRD ARL WM BD 
   B FORCH 
   R PESCE RODRIGUEZ 
   B RICE 
   P CONROY 
   C LEVERITT 
 

ABERDEEN PROVING GROUND (CONT’D) 
 
  AMSRD ARL WM BE 
   M LEADORE 
   R LIEB 
  AMSRD ARL WM BF 
   S WILKERSON 
  AMSRD ARL WM BR 
   C SHOEMAKER 
   J BORNSTEIN 
  AMSRD ARL WM M 
   B FINK 
   J MCCAULEY 
  AMSRD ARL WM MA 
   L GHIORSE 
   E WETZEL 
   S MCKNIGHT 
  AMSRD ARL WM MB 
   J BENDER 
   T BOGETTI 
   L BURTON 
   R CARTER 
   K CHO 
   W DE ROSSET 
   G DEWING 
   R DOWDING 
   W DRYSDALE 
   R EMERSON 
   D HENRY 
   D HOPKINS 
   R KASTE 
   L KECSKES 
   B POWERS 
   D SNOHA 
   J SOUTH 
   M STAKER 
   J SWAB 
   J TZENG 
  AMSRD ARL WM MC 
   J BEATTY 
   E CHIN 
   S CORNELISON 
   D GRANVILLE 
   B HART 
   J LASALVIA 
   J MONTGOMERY 
   F PIERCE 
   E RIGAS 
   W SPURGEON
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ABERDEEN PROVING GROUND (CONT’D) 
 
  AMSRD ARL WM MD 
   B CHEESEMAN 
   P DEHMER 
   R DOOLEY 
   G GAZONAS 
   S GHIORSE 
   C HOPPEL 
   M KLUSEWITZ 
   W ROY 
   J SANDS 
   D SPAGNUOLO 
   S WALSH 
   S WOLF 
  AMSRD ARL WM T 
   B BURNS 
  AMSRD ARL WM TA 
   M ZOLTOSKI 
   W GILLICH 
   T HAVEL 
   J RUNYEON 
   M BURKINS 
   E HORWATH 
   B GOOCH 
   W BRUCHEY 
   M NORMANDIA 
  AMSRD ARL WM TB 
   P BAKER 
  AMSRD ARL WM TC 
   R COATES 
  AMSRD ARL WM TD 
   S SCHOENFELD 
   T HADUCH 
   T MOYNIHAN 
   M RAFTENBERG 
   T WEERASOORIYA 
   D DANDEKAR 
  AMSRD ARL WM TE  
   A NIILER 
   J POWELL
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 1 LTD 
  R MARTIN 
  MERL 
  TAMWORTH RD 
  HERTFORD SG13 7DG  
  UK 
 
 1 SMC SCOTLAND 
  P W LAY 
  DERA ROSYTH 
  ROSYTH ROYAL DOCKYARD 
  DUNFERMLINE FIFE KY 11 2XR  
  UK 
 
 1 CIVIL AVIATION 
  ADMINSTRATION 
  T GOTTESMAN 
  PO BOX 8 
  BEN GURION INTERNL AIRPORT 
  LOD 70150 
  ISRAEL 
 
 1 AEROSPATIALE 
  S ANDRE 
  A BTE CC RTE MD132 
  316 ROUTE DE BAYONNE 
  TOULOUSE 31060 
  FRANCE 
 
 1 DRA FORT HALSTEAD 
  P N JONES  
  SEVEN OAKS KENT TN 147BP 
  UK 
 
 1 SWISS FEDERAL ARMAMENTS 
  WKS 
  W LANZ 
  ALLMENDSTRASSE 86 
  3602 THUN 
  SWITZERLAND 
 
 1 DYNAMEC RESEARCH AB 
  AKE PERSSON 
  BOX 201 
  SE 151 23 SODERTALJE 
  SWEDEN 
 
 1 ISRAEL INST OF 
  TECHNOLOGY 
  S BODNER 
  FACULTY OF MECHANICAL 
  ENGR 
  HAIFA 3200 
  ISRAEL 

 1 DSTO 
  WEAPONS SYSTEMS DIVISION 
  N BURMAN RLLWS 
  SALISBURY 
  SOUTH AUSTRALIA 5108 
  AUSTRALIA  
 
 1 DEF RES ESTABLISHMENT 
  VALCARTIER 
  A DUPUIS 
  2459 BOULEVARD PIE XI NORTH 
  VALCARTIER QUEBEC 
  CANADA 
  PO BOX 8800 COURCELETTE 
  GOA IRO QUEBEC 
  CANADA 
 
 1 ECOLE POLYTECH 
  J MANSON 
  DMX LTC 
  CH 1015 LAUSANNE 
  SWITZERLAND 
 
 1 TNO DEFENSE RESEARCH 
  R IJSSELSTEIN 
  ACCOUNT DIRECTOR  
  R&D ARMEE 
  PO BOX 6006 
  2600 JA DELFT 
  THE NETHERLANDS 
 
 2 FOA NATL DEFENSE RESEARCH 
  ESTAB 
  DIR DEPT OF WEAPONS & 
  PROTECTION 
  B JANZON 
  R HOLMLIN 
  S 172 90 STOCKHOLM 
  SWEDEN  
 2 DEFENSE TECH & PROC AGENCY 
  GROUND 
  I CREWTHER 
  GENERAL HERZOG HAUS 
  3602 THUN 
  SWITZERLAND 
 
 1 MINISTRY OF DEFENCE 
  RAFAEL 
  ARMAMENT DEVELOPMENT 
  AUTH  
  M MAYSELESS 
  PO BOX 2250 
  HAIFA 31021 
  ISRAEL



 
 
NO. OF  
COPIES ORGANIZATION 
 

 28

 1 TNO DEFENSE RESEARCH 
  I H PASMAN 
  POSTBUS 6006 
  2600 JA DELFT 
  THE NETHERLANDS 
 
 1 B HIRSCH 
  TACHKEMONY ST 6 
  NETAMUA 42611 
  ISRAEL 
 
 1 DEUTSCHE AEROSPACE AG 
  DYNAMICS SYSTEMS 
  M HELD 
  PO BOX 1340 
  D 86523 SCHROBENHAUSEN 
  GERMANY 
 
 


