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1. Introduction 

The U.S. Army has a growing interest in the use of advanced sensors and computer models to 
retrieve, display, and interpret acoustic signals on future battlefields.  Such technologies are 
emerging for the surveillance, detection, identification, and tracking of sound-emitting targets in 
and around forests, hilly terrain, and in cities (1).  Consequently, the U.S. Army is looking to 
implement the best possible computer models for determining point-to-point acoustic 
transmission.  At the same time, the retrieval and interpretation of acoustic signals are greatly 
influenced by turbulence and refraction effects caused by finer scale atmospheric motions over 
varying topography and surface energy budgets (2).  Hence, improved physics-based theory and 
computer models for meteorology coupled to acoustics are expected to contribute important 
information on the performance of future combat (acoustic) systems.   

Recently, several physics-based computer models have been developed to calculate one- and 
two-dimensional forest canopy micrometeorology and turbulence for future U.S. Army acoustic 
application research (3, 4).  Individual computer codes have incorporated various computational 
schemes on a uniform grid to solve the meteorological fields (5).  However, it may be possible to 
improve the efficiency and realism of the coupled meteorological—acoustic computer models by 
introducing variable grid.  Variable grid will allow for better distribution of grid points and will 
extend calculations higher into the boundary layer above the forest.  In addition, a finer grid 
inside the forest and a coarser grid above the forest will help to resolve important meteorological 
(and acoustic) scales and processes.  

Thus, the following report presents results from some preliminary tests to incorporate this 
important feature into numerical codes.  First, several simpler diffusion models are developed to 
benchmark fundamental (numerical) techniques.  Both explicit and implicit differencing schemes 
are examined.  In addition, numerical stability criteria for these calculations are demonstrated.  
Then, successful preliminary tests on these codes are extended to more complicated 
meteorological—acoustic models for the forest canopy. 

 

2. Explicit Differencing 

A simplified conservation equation to describe the mean concentration (diffusion) of a scalar C  
can be written as follows: 
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where t is the independent variable time, u  is the mean longitudinal component of the wind 
velocity, x is range, z is height above ground, and ''Cw  is the mean scalar flux.  The flux-
gradient assumption (6) suggests that 
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where K is the scalar (eddy) diffusivity.  Combining equations 1 and 2 yields, 
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In discretized form, this simple model can be solved forward in time using the following explicit 
differencing scheme for variable grid, i.e., 
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where i and j are the indices for the horizontal and vertical grid, respectively, and n is the time-
step.  To execute the model, the following steps may be taken:  

1. Initialize the scalar field as 
( )

2

2

21
,

σ
hz

ji eC
−−

= , where h defines the center and σ defines the 

width of the Gaussian profile. 

2. Assume the wind flow is constant, i.e., 1
, 0.3 −= msu ji .  

3. Let the horizontal grid be constant, i.e., ∆x = 0.5 m.   

4. Assume horizontal scalar gradients are zero, i.e., apply the explicit boundary condition 
n

j
n

j CC ,1,2 =  at the upstream lateral edge. 

5. Implement the following variable grid:  

 ∆z = 0.25 m 0.25 < z ≤  10.0 m  ,  

 ∆z = 0.50 m   10.5 < z ≤  30.0 m  , 

 ∆z = 1.00 m 31.0 < z ≤  50.0 m  . 

Figure 1 shows the model results for the case where the scalar diffusivity is K = 10 m2 s–1 and the 
time-step is ∆t = 0.001 s.  These are the time-height contours derived from a simple scalar 
diffusion model solved via an explicit differencing scheme.  Here, the time-step is small to 
satisfy the stability criterion described by Press et al. (7) as  
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Figure 1.  Time-height contours derived from a scalar diffusion model  
solved via an explicit differencing scheme.  In this example,  
the scalar diffusivity is K = 10 m2 s–1 and the time-step is  
∆t = 0.001 s.  
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z
tK   . (5) 

Otherwise, for larger time-steps, the numerical scheme would be unstable and the model would 
not produce viable results.  Alternately, figure 2 shows several profiles of scalar concentration at 
different time-steps derived from this model.  Finally, for comparison, figure 3 shows the time-
height contours for the case where K = 3 m2 s–1 and the time-step is ∆t = 0.01 s.    

 

3. Time-Dependent Implicit Differencing 

Alternately, equation 3 (without advection) can be solved via implicit differencing.  The 
discretized form for equation 3 in this case can be written as 

 
( ) ( ) ( )

( )( )( ) 











−−−
−−−+−

∆=−
−+−+

−+
+

+
+
−−

+
++

11112
1

11
1

,1
1
1,1

1
1,

,
1

,
jjjjjj

jj
n
jijj

n
jijj

n
jin

ji
n
ji zzzzzz

zzCzzCzzC
tKCC   . (6) 

 



 

4 

 

Figure 2.  Time-dependent profiles of scalar concentration derived from  
a scalar diffusion model solved via an explicit differencing  
scheme. 

 

Figure 3.  Same as figure 1 except the scalar diffusivity K = 3 m2 s–1  
and the time-step is ∆t = 0.01 s.   
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If it is assumed that 
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then equation 6 can be solved for n
jiC ,  as 
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Now, equation 8 can be solved via a tridiagonal matrix algorithm (also called the Thomas 
algorithm) (Press et al. [8]).  By implementing the Thomas algorithm, one is looking for a 
solution to the equation A · x = r, which can be written in matrix-vector notation as 
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Here a, b, c, and r are the input vectors and x is the (scalar) output vector.  The sub-, main-, and 
super-diagonal vectors (a, b, and c, respectively) can be computed from equation 8 as 

 ( )jjji zza −−= +1, α   , (10) 

 ( )11, 1 −+ −+= jjji zzb α   , (11) 

and 

 ( )1, −−−= jjji zzc α   . (12) 

The input vector r is defined as,  

 n
jiji Cr ,, =   . (13) 

In addition, the following boundary conditions are implemented:  at z1, ai,1 = 0, bi,1 = 1, ci,1 = 0, 
and 1,1, ii Cr =  and at zN, ai,N = 0, bi,N = 1, ci,N = 0, and NiNi Cr ,, = . 

Figure 4 shows the time-height contours derived from this scalar diffusion model solved via 
implicit differencing, where the scalar diffusivity is K = 10 m2 s–1 and the time-step is ∆t = 0.1 s.  
As expected, these results are quite similar to those shown earlier derived via explicit 
differencing (figure 1).  Except here, the magnitude of the time-step is not critical because the 
stability criterion for this model is given instead as  
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so that the numerical scheme is unconditionally stable for both large and small ∆t (9).  
Alternately, figures 5 and 6 show, for comparison, the time-height contours for the case where ∆t 
= 0.5 s and ∆t = 1.0 s, respectively.  

 

 

Figure 4.  Time-height contours derived from a scalar diffusion model  
solved via an implicit differencing scheme.  In this example,  
the scalar diffusivity is K = 10 m2 s–1 and the time-step is  
∆t = 0.1 s. 
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Figure 5.  Same as figure 4 except the time-step is ∆t = 0.5 s. 

 

Figure 6.  Same as figure 4 except the time-step is ∆t = 1.0 s. 
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4. Steady-State Implicit Differencing 

4.1 Scalar Diffusion Model 

In contrast, a steady-state model can be derived from equation 3, i.e., 
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  , (15) 

which can be written in discretized form as, 
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If it is assumed that 
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Here, equation 18 can be solved via the Thomas algorithm, where the input vectors a, b, c, and r 
are given as 

 ( )jjji zza −−= +1, β
α   , (19) 

 ( )11, 1 −+ −+= jjji zzb
β
α   , (20) 

 ( )1, −−−= jjji zzc
β
α   , (21) 

and  

 jiji Cr ,1, −=  . (22) 

Figure 7 shows the two-dimensional (2-D) scalar field as computed by the steady-state model.  
For this example, the vertical and horizontal grid dimensions (i.e., ∆z = 0.25, 0.5, 1.0 m and ∆x = 
0.5 m) and the initial scalar profile are the same as those described earlier in the report.  In 
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contrast, figure 8 shows the 2-D steady-state scalar field for the case where ∆x = 2.0 m.  Here, 
the magnitude of the horizontal grid increment is not critical because the stability criterion for 
this model is given as  
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where one may substitute uxt ∆=∆ .  Thus, a simple, unconditionally stable 2-D diffusion 
model has been developed to test the basic formulation and correct implementation of variable 
grid and implicit differencing to solve the steady state scalar field.   

 

 

Figure 7.  The 2-D steady-state scalar field derived from a scalar  
diffusion model solved via an implicit differencing scheme.   
In this example, the scalar diffusivity is K = 10 m2 s–1 and  
the horizontal grid is ∆x = 0.5 m. 

4.2 Coupled Meteorological—Acoustic Computer Model 

In this section, successful preliminary tests on simpler (diffusion) codes are extended to more 
complicated meteorological—acoustic models for the forest canopy.  As an example, Tunick (4) 
gives the parameterized equation for Reynolds stress ''wu  as 
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Figure 8.  Same as figure 7 except the horizontal grid is ∆x = 2.0 m.   
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where u is the mean flow – longitudinal, w  is the mean flow – vertical, 2'u and 2'w  are 

the longitudinal and vertical velocity  variances, respectively, ''θu is the horizontal heat flux, g 

is the acceleration due to gravity, T is the absolute temperature, C is a constant whose value is 
~0.077, q is the turbulent kinetic energy, Cd is the forest canopy drag coefficient, A (in units 
m2m-3) is the leaf area density, and λ is a function of mixing length.1  The overbar and primed 
                                                 

1In equation 24, 1λ  and 2λ  are length scales, which contain two necessary closure constants, i.e., lakk =λ , where k is an 
arbitrary index and l is the mixing length.  Values for these closure constants are 39.01 =a  and 85.02 =a  (10). 
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variables indicate the mean (time averaged) and fluctuating components of the given quantity, 
whereas the brackets, , indicate horizontal averaging.  Solving equation (24) for zu ∂∂  

yields 
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so that 
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where r.h.s. contains all the terms on the right-hand side of equation 25.  Based on this 
expression, the following second-order ordinary differential equation can be set up to solve for 

u , i.e.,   
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Equation 27 can be discretized over a variable grid as 
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Now, equation 28 can be solved via the tridiagonal matrix algorithm, where the sub-, main-, and 
super-diagonal vectors (a, b, and c, respectively) are as follows: 
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Finally, the input vector r is given as 

  
11
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This procedure is similarly applied to solve the other 2-D meteorological fields, which include 
mean temperature, vertical velocity, fluctuation pressure, and heat flux.  

Figure 9 shows the computed horizontal wind velocity u , in units ms-1, over a variable grid 

within and above a uniform forest stand.  For this example, canopy height is 10 m.  In contrast, 
figure 10, shows the computed horizontal wind velocity, u , and wind flow streamlines over a 

variable grid within and above a non-uniform forest stand, i.e., one that contains multiple step 
changes in canopy height at the lower boundary.   

5. Summary 

Introducing variable grid will improve the efficiency and realism of coupled meteorological—
acoustic computer models.  Variable grid will allow for better distribution of grid points and will 
extend calculations higher into the boundary layer above the forest.  A finer grid inside the forest 
and a coarser grid above the forest will help to resolve important meteorological (and acoustic) 
scales and processes.  Therefore, this report has presented results from some preliminary tests to 
incorporate variable grid into current software.  Several basic model codes were developed to 
benchmark the fundamental (numerical) techniques, i.e., to solve diffusion equations via explicit 
and implicit differencing.  These calculations worked quite well.  In addition, numerical stability 
criteria for these calculations were clearly demonstrated.   
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Figure 9.  Horizontal wind velocity, u , in units ms-1,  within and  

above a uniform forest stand, where canopy height (h) is  
10 m.   

Although difficult to perform, stability analysis is important so that models will be 
computationally robust.  In this report, it was shown that the magnitude of the time-step (and/or 
horizontal grid increment) was not critical for the time-dependent and steady-state diffusion 
models solved via implicit differencing.  However, in current meteorological—acoustic software, 
the stable calculation of the second horizontal derivatives (as well as the mixed derivatives) is 
found to necessitate fairly large ∆x (e.g., 30-50 m).  Hence, further analysis and interpretation of 
model results are in progress to resolve some remaining difficulties in establishing a finer 
(horizontal) grid in existing meteorological—acoustic codes. 
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Figure 10.  Horizontal wind velocity, u , in units ms-1, and the  

wind flow streamlines within and above a non-uniform  
forest stand, i.e., one that contains multiple step changes  
in canopy height (h) at the lower boundary.   
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