

A ModSAF RDR File Interface for the U.S. Army Research

Laboratory Vulnerability Server

by Erik Greenwald

ARL-TN-231 November 2004

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5068

ARL-TN-231 November 2004

A ModSAF RDR File Interface for the U.S. Army Research

Laboratory Vulnerability Server

Erik Greenwald
Survivability/Lethality Analysis Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

November 2004
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

October 2003–November 2003
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

A ModSAF RDR File Interface for the U.S. Army Research Laboratory
Vulnerability Server

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

AH80
5e. TASK NUMBER

6. AUTHOR(S)

Erik Greenwald

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRD-ARL-SL-BE
Aberdeen Proving Ground, MD 21005-5068

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TN-231

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

With the move to High-Level Architecture and the Modeling Architecture for Technology Research EXperimentation
(MATREX) suite, the U.S. Army Research Laboratory Vulnerability/Lethality Server required the ability to read the new
database format for vulnerability probabilities. Support was provided through a component to read these database files, find
the stored probabilities, and compute the probability packing suitable for selecting an end condition given a random number.
The component implements a fast parameter-driven reentrant interface, as well as a compatibility interface based on the
server’s global values. The new ModSAF “reader” (RDR) file format parser and lookup component provides a high-
performance and simple way to extract vulnerability probabilities from MATREX RDR files. While the software was written
to support the server software package, the interface to the core RDR parser was made in a generic fashion. This report
describes the design and implementation of the component, how to interface it, and a performance analysis as compared to the
alternative individual unit of action table component.

15. SUBJECT TERMS

MATREX, distributed simulation, lethality, vulnerability, OneSAF, ModSAF

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON
Erik Greenwald

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

UL

18. NUMBER
OF PAGES

16

19b. TELEPHONE NUMBER (Include area code)
410-278-6255

 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

1. Introduction 1

2. Formats 1
2.1 Individual Unit of Action (IUA) Tables..1

2.2 ModSAF Vulnerability Data Trees ...2

3. Application Program Interface 3
3.1 Native Functions..4

3.1.1 void *rdr_load (FILE *in); ..4
3.1.2 float *rdr_ground (void *table, int showing, float angle, float range, float
dispersion); ..5
3.1.3 void rdr_clear (void *tbl); ...5

3.2 Compatibility Functions ..5
3.2.1 void * tblfmt_iua_multi_result (void *table); ...5
3.2.2 void * tblfmt_iua_heat_rd (FILE * fp);

void * tblfmt_iua_he_rd (FILE * fp);
void * tblfmt_iua_ke_rd (FILE * fp);
void * tblfmt_iua_staff_rd (FILE * fp);..6

3.2.3 void * tblfmt_iua_heat_result (void *table);
void * tblfmt_iua_he_result (void *table);
void * tblfmt_iua_ke_result (void *table);
void * tblfmt_iua_staff_result (void *table); ..6

4. Performance 6

5. Conclusion 7

Distribution List 8

 iv

List of Figures

Figure 1. Old IUA table format...2
Figure 2. ModSAF RDR list format. ..2
Figure 3. RDR grammar. ..3
Figure 4. RDR lexicon. ...3
Figure 5. Component layout. ..4
Figure 6. RDR vs. IUA benchmark results. ..7

 1

1. Introduction

War game simulations typically compute damage results by looking up probabilities of
high-level damage conditions in a table of precomputed results. The U.S. Army Research
Laboratory (ARL) Lethality/Vulnerability Server (the lethality server) provides a simulation with
results based on several variables such as the range from the threat source to the target, angle
between the target facing and threat path, whether the target is defiladed, etc.

With the move to ModSAF and the Modeling Architecture for Technology Research
EXperimentation (MATREX) suite, the server required the ability to read the new database
format for vulnerability probabilities. Support was provided via a component to read these
database files, find the stored probabilities, and compute the probability packing suitable for
selecting an end condition given a random number. The component implements a fast
parameter-driven reentrant interface as well as a compatibility interface based on the server
global values, such as range, defilation, dispersion, and angle. The purpose of this report is to
describe the component written in support of the ARL lethality server for MATREX.

2. Formats

The lethality server uses database tables stored in files for the actual threat and weapon pairing.
The new ModSAF/MATREX data set uses a new format to store these tables. The server
required a new module to load the updated table format, but required the old format to still be
accessible for tables that have not been updated. Minor optimizations were also performed on
the system, such as rewriting the probability-packing algorithm to use less computationally
expensive mathematical operations.

2.1 Individual Unit of Action (IUA) Tables

Old IUA files are simple flat file databases. The first line contains information such as how
many ranges, dates, etc. The actual database begins after the header and each line is a unique
tuple containing range, cover, dispersion, kill type, and the eight angle-bound probabilities, as
depicted in figure 1 (from server source “sample.iua”). The first four digits compose the key for
the table. The range requires the program to read further into the file than the actual entry to
verify that another fitting range does not exist further down. The other three elements (cover,
dispersion, and kill type) are simple matches.

 2

Figure 1. Old IUA table format.

2.2 ModSAF Vulnerability Data Trees

The new format for storing IUA tables is the ModSAF “reader” (RDR) file format. The numbers
are stored in a tree composed of lists instead of being a flat database of rows and columns. Much
of the data is extracted from the lists structure. Lists are delimited with Lisp style parenthesis.
Comments begin with a semicolon and are terminated at the end of the line. Figure 2 is a snippet
from an RDR format file. The Backus Naur Form (BNF) grammar for this file format is listed in
figure 3, and the lexicon in figure 4 (from MATREX v0.5 drop 2). These figures were composed
from the “YACC”* and “Lex”† files, respectively.

Figure 2. ModSAF RDR list format.

The RDR parser walks the list of lists and generates a nearly duplicate arrangement in the
computer’s memory. This allows smaller segments of memory to be allocated by the software so
“out of memory” errors are less likely than with large, table-style allocations that require big
pieces of contiguous memory. The tree structure being stored in memory also allows O(log2n)
lookup speeds, as opposed to the typical O(n) lookup speed of a basic linear table scan.

* YACC - Yet Another Compiler Compiler, an LALR (Look-Ahead Left to Right) parser generator. Used to convert a CFG

(Context Free Grammar) to a machine useable hierarchy.
† Lex - A lexical analyzer generator. Converts sequences of characters to machine useable atomic tokens.

7 9998 616 PKH 2040 09/11/90
 0 1 1 1 0.276 0.284 0.666 0.843 0.867 0.870 0.952 0.534
 0 1 1 2 0.488 0.359 0.702 0.891 0.918 0.913 0.949 0.630
 0 1 1 3 0.488 0.359 0.702 0.891 0.918 0.925 0.953 0.630
 0 1 1 4 0.049 0.008 0.009 0.000 0.010 0.488 0.937 0.030
 0 1 2 1 0.239 0.349 0.547 0.723 0.713 0.765 0.774 0.472

;;
(IUA
(9999
 (
 (
 (0.000 0.000 0.200 0.200 0.200 0.500 0.500 0.000)
 (0.100 0.100 0.300 0.300 0.300 0.500 0.500 0.000)
 (0.100 0.100 0.300 0.300 0.300 0.500 0.500 0.000)
 (0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000)
...
))))

 3

Figure 3. RDR grammar.

Figure 4. RDR lexicon.

Simple integration into the existing server code base was necessary. A “glue” component was
written to translate server-style function calls to RDR module recursive reentrant function calls.
The RDR reader has a unified interface that allows the data itself to help dictate interpretation.

This allowed the “first call” function set in the glue component to be very thin, simple wrappers.
One function was inserted into the lookup path to collect the global variables and adjust them to
the formats and units used in the RDR files.

3. Application Program Interface

A new table reader component was added to access the new RDR format. The source to this new
component resides in the “$VLS_HOME†/src/TblRdrs/rdr/” directory of ARL’s lethality server
project. Source to the new RDR component can be provided alone by request. The
languages/tools used to generate this new component are C, Lex, and YACC. With a new
unified interface, two sets of functions were created: native interface functions and compatibility
interface functions. The interface between the new RDR component and the server is shown in
figure 5.

void *rdr_load (FILE *in);
float *rdr_ground (void *table, int showing, float angle, float range, float dispersion);
void rdr_clear (void *tbl);

These functions are defined in section 3.1.

† “$VLS_HOME is a shell environment variable containing the “Lserver” directory.

<Table> ::= “(”<STR> <RangeSet>“)”
<RangeSet> ::= λ | <Ranges> <RangeSet>
<Ranges> ::= “(”<INT> <Showing> <Showing>“)”
<Showing> ::= “(”<Kill> < Kill> < Kill>“)” |
 “(”<R> <R> <R> <R> <R> <R> <R> <R> <R> <R> <R> <R> “)”
<R> ::= “(”<Kill> < Kill> < Kill> < Kill> “)”
<Kill> ::= “(”<FLT> < FLT > < FLT > < FLT > < FLT > < FLT > < FLT > < FLT > “)”

<INT> ::= [0-9][0-9]*
<STR> ::= [A-Za-z_][A-Za-z_0-9-]*
<FLT> ::= [0-9]*\.[0-9]+
;.* ::=

 4

Figure 5. Component layout.

void * tblfmt_iua_multi_result (void *table);
void * tblfmt_iua_heat_rd (FILE * fp);
void * tblfmt_iua_he_rd (FILE * fp);
void * tblfmt_iua_ke_rd (FILE * fp);
void * tblfmt_iua_staff_rd (FILE * fp);
void * tblfmt_iua_heat_result (void *table);
void * tblfmt_iua_he_result (void *table);
void * tblfmt_iua_ke_result (void *table);
void * tblfmt_iua_staff_result (void *table);

These functions are defined in section 3.1.

3.1 Native Functions

The new RDR reader features a unified interface. All weapon and ground vehicle types are
called in the same manner. Types were matched closely to the original IUA reader types to make
integration with the server simple.

3.1.1 void *rdr_load (FILE *in);

When the server decides to load an RDR format IUA data table into memory, the rdr_load
function is called to perform that task. The parameter is the file descriptor bound to the RDR file

 5

(via fopen). The return value is a void pointer which will be passed to the reader functions. This
function is reentrant by means of a semaphore which locks the critical area. If two rdr_load calls
are executed simultaneously, they will be queued in sequence based on the operating systems
semaphore management system.

3.1.2 float *rdr_ground (void *table, int showing, float angle, float range, float dispersion);

The actual lookup is performed with the rdr_ground function. The five parameters work to
provide a closed deterministic result. The first parameter is the void pointer as returned by
rdr_load. The showing parameter should be set to either 0 for partially defiladed or 1 for fully
exposed. Currently, showing is assumed to be fully exposed in the compatibility layer. The
range is the distance of the shot measured in meters. The dispersion is the distance of the hit
measured in feet. The discrepancy in units is due to the definition of the RDR IUA format. The
return value is an array of five 32-bit floats. The semantic of each is as follows: Mobility Kill
(MKill), Firepower Kill (FKill), Mobility and Firepower Kill (MFKill), Catastrophic Kill
(KKill), and no effect.

3.1.3 void rdr_clear (void *tbl);

This function is not implemented. This function was intended to destroy the RDR tree generated
by the rdr_load() function. The decision to forego implementation was made due to deadline
constraints and the existing code not leveraging collection.

3.2 Compatibility Functions

Several compatibility functions are required to interface the new RDR reader and lookup
component without excessive modification to the existing server software. The server side
expects variables to be passed in to the lookup component via global variables (float
VLP_impact[3], double VLP_range, and float VLP_ang_aspect), and a different function
available for the table format pertaining to each of the weapons types: kinetic energy (KE), high
explosive (HE), high explosive anti tank (HEAT), and smart target activated fire and forget
(STAFF). To convert the globals to the parameter schema of the new reader and adjust the data
to the right units is a single function which is capable of handling any of the four input types.
The weapon-class functions call the new rdr_ground function with the variables extracted from
the global environment. The purpose of these functions is to provide a “drop-in” compatibility
with the server.

3.2.1 void * tblfmt_iua_multi_result (void *table);

The tblfmt_iua_multi_result function is the data translation and pass-through component to the
compatibility layers query functionality. The global variables (range, defilation, angle, and
dispersion) are extracted and converted into the format that rdr_ground is expecting, then
rdr_ground is called, and the results are passed out. This function is not a compatibility function
per se, but is a utility function to simplify the actual compatibility functions.

 6

3.2.2 void * tblfmt_iua_heat_rd (FILE * fp);
void * tblfmt_iua_he_rd (FILE * fp);
void * tblfmt_iua_ke_rd (FILE * fp);
void * tblfmt_iua_staff_rd (FILE * fp);

These four compatibility functions merely call the rdr_load function. No data translation is done
on the parameters or return values.

3.2.3 void * tblfmt_iua_heat_result (void *table);
void * tblfmt_iua_he_result (void *table);
void * tblfmt_iua_ke_result (void *table);
void * tblfmt_iua_staff_result (void *table);

The four compatibility functions previously shown call tblfmt_iua_multi_result. The input
parameter is not modified. The output parameter is casted from float* to void*.

4. Performance

One concern raised about the new component was how quickly it performed queries on the data
set. The original IUA query accessed the data by holding the table in arrays and using the query
key components as indices to look directly at the data. The new RDR query traverses a tree.
While the new method allows the program to operate on systems with less contiguous memory
available, an overhead is incurred by the traversal.

A simple benchmark comparison between the old style table reader and the new RDR file reader
was conducted to verify that the performance of the RDR component would not be much slower
than the original table query. The test application loaded a table, set up the global variables, and
then called the tblfmt_iua_ke_result function ten million times. Central processing unit (CPU)
time was queried before and after the loop using the Unix clock function. The difference was
converted to seconds, and the actual CPU time as well as the number of queries per second was
displayed.

The new RDR component was tested using the compatibility layer to consider the overhead of
addressing the global variables and passing them to the actual function. The total run time on a
2.0-GHz Intel Pentium 4 computer was 9.29 s. The yield was 1076426.269221 queries per
second.

The IUA table version was tested in the same fashion on the same hardware. Completion of the
benchmark set took 10.42 s. The resulting yield was 959692.891246 queries per second.

The numbers in the two paragraphs previously mentioned and figure 6 are of the first benchmark
run for the two approaches. Both benchmarks were executed several times to verify the numbers
were not erroneous. The programs were compiled with no optimization flags set to compare

 7

Figure 6. RDR vs. IUA benchmark results.

algorithmic design instead of compiler capability. Both benchmark programs approximately
doubled throughput when the compiler was instructed to use aggressive speed optimizations.*
Performance of the new RDR component is slightly better than the original IUA-indexed lookup.

5. Conclusion

The new RDR file parser and lookup component provides a high performance and simple way to
extract vulnerability probabilities from MATREX RDR files. While the software was written to
support the ARL server software package, the interface to the core RDR parser was made in a
generic fashion. Source code is available in the ARL server package or by request.

* “-O3-march=pentium4 -mcpu=pentium4” on GCC 3.2.

 CPU time (s) queries per second
 rdr 9.29 1076426.269221
 iua 10.42 959692.891246

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 8

 1 DEFENSE TECHNICAL
 (PDF INFORMATION CTR
 ONLY) DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FORT BELVOIR VA 22060-6218

 1 US ARMY RSRCH DEV &
 ENGRG CMD
 SYSTEMS OF SYSTEMS
 INTEGRATION
 AMSRD SS T
 6000 6TH ST STE 100
 FORT BELVOIR VA 22060-5608

 1 INST FOR ADVNCD TCHNLGY
 THE UNIV OF TEXAS
 AT AUSTIN
 3925 W BRAKER LN STE 400
 AUSTIN TX 78759-5316

 1 US MILITARY ACADEMY
 MATH SCI CTR EXCELLENCE
 MADN MATH
 THAYER HALL
 WEST POINT NY 10996-1786

 1 DIRECTOR
 US ARMY RESEARCH LAB
 IMNE AD IM DR
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CI OK TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CS IS T
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

 1 DIR USARL
 AMSRD ARL CI OK TP (BLDG 4600)

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 9

 1 OASD C3I
 J BUCHHEISTER
 RM 3D174
 6000 DEFENSE PENTAGON
 WASHINGTON DC 20301-6000

 1 OUSD(AT)/S&T AIR WARFARE
 R MUTZELBURG
 RM 3E139
 3090 DEFENSE PENTAGON
 WASHINGTON DC 20301-3090

 1 OUSD(AT)/S&T LAND WARFARE
 A VIILU
 RM 3B1060
 3090 DEFENSE PENTAGON
 WASHINGTON DC 20310-3090

 1 UNDER SECY OF THE ARMY
 DUSA OR
 RM 2E660
 102 ARMY PENTAGON
 WASHINGTON DC 20310-0102

 1 ASST SECY ARMY
 ACQSTN LOGISTICS & TECH
 SAAL ZP RM 2E661
 103 ARMY PENTAGON
 WASHINGTON DC 20310-0103

 1 ASST SECY ARMY
 ACQSTN LOGISTICS & TECH
 SAAL ZS RM 3E448
 103 ARMY PENTAGON
 WASHINGTON DC 20310-0103

 1 DIRECTOR FORCE DEV
 DAPR FDZ
 RM 3A522
 460 ARMY PENTAGON
 WASHINGTON DC 20310-0460

 1 US ARMY TRADOC ANL CTR
 ATRC W
 A KEINTZ
 WSMR NM 88002-5502

 1 USARL
 AMSRD ARL SL EA
 R FLORES
 WSMR NM 88002-5513

 1 USARL
 AMSRD ARL SL EI
 J NOWAK
 FORT MONMOUTH NJ 07703-5601

ABERDEEN PROVING GROUND

 1 US ARMY DEV TEST COM
 CSTE DTC TT T
 APG MD 21005-5055

 1 US ARMY EVALUATION CTR
 CSTE AEC SVE
 R BOWEN
 4120 SUSQUEHANNA AVE
 APG MD 21005-3013

 1 US ARMY EVALUATION CTR
 CSTE AEC SVE S
 R POLIMADEI
 4120 SUSQUEHANNA AVE
 APG MD 21005-3013

 1 US ARMY EVALUATION CTR
 CSTE AEC SV L
 R LAUGHMAN
 4120 SUSQUEHANNA AVE
 APG MD 21005-3013

 14 DIR USARL
 AMSRD ARL SL
 J BEILFUSS
 P DEITZ
 AMSRD ARL SL B
 J FRANZ
 M PERRY
 P TANENBAUM
 AMSRD ARL SL BB
 D BELY
 D FARENWALD
 S JUARASCIO
 M RITONDO
 AMSRD ARL SL BD
 R GROTE
 AMSRD ARL SL BE
 L ROACH
 AMSRD ARL SL E
 M STARKS
 AMSRD ARL SL EC
 J FEENEY
 E PANUSKA

NO. OF
COPIES ORGANIZATION

 10

 ABERDEEN PROVING GROUND

 8 DIR USARL
 AMSRD ARL SL BE
 J ANDERSON
 R BOWERS
 L BUTLER
 E FIORAVANTE
 E GREENWALD (4 CPS)

