Processing Interband Cascade Laser for High Temperature CW Operation

by Richard L. Tober, Carlos Monroy, Kimberly Olver, and John D. Bruno

ARL-TN-233 November 2004

Approved for public release; distribution unlimited.
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
Processing Interband Cascade Laser for High Temperature CW Operations

Richard L. Tober, Carlos Monroy, and Kimberly Olver
Sensors and Electron Devices Directorate, ARL

John D. Bruno
Maxion Technologies, Inc.
### Abstract

A narrow ridge-waveguide mid-IR interband cascade laser based on Type-II InAs/GaInSb heterostructures processed with a thick gold heat spreading layer operated CW at temperatures ranging from 80 K to 214.4 K. Its differential quantum efficiency was 547% at 80 K and dropped slowly to 239% at 200 K, commensurate with a $T_1$ of 160.2. The device had a characteristic temperature, $T_0$, of 40.2 K and showed signs of significant heating at temperatures above 200 K.

### Subject Terms

- Semiconductor diode lasers
- Quantum wells
- IR laser
- Type-II
- Semiconductor
- IR countermeasures

---

### Security Classification of:

- **a. Report**: Unclassified
- **b. Abstract**: Unclassified
- **c. This Page**: Unclassified

### Limitation of Abstraction

- **UL**: Unclassified

### Number of Pages

- 12 pages
## Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>References</td>
<td>4</td>
</tr>
<tr>
<td>Distribution List</td>
<td>5</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1. L-I data for a 0.992 mm × 4 µm type-II interband cascade laser. The DEQE ranges from 568% at 80 K to 239% at 200 K, but then drops to 54% at 214.4 K. ......................................2

Figure 2. The natural logarithm of the threshold current density plotted as a function of temperature for the 0.992 mm × 4 µm laser. The straight line is a linear fit to the data below 200 K. The difference between the data points and the linear fit gives a lower bound to the temperature of the active region. ..........................................................3
The advent of interband cascade (IC) lasers (1) has brought new hopes for commercial and military applications that require mid-IR sources. However, in order to impact these markets, the lasers must not only emit tens-of-milliwatts, but also operate with high duty cycles at temperatures approaching 300 K. Though theoretical predictions suggest that the IC lasers could provide watts of CW power at room temperature (2), this has yet to be achieved.

Changes in design parameters, which take advantage of the unique characteristics of the type-II band alignment to enhance quantum efficiency and minimize Auger recombination, certainly have played a key role in the rapid advances in performance characteristics reported to date (3-8). But, since antimony-based materials have poor thermal conductivities, concerted efforts must be made to efficiently remove heat from the active region. Therefore, we have chosen to focus our attention in this note on the increase in operating temperature that resulted from modest changes in laser processing techniques.

The IC laser structure used for this work has 18 repeated periods of active regions separated by n-type doped InAs/AlSb injection regions structurally similar to that described earlier (3). Each period of M103 includes an active region with an asymmetric InAs/Ga0.7In0.3Sb/InAs “W” quantum well, followed by an AlSb barrier layer and Ga0.7In0.3Sb, AlSb, and GaSb layers facilitating electron transport into the neighboring InAs/AlSb injection region.

What was different about the lasers discussed in this work was the manner in which they were fabricated. In the past, the substrate side of the structure was thinned to about 100 µm before evaporating a Au/Ti contact layer onto it. Then the epi-side was wet-etched to just below the upper cladding layer (~1.5 µm), a passivation layer of SiO2 was deposited, and this was followed by the Au/Ti contact layer. Lastly, a layer of indium was evaporated onto the substrate so that the device could be bonded to a gold plated copper mount.

For this work, the laser was prepared similar to previous samples, except for 3 differences. They were: 1) the epi-side of the wafer was etched into the upper cladding layer, 2) the Au/Ti upper contact layer was followed with 3 µm of electroplated Au, and 3) a pre-formed piece of indium foil was used to solder the device to the gold plated copper mount.

A 0.992 mm × 4 µm wide laser was fabricated, as discussed above, and mounted on the temperature-controlled cold-finger of a cryostat. Then CW spectral and L-I-V data were acquired as a function of temperature. Figure 1 shows L-I plots that were acquired in the temperature range between 80 K and 214.4 K.
Figure 1. L-I data for a 0.992 mm × 4 µm type-II interband cascade laser. The DEQE ranges from 568% at 80 K to 239% at 200 K, but then drops to 54% at 214.4 K.

The curves are quite linear above threshold and correspond to differential external quantum efficiency (DEQE, $S$) values that decrease slowly from 568% at 80 K to 239% at 200 K according to

$$\ln(S) = \ln(S_0) + \frac{T}{T_0}.$$

Above 200 K the DEQE drops rapidly to 54% at 214.4 K. The temperature dependence of the DEQE (below 200 K) yields a $T_1$ of 160.2 K. Figure 2 shows a plot of the natural logarithm of the threshold current density, $J_{th}$, as a function of temperature

$$\ln(J_{th}) = \ln(J_0) + \frac{T}{T_0},$$

where $J_{th}$ is the threshold current density, $J_0$ is the threshold current density at 0 K, and $T_0$ is the device characteristic temperature. The data below 200 K results is linear and yields a value of 40.2 K for $T_0$. Above 200 K, the data diverges from linearity because there is a finite thermal resistance, $R_{th}$, between the active region and the silicon diode temperature sensor on the cold finger. This temperature difference, $\Delta T$, can be written as:
\[ \Delta T = T_H - T_A = VIR_{th}, \]

where \( T_H \) and \( T_A \) are the heat sink and active region temperatures, \( V \) and \( I \) are the bias and injected currents at threshold. The active region temperature extrapolated from the linear portion of the data shown in figure 2 is 232.5 K. This yields a value of 43.5 W/K for the thermal resistance between the active region and the heat sink.

![Figure 2](image)

**Figure 2.** The natural logarithm of the threshold current density plotted as a function of temperature for the 0.992 mm × 4 µm laser. The straight line is a linear fit to the data below 200 K. The difference between the data points and the linear fit gives a lower bound to the temperature of the active region.

The maximum CW operating temperature of 214.4 K is, to the best of our knowledge, the highest published to date for an electrically mid-IR pumped laser. It is almost 70 K greater than our previous result of 150 K from a similar laser structure (8). We attribute the increase in operating temperature to modest improvements in the processing and packaging techniques. Specifically, the electroplated gold deposited on the epi-up side of the laser significantly increases thermal spreading, calculations corroborate this posit. The indium preformed foil improved the integrity of the bond between the laser and the Au plated copper heat sink. This latter point is evidenced by TEM images of the interface between the laser structure and the gold plated copper mount.
References


2. [Meyer Mohan – theoretical predictions].


Distribution List

ADMINSTR
DEFNS TECHL INFO CTR
ATTN DTIC-OCP (ELECTRONIC COPY)
8725 JOHN J KINGMAN RD STE 0944
FT BELVOIR VA 22060-6218

DARPA
ATTN I XO S WELBY
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

OFC OF THE SECY OF DEFNS
ATTN ODDRE (R&AT)
The Pentagon
WASHINGTON DC 20301-3080

US ARMY TRADOC
BATTLE LAB INTEGRATION & TECHL DIRCTR
ATTN ATCD-B
10 WHISTLER LANE
FT MONROE VA 23651-5850

US MILITARY ACDMY
MATHEMATICAL SCI CTR OF EXCELLENCE
ATTN LTC T RUGENSTEIN
THAYER HALL RM 226C
WEST POINT NY 10996-1786

SMC/GPA
2420 VELA WAY STE 1866
EL SEGUNDO CA 90245-4659

US ARMY ARDEC
ATTN AMSTA-AR-TD
BLDG 1
PICATINNY ARSENAL NJ 07806-5000

COMMANDING GENERAL
US ARMY AVN & MIS CMND
ATTN AMSAM-RD W C MCCORKLE
REDSSTONE ARSENAL AL 35898-5000

US ARMY INFO SYS ENGRG CMND
ATTN AMSEL-IE-TD F JENIA
FT HUACHUCA AZ 85613-5300

US ARMY NATICK RDEC
ACTING TECHL DIR
ATTN SBCN-TP P BRANDLER
KANSAS STREET BLDG 78
NATICK MA 01760-5056

US ARMY SIMULATION TRAIN & INSTRMNTN CMND
ATTN AMSTI-CG M MACEDONIA
12350 RESEARCH PARKWAY
ORLANDO FL 32826-3726

HICKS & ASSOC INC
ATTN G SINGLEY III
1710 GOODRICH DR STE 1300
MCLEAN VA 22102

MAXION TECHNOLOGIES, INC.
ATTN J BRUNO
6525 BELCREST RD, STE 523
HYATTSVILLE MD 20783

PALISADES INST FOR RSRCH SVC INC
ATTN E CARR
1745 JEFFERSON DAVIS HWY STE 500
ARLINGTON VA 22202-3402

DIRECTOR
US ARMY RSRCH LAB
ATTN AMSRD-ARL-RO-D JCI CHANG
ATTN AMSRD-ARL-RO-EN
W D BACH
PO BOX 12211
RESEARCH TRIANGLE PARK NC 27709