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1. Introduction 

To accurately describe the propagation of a light beam through a medium, one must account, 
roughly speaking, for three phenomena:  diffraction, refraction, and absorption.  Diffraction 
refers to the tendency of wave phenomena such as light or sound to deviate from rectilinear 
propagation when a portion of the wave front is obstructed in some way.  Diffractive effects are 
present to some degree in every real optical system, simply because no real system can be 
infinite in extent; every real system must necessarily contain an effective aperture of some sort.  
Refraction is related to the speed with which a wave travels through a medium.  It, too, can result 
in the deviation of a beam from straight-line propagation, as when the refractive properties of the 
medium depend on position in such a way that different portions of the beam experience 
different amounts of refraction.  Absorption is the process responsible for the change in 
amplitude of the wave as it propagates through the medium and energy is transferred from the 
wave to the medium or from the medium to the wave (gain).  Both refraction and absorption 
depend on the amplitude of the propagating wave.  In certain media, this dependence is highly 
nonlinear, while in other materials, such as “slow” (fluence dependent) excited state absorbers 
(1), it is, to be sure, linear in the wave amplitude but reflects the entire history of the interaction 
between the medium and the propagating beam.  In general, calculating the effects of 
propagation of a high-intensity laser beam through all but the simplest media presents a very 
difficult problem. 

In these “simple” media (isotropic media exhibiting refractive and absorptive responses that are 
both linear and time independent), beam propagation essentially reduces to pure diffraction.  
However, even a pure diffraction problem in an uncomplicated geometry can generally not be 
solved without recourse to various approximations, and these impose limits on the resulting 
solutions.  Nevertheless, solutions do exist. 

These solutions are very valuable.  The special case of beam propagation (diffraction) in an 
isotropic, linear, and time-independent medium is extremely important in practice.  What is 
more, the solution of the linear diffraction problem can be employed to attack the more general 
problem of beam propagation in a nonlinear medium through the use of a numerical procedure 
that separately computes the effects of diffraction, nonlinear refraction, and nonlinear absorption 
for each propagation step.  This is the “split step” Fourier method introduced by Fleck, Morris, 
and Feit (2) (sometimes referred to simply as the Beam Propagation Method). 

The remainder of this report is organized as follows.  Section 2 opens with an examination of the 
general nonlinear optical wave equation and the conditions under which it reduces to the scalar 
Helmholtz equation.  This is followed by a careful derivation of the paraxial wave equation.  
Section 3 briefly reviews the salient results of classical scalar diffraction theory.  In sections 4 
and 5, standard integral transform methods are used to obtain a general solution to the paraxial 
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wave equation in a linear medium and the Helmholtz equation in a linear medium, respectively.  
These results underscore the fact (perhaps not widely appreciated) that the exact Rayleigh-
Sommerfeld integral is equivalent to the scalar Helmholtz equation, while the Rayleigh-
Sommerfeld integral in the Fresnel approximation is equivalent to the paraxial wave equation.  
The general results of section 4 are specialized to situations with cylindrical symmetry in section 
6.  In section 7, these cylindrically symmetric results are applied to a practical example—a 
Gaussian beam clipped by an aperture. 

2. Scalar Electromagnetic Wave Equations and Their Validity 

2.1 General Wave Equation for Nonlinear Optical Media 

The derivation of an electromagnetic wave equation from the Maxwell equations is presented in 
virtually any textbook on optics or electromagnetic theory.  The most general form (3) of the 
wave equation in a nonmagnetic medium containing neither free charges nor free currents is, in 
Gaussian units, 

 ),,(P4),,(1),,( 2

2

22

2

2 tzx
tc
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tzx rrrrrrrr

∂
∂

−=Ε
∂
∂

+Ε×∇×∇
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(In anticipation of future developments, we place one of the coordinates, z, on a separate footing 
and combine the remaining two coordinates into the two-component vector xr , which designates 
positions in the transverse plane.)  In equation 1, ),,(P tzxr

r
 is the total material polarization.  It is 

usually expressed as a power series in the electric field ),,( tzxr
r
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by 

 

K

rrrr

rrr

rrr

+′′′Ε′′Ε′Ε′′′−′′−′−′′′′′′

+′′Ε′Ε′′−′−′′′

+′Ε′−′=

∫∫∫

∫∫

∫

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

),,(),,(),,(),,,,(

),,(),,(),,,(

),,(),,(),,(P

)3(

)2(

)1(

tzxtzxtzxttttttzxtdtdtd

tzxtzxttttzxtdtd

tzxttzxtdtzx

lkjlkji

kjkji

jjii

χ

χ

χ

  

In this expression, the quantities ),,,()( K
r

K tzxn
jiχ  are components of the nth-order time-dependent 

electric susceptibility tensor, and the repeated indices j, k, l, ....  carry an implied sum (Einstein 
summation convention).  The convolutions in each term of the above expansion for ),,(P tzxi

r  
become simple products upon Fourier transformation. 
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We consider now the single-frequency component of the electric field oscillating at angular 
frequency ω: 

 ..),(),,( ccezxEtzx ti +=Ε − ωrrrr
 (2) 

We employ the well-known vector identity for the curl of a curl and the constitutive relation in 
the form 

 EnP
rr

)1(4 2 −=π  

to recast equation 1 as 

 ( ) ( )EntEzxn
c

E
c

n
EE

rrrrrrrr
2
0

2
2

2

2

2
0

2
2 );,,,( −=−∇−⋅∇∇ ωωω

. (3) 

Here, );,,,( tEzxn
rr ω  is the Fourier component of the refractive index of the medium oscillating 

at frequency ω.  Strictly speaking, a quantity in the frequency domain is a function of ω only, not 
of t.  In the present case, however, we write n with an explicit time dependence to emphasize the 
fact that each Fourier component may slowly change with time (here, “slowly” means that the 
time scale of the variation is much longer than ω–1) as the properties of the medium evolve as a 
result of the interaction with the beam.  The value of the refractive index before the arrival of the 
beam is denoted by n0.   

If the )( E
rrr

⋅∇∇  term can be dropped, equation 3 takes the form of the inhomogeneous Helmholtz 
equation, which can be solved numerically with the “split step” Fourier scheme alluded to in the 
previous section.  Roughly speaking, the split step procedure treats effects arising from the right-
hand side of equation 3 separately from those associated with the left-hand side.  One solves the 
homogeneous Helmholtz equation over a short longitudinal step and then accounts separately for 
the effects over that step of nonlinear (and/or time-dependent linear) refraction and absorption.  
The homogenous Helmholtz equation, together with the simpler equation to which it reduces in 
the case of paraxial beams, is the subject of the remainder of this report. 

We postpone to a future report a full analysis, using the methods of Lax, Louisell, and McKnight 
(4), of the implications of dropping the )( E

rrr
⋅∇∇  term in equation 3.  For the present, we observe 

only that, since free charge is assumed to be absent, it follows from the Maxwell equation for the 
electric displacement that )( 2 En

rr
⋅∇  vanishes, or that 

 )(ln2
1 nEE ∇⋅−=⋅∇

rrrr
. 
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2.2 Homogeneous Helmholtz Equation 

In a linear medium, the divergence of E
r

 vanishes.  If, in addition, the properties of the medium 
are independent of time, then the right-hand side of equation 3 vanishes as well and equation 3 
reduces to 

 ( ) 0),(22 =+∇ zxEk rr
. (4) 

Here, cnk /0ω= , the wave number in the medium.  In an absorptive medium, n0 (and thus k) 
has a positive imaginary part.  Equation 4 is the homogeneous vector Helmholtz equation. 

We designate the polarization direction of the field with the unit vector ê  and write 
),(ˆ),( zxEezxE rrr

= .  If ê  is constant, equation 4 reduces to a scalar wave equation,  

 ( ) 0),(22 =+∇ zxEk r , (5) 

the scalar Helmholtz equation.  We now write the electric field as an envelope function times a 
plane wave propagating in the z-direction:  ikzezxAzxE ),(),( rr

= .  In terms of the envelope 
function ),( zxA r , equation 5 becomes 

 ( ) 0),(2 22 =∇+∂+∂ ⊥ zxAik zz
r , (6) 

where 2
⊥∇  is the transverse Laplacian, given in Cartesian coordinates by 22

yx ∂+∂ . 

2.3 Paraxial Wave Equation 

At this point, we proceed with the slowly varying envelope approximation (also known as the 
paraxial approximation) by introducing suitable “non-dimensionalized” quantities.  The problem 
itself sets a natural length scale x0 for the transverse coordinates, e.g., the size of an aperture or 
the spot radius of a focused laser beam.  We use this quantity to define the scaled transverse 
coordinates:  0/ xxX rr

= .  The transverse length scale x0 and the wave number k now determine 
z0, the longitudinal length scale or “Rayleigh range,”∗ by 2

00 xkz = , and the corresponding scaled 
longitudinal coordinate is given by Z = z/z0.  We denote by ε the ratio of the transverse and 
longitudinal length scales:  ε = x0/z0=(kx0)–1.  (An alternate procedure for non-dimensionalizing 
the problem, employed by some workers (5), simply expresses all lengths as multiples of the 
wavelength λ, or equivalently, as multiples of the inverse wave number k–1.  This seemingly very 
natural choice is not the most convenient for our purposes.) 

In terms of these new dimensionless coordinates, equation 6 becomes 

 ( ) 0),(2 222 =∇+∂+∂ ⊥ ZXAi ZZ

r
ε . (7) 

                                                 
∗ If one chooses x0 to be the spot radius at focus of a Gaussian beam, then z0 is the confocal parameter of the beam, equal to 

twice the Rayleigh range of the beam as conventionally defined. 
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In equation 7, the validity of the slowly varying envelope approximation is completely manifest:  
as long as the transverse length scale x0 is much greater than the wavelength, ε << 1 and the 
approximation holds.  Equation 7 then reduces to 

 ( ) 0),(2 2 =∇+∂ ⊥ ZXAi Z

r
, (8) 

the paraxial wave equation.  In terms of the original “dimensionful” coordinates ),( zxr , the 
paraxial wave equation reads 

 ( ) 0),(2 2 =∇+∂ ⊥ zxAik z
r . (9) 

3. A Précis of Classical Scalar Diffraction Theory 

3.1 History 

The intuitive picture presented in 1678 by Christian Huygens (6) forms the basis for the modern 
theory of diffraction.  According to what is now known as the Huygens-Fresnel principle, every 
point on a wave front may be thought of as the source of spherical secondary wavelets that 
propagate through space with the same speed and frequency as the primary wave; the wave front 
at any later time is simply the envelope of the secondary wavelets.  In his famous prize paper 
presented to the Paris Academy in 1818, Augustin Jean Fresnel combined Huygens’s envelope 
construction with Thomas Young’s ideas about interference.  The Huygens-Fresnel principle was 
placed on a firm mathematical basis in the work of Gustav Kirchoff (7).  Kirchoff’s theory, 
despite its inconsistent assumptions (8, 9) agrees extremely well with experiment in all practical 
limits.  It remained only for Sommerfeld (10) and Rayleigh to remove the inconsistencies from 
the Kirchoff theory.  The mathematical expression of the Huygens-Fresnel principle takes the 
form of an integral which (after a series of simplifying approximations that impose certain 
limitations on the relative size of the diffracting aperture, the distance from the aperture to the 
plane of observation, the size of the observation region on the plane, and the wavelength of the 
radiation) may be evaluated analytically in a variety of simple aperture geometries (e.g., 
rectangle, circle, and infinite one-dimensional slit).  Conventional textbook treatments (11, 12, 
13, 14) typically include several of these approximate calculations. 

3.2 Rayleigh-Sommerfeld Diffraction Integral 

Although excellent discussions of the conventional integral formulation of diffraction theory are 
given elsewhere (we find presentation of (14) particularly lucid), in this section we briefly 
review the standard treatment in order to emphasize several points that surface in our subsequent 
discussion.  We consider the situation at an observation point P with coordinates ),( zxr , as 
shown in figure 1.   (Throughout this discussion, we use the two-component vector xr  to indicate 
positions in the transverse plane.)  The vector rr  with components ( )zxx ,′−

rr  points from an 
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Figure 1. Diffraction by an aperture:  geometry of the problem. 

infinitesimal source at coordinates )0,(x ′r  to the observation point P; the location of the source 
point ranges over the aperture.  The resulting Rayleigh-Sommerfeld diffraction formula is then 

 ( )∫∫ 





 −′′=

plane

ikr

zrik
rr

exExdzxE ˆ,cos1)0,(
2
1),( 2 rrr

π
, (10) 

where 22 xxzrr ′−+==
rrr and represents the distance between the infinitesimal source and 

the observation point, while k  is the wave number, given in terms of the wavelength λ  in the 
medium by k = 2π/λ.  The integration in equation 10 is formally over the entire xy plane, but the 
Kirchoff boundary condition, which sets 0)0,( ≡xE r  for points outside the aperture, restricts the 
integral to the two-dimensional aperture itself.  For the case in which the aperture is illuminated 
by a normally incident plane wave, it has recently been shown that equation 10 may be rewritten 
in terms of a one-dimensional parametric integral around the perimeter of the aperture (15).   

The direction cosine in equation 10, which has the value z/r, is known as the obliquity factor or 
inclination factor.  Fresnel himself recognized the need for a quantity of this kind (12), without 
which the secondary wavelets envisioned by Huygens would also generate a reverse wave 
propagating back toward the source illuminating the aperture; no such backward propagating 
wave is observed experimentally.  In the Fresnel-Kirchoff diffraction formula, the obliquity 
factor is ( )( )1ˆ,cos2

1 +zrr .  Interestingly enough, equation 10, including the proper form of the 
obliquity factor, can be derived entirely from Fourier transform theory, with no reference 
whatsoever to the Huygens-Fresnel principle (5).  

Equation 10 treats electromagnetic radiation as a scalar phenomenon, completely ignoring the 
fact that the various components of the electric and magnetic field vectors are coupled by 
Maxwell’s equations and thus cannot be treated independently.  Within the limitations of a scalar 
theory, however, equation 10 is considered to be exact throughout the entire diffraction space.  
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Fortunately, the limitations that a scalar theory places on the macroscopic length scale are not 
particularly severe; experiments involving the diffraction of microwaves from apertures confirm 
that the scalar theory is valid, provided the aperture size is much greater than the wavelength of 
the radiation (16), while a detailed theoretical analysis involving focused Gaussian laser beams 
shows that the scalar treatment suffices so long as the focal spot size is at least approximately as 
large as the wavelength (17). 

3.3 Preliminary Approximations 

At distances z from the aperture on the order of the wavelength, the exact Rayleigh-Sommerfeld 
diffraction formula, equation 10, can be evaluated by the method of stationary phase, which is 
described in (11).  For z values of at least several wavelengths, one can take ( ) ikikr −≈−/1 , in 
which case equation 10 becomes 

 ∫∫ ′′−
=

plane

ikr

r
zexExdizxE 2

2 )0,(),( rr

λ
. (11) 

The highly oscillatory character of the integrand makes the direct numerical evaluation of 
equation 11 problematic; however, a recent report suggests that present-day desktop computers 
running commercially available applications software may now be equal to the task, at least for 
configurations for which the Fresnel number is not too large (18).  

3.4 Fresnel Approximation 
The standard method of attacking the integral in equation 11 relies on the expansion 

 
4

2

2

22

2

22
1 
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′
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−+=
z
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z
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. 

One approximates the factor of r2 in the denominator of the integrand with only the zeroth-order 
term, while for the factor of r in the phase eikr, the three quadratic terms are retained as well. 

 ∫∫ 



 ′−′′−

=
plane

ikz

xx
z

ikxExd
z

eizxE 22

2
exp)0,(),( rrrr

λ
 (12) 

This is the Fresnel approximation, whose validity has been the subject of a number of 
investigations over the years (19, 20). 

3.5 Fraunhofer Limit 

If now the dimensions of the aperture are such that for every point )0,(x ′r  in the aperture, 

 1
2

2

<<
′

z
xk r

, 
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then 1]/exp[ 2
2 ≈′ zxki r  and equation 12 reduces to 

 ( )∫∫ 



 ′⋅−′′−

=
plane

i
ikz

xx
z
ikxExdzxk

z
eizxE rrrrr exp)0,(]/exp[),( 22

2λ
, 

the Fraunhofer approximation. 

4.  Solution of the Paraxial Wave Equation 

One can easily verify by direct substitution that equation 12, the diffraction integral in the 
Fresnel approximation, solves the paraxial wave equation, equation 9, with ikzezxAzxE ),(),( rr

= , 
thus demonstrating the equivalence of the Fresnel and paraxial approximations.  It is nevertheless 
illuminating to proceed with the direct solution of equation 7 by standard methods, imposing the 
“paraxial limit” 0→ε  only when necessary. 

4.1 Helmholtz Equation as a Singular Perturbation of the Paraxial Wave Equation 

We express ),( ZXA
r

 in terms of its Fourier transform in the transverse coordinates. 

 ( ) ∫∫ ⋅−=
plane

XieZAdZXA
rrrr

κκκπ ),(~2),( 21  

The Fourier-transformed field amplitude ),(~ ZA κr  satisfies 

 ( ) 0),(~2 222 =−∂+∂ ZAi ZZ κκε r , (13) 

where κκ r
= .  Setting ZieZA ακψκ )(),(~ rr

= , we find that equation 13 is satisfied, provided that 

 02 222 =++ κααε . (14) 

There are two roots, 

 ( )22
2
1

2

2211 εκ
ε

κεα o+−=
−+−

=+  

and 

 ( )22
2
12

2

22

211 εκε
ε

κεα o++−=
−−−

= −
− , 

of which the second, −α , is singular in the limit 0→ε .  Returning to the physical field, 
equation 2, 
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we see that the root −α  corresponds to a solution that propagates in the negative z-direction.  
Nowhere in the region 0>Z , either at infinity or elsewhere, is there a source from which such a 
backward propagating wave could originate, so we are justified in discarding −α  as unphysical.  
Thus, whereas in the integral formulation of diffraction theory, one introduces the obliquity 
factor in order to suppress troublesome, backward propagating Huygens wavelets, here one must 
exorcise the demon with an appeal to the boundary condition at +∞→Z ! 

In the language of differential equations, one would say that the term of order ε2 in equation 7 is 
a singular perturbation.  Such a perturbation can completely alter the character of the solution.  In 
the present case, “turning on” the perturbation introduces a second root in equation 14 where 
there was only one before and so in some sense, it is not unnatural that this new root should be 
singular.  It corresponds to a rapidly oscillating solution of the differential equation, and this 
solution can be very troublesome indeed. 

4.2 Convolution Kernel for the Paraxial Wave Equation 

To obtain a solution to the paraxial wave equation, we discard the singular root and approximate 
the remaining, nonsingular root by the zeroth-order term in its expansion in powers of ε :  

2
2
1κα −≈+ .   

 ( ) ∫∫ ⋅−−=
plane

XiZ eedZXA
i rrrr

κκκψκπ
2

2)(2),( 21  (15) 

The function )(κψ r  is determined by the boundary condition on A  at 0=Z . 

 ( ) ∫∫ ′⋅−− ′′==
plane

XieXAXdA
rrrrr κπκκψ )0,(2)0,(~)( 21  (16) 

Substituting equation 16 into 15 and reversing the order of integration, we obtain 
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rrrrr
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Recalling that 222
yx κκκ += , we see that the integral over the κ plane in equation 17 factors into 

a product of two identical one-dimensional integrals of the form 
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1),(
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∞
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Equation 17 thus takes the form of a two-dimensional convolution, 

 ∫∫ ′−′′=
plane

ZXXGXAXdZXA ),()0,(),( 2
rrrr

, (19) 

in which the kernel, 

 ),(),(
2

),( 11

2
2

ZYYGZXXG
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eZXXG
XX

Z
i

′−′−==′−
′−

π

rr

rr
, (20) 

is the square of the one-dimensional convolution kernel in equation 18.  Expressed in the 
“dimensionful” coordinates ),( zxr , the two-dimensional convolution kernel in equation 20 is 

 



 ′−−=′− 2

2
0

2
exp),( xx

z
ik

z
ixzxxG rrrr

λ
. (21) 

Recalling that ,),(),( ikzezxAzxE rr
=  we see that equation 19 is identical to equation 12, the 

Fresnel approximation of the Rayleigh-Sommerfeld diffraction integral. 

4.3 A Remark on Convergence 

In order to ensure convergence of the integral in equation 18, 2
0/ xkzZ =  must have a negative 

imaginary part.  Since z and x0 are both real, the requirement that Im[Z] < 0 is equivalent to the 
condition Im[k] = α/2 > 0, in which α is the absorption coefficient of the medium; mathematical 
convergence is thus assured in the case of propagation through an absorptive medium.  Of 
course, the integral in equation 18 also converges for propagation through a lossless medium.  In 
this case, we observe that a perfectly monochromatic field is a mathematical idealization.  An 
actual, physical field must have been turned on at some time in the past, which one may account 
for by adding a small positive imaginary part to the frequency, so that e–iωt, and thus the physical 
field, vanishes as −∞→t .  This is equivalent to a positive absorption coefficient. 

4.4 Numerical Computation of the Fresnel Convolution Integral 

In practice, the integral on the right-hand side of equation 19 will generally have to be evaluated 
numerically.  This is most efficiently accomplished through the use of Fourier transform methods 
using the well known fast Fourier transform (FFT) algorithm.  Given a complex-valued function 

)(Xf
r

 on the plane 2ℜ , we symbolically denote the two-dimensional Fourier transform of 
)(Xf
r

, which is a function of κr , by 

  ∫∫ ⋅−−==
plane

XieXfXdff
rrrr κπκκ )(]2[)(~)]([ 21F  

and the inverse transform of )(~ κrf , a function of X
r

, by 
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 ∫∫ ⋅−− ==
plane

XiefdXfXf
rrrrr

κκκπ )(~]2[)()](~[ 211F . 

Using these relations and the well-known integral representation of the Dirac delta function in 
terms of complex exponentials, one can write equation 19 symbolically as 

 [ ]),]([)0,]([2),( 1 ZGAZXA κκπ rrr
FFF−= . (22) 

Equation 22 is a prescription for calculating ),( ZXA
r

:  compute the Fourier transform of 
)0,(XA

r
, the field at the boundary, Z = 0; multiply this by the Fourier transform of the 

convolution kernel, equation 20; compute the inverse Fourier transform of the resulting product.  
Now, the Fourier transform of the convolution kernel in equation 20 is given by 

 Zi

eZG /1
2

2]2[),]([ κπκ
rr −−=F , 

so equation 22 is 

 



= −− Zi

eAZXA /1
2

2)0,]([),( κκ
rrr

FF . 

This is precisely equation 15, in which )(κψ r , given by equation 16, is simply )0,]([ κrAF , the 
Fourier transform of the boundary condition at Z = 0.  Thus, we see that same procedure that we 
employed to derive the solution in equation 19 and the corresponding Fresnel kernel in equation 
20 also provides the most efficient means of evaluating the integral expression in which the 
solution is given.  

5. Solution of the Helmholtz Equation 

In this section, we derive the Rayleigh-Sommerfeld result by employing the integral transform 
methods to solve equation 5, the scalar Helmholtz equation.  The calculation proceeds exactly as 
in the previous section.  We take 

 ( ) ∫∫ ⋅−=
plane

zixi eedzxE ακκψκπ
rrrr )(2),( 21 , (23) 

where )(κψ r  is determined by the boundary condition on E at z = 0: 

 ( ) ∫∫ ′⋅−− ′′=
plane

xiexExd
rrrr κπκψ )0,(2)( 21 . (24) 

The Helmholtz equation is satisfied, provided that 

 22 κα −±= k . (25) 
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The negative root corresponds to a backward propagating solution and, as before, we discard it 
as unphysical.  Substituting equations 24 and 25 into 23 and reversing the order of integration, 
we obtain 

 ( ) ∫∫ ∫∫ −′−⋅− ′′=
plane plane

kizxxi eedxExdzxE
22)(222 )0,(2),( κκκπ

rrrrr , (26) 

or, expressed in the dimensionless variables introduced in section 2.3, 

 ( ) ∫∫ ∫∫ −′−⋅− ′′=
plane plane

iZXXi eedXEXdZXE
222 /1)(222 )0,(2),( εκεκκπ

rrrrr
. 

Utilizing the result of Lalor (21),  

 














+∂
∂

−=
+

−⋅∫∫ 22

2

22

22

2
xz

e
z

eed
xzik

plane

kizxi
r

r

rr

πκ κκ , 

we perform the integration over κ on the right-hand side of equation 26 and so obtain 

 ( ) ∫∫ 





 −′′= −

plane

ikr

r
zik

rr
exExdzxE 1)0,(2),( 21 rr π , 

which is the Rayleigh-Sommerfeld formula, equation 10, with obliquity factor z/r. 

6. Axial Symmetry 

We now turn our attention to problems exhibiting cylindrical symmetry about the z-axis.  As 
before, x0 denotes the transverse length scale characterizing the problem.  We employ this length 
scale to define the dimensionless radial coordinate R = r/x0 and we use the resulting polar 
coordinates (R,θ) to designate positions in the transverse plane. 

6.1 Cylindrically Symmetric Restriction of the General Fresnel Kernel 

We impose the restriction of cylindrical symmetry on equation 19, the general solution of the 
paraxial wave equation, and on the associated convolution kernel in equation 20.  Cylindrical 
symmetry requires that the field amplitude A(R,Z) be independent of the angular coordinate, so 
without loss of generality, we set θ = 0.  We use the Law of Cosines to write 

222
cos2 RRRRXX ′+′′−=′− θ

rr
 and so express the convolution kernel in equation 20 as 

 ( )



 ′+′′−=′′

=
22

0
cos2

2
exp

2
1),,,,( RRRR

Z
i

Zi
ZRRG θ

π
θθ

θ
. 
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Inserting the above expression for the convolution kernel into equation 19 with 
θ ′′′=′ dRdRXd 2 , we employ the well-known integral representation of the Bessel function, 

 ∫ =′ ′−
π

θθ
π

2

0
0

cos )(
2
1 uJed ui , 

to perform the integration over θ ′  and obtain the following expression for the field amplitude. 

 





 ′

′′′



−=

′∞

∫ Z
RRJeRARRdR

Z
i

Z
iZRA

R
Z
i

0
2

0

2
2

)0,(
2

exp),(  (27) 

We write equation 27 in the following form: 

 ),,()0,(),(
0

ZRRGRARRdZRA ′′′′= ∫
∞

, (28) 

in which the factor of R′  appears explicitly in the integrand.  The associated kernel is then 

 





 ′








 ′+
=′

Z
RRJ

Z
RRi

iZ
ZRRG 0

22

2
)(exp1),,( , (29) 

the analog of equation 20 for situations involving cylindrical symmetry.  (By including the factor 
of R′  in the integration measure instead of the kernel, we obtain an expression for the kernel that 
is symmetric in the variables R and R′ .) 

6.2 Solution of the Paraxial Wave Equation Via Hankel Transform 

It is also possible to obtain the cylindrically symmetry kernel, equation 29, in a somewhat more 
methodical fashion, namely, by direct solution of the paraxial wave equation in two transverse 
dimensions under the assumption of cylindrical symmetry.  In this case, the transverse Laplacian 
operator is given by RRR ∂+∂=∇⊥

122  and the paraxial wave equation 8 takes the form 

 ( ) 0),(2 12 =∂+∂+∂ ZRAi RRRZ . 

The cylindrical symmetry of the problem suggests that we express A(R,Z) in terms of its Hankel 
transform, 

 ∫
∞

=
0

0 )(),(~),( RJZAdZRA κκκκ . (30) 

The field amplitude in the transform domain, ),(~ ZA κ , satisfies the ordinary differential equation 
0),(~)( 2

2
1 =−∂ ZAi Z κκ .  The solution is: 

 
Z

i

eAZA
2

2)0,(~),(~ κ
κκ

−
= , (31) 
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where )0,(~ κA  is given by the inverse Hankel transform of the boundary condition at Z = 0. 

 ∫
∞

′′′′=
0

0 )()0,()0,(~ RJRARRdA κκ  (32) 

If we substitute equation 32 into 31, then substitute the result in equation 30 and reverse the 
order of integration, we obtain 

 ∫∫
∞

−
∞

′′′′=
0

2
00

0

2

)()()0,(),(
Zi

eRJRJdRARRdZRA
κ

κκκκ . 

Comparing this last expression with equation 28, we recognize that the κ integral is none other 
than ),,( ZRRG ′ , the kernel that we seek: 

 





 ′

−=′=′
+′

∞
−

∫ Z
RRJe

Z
ieRJRJdZRRG

RR
Z
iZi

0

)(
2

0

2
00

222

)()(),,(
κ

κκκκ . 

The integral is given in Watson (22) and reproduces our previous result, equation 29. 

6.3 Cylindrically Symmetric Fraunhofer Kernel 

In the case of circular symmetry, the Fraunhofer condition expressed in dimensionless variables 
reads 1)2(/2 <<′ ZR .  In the Fraunhofer limit, the factor ]/exp[ 2

2 ZRi ′  in the integrand of 
equation 27 may be replaced by unity, which gives 

 





 ′

′′′



−≈ ∫

∞

Z
RRJRARRdR

Z
i

Z
iZRA 0

0

2 )0,(
2

exp),( . (33) 

Thus, the Fraunhofer kernel associated with equation 28 is given by 

 





 ′









≈′

Z
RRJ

Z
iR

iZ
ZRRG 0

2

2
exp1),,( . 

7. Example:  Clipped Gaussian Beam 

We conclude with an example that is of considerable practical importance:  the diffraction of a 
principal-mode Gaussian beam by a coaxial circular aperture that, for simplicity, will be assumed 
to lie in the focal plane of the beam.  This problem is characterized by two radial length scales:  
x0, the radius of the aperture, and w0, the half-width of the beam at 1/e2 of its on-axis intensity.  
Either quantity could be used to define a dimensionless radial coordinate; we choose the former, 
setting R = r/x0.  We also define W0 = w0/x0, the dimensionless quantity characterizing the extent 
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of the beam.  The clipped Gaussian beam is then described by the following Kirchoff boundary 
condition at Z = 0. 

 






≥
<=

−

1             ,0
1,)0,(

2
0

2 /
0

R
ReARA

WR

 (34) 

7.1 Fresnel Diffraction of a Clipped Gaussian Beam 

With the clipped Gaussian boundary condition in equation 34, equation 27 becomes 

 





 ′

′′−= ′−∫ Z
RRJeRRde

Z
iAZRA RZiR

0

1

0

20 22

),( η , (35) 

where )2/(2
0 ZiW −= −η .  After repeated partial integration and application of the well-known 

recurrence relation 

 [ ] )()( 1 xJxxJx
dx
d

n
n

n
n

−= , 

equation 35 becomes 

 























−−= ∑

∞

= Z
RJ

R
Z

Z
Ri

Z
AiZRA n

n

n

1

2
0 2

2
exp

2
),( ηη

η
. (36) 

Associated with the field amplitude of equation 36 is the intensity profile 

 
2

1

2 21
),0(
),(















−= ∑

∞

=

−

Z
RJ

R
Ze

ZI
ZRI

n
n

nηη . (37) 

7.2 Fraunhofer Diffraction of a Clipped Gaussian Beam 

Substituting equation 34, the boundary condition for a clipped Gaussian beam, into the 
Fraunhofer result, equation 33, one still obtains equation 35, except that 2

0
−=Wη , instead of 

)2/(2
0 ZiW −− .  We thus obtain the field amplitude of a clipped Gaussian beam in the Fraunhofer 

limit by simply setting 2
0
−=Wη  in our previous result, equation 36. 

7.3 Limiting Case:  Top Hat Beam (Uniformly Illuminated Aperture) 

A beam that overfills the aperture ( 10 >>W ) provides illumination that is effectively uniform.  In 
this case, )2/( Zi−≈η  and equation 36, the solution in the Fresnel regime, reduces to 

 ( ) ( )ZRJeAZRA n
n

n
R
i

R
Z
i

/),(
1

)1(
2

0

2

∑
∞

=

−
+

= . 
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As we saw in section 7.2, the Fraunhofer limit is obtained by setting 2
0
−=Wη  in equation 36.  In 

the present case, we have 10 >>W , so to obtain the Fraunhofer limit, we need only set 0=η  in 
equation 36.  Doing so yields 

 ( )
R

ZRJeAiZRA
R

Z
i /),( 12

0

2

−≈ . 

The associated intensity profile in the far field is then given by 

 
( ) 2

1

/
/2

),0(
),(







=

ZR
ZRJ

ZI
ZRI , (38) 

the 0→η  limit of equation 37.  Noting that αα sintan// 000 kxkxzrkxZR ≈== , where α is 
the angle that the observation point makes with the z-axis as measured from the center of the 
aperture, we recognize that equation 38 is in fact the celebrated result of Airy (23). 

8. Summary 

From the Maxwell equations in a nonmagnetic, isotropic medium, one may derive a general 
nonlinear vector wave equation.  If 0)( ≡⋅∇∇ E

rrr
, this reduces to the inhomogeneous vector 

Helmholtz equation, which is generally written with the nonlinearity contained in the source term 
on the right-hand side. If the direction of the electric field polarization is constant, as is usually 
the case, one solves the corresponding scalar equation.  In a geometry in which the transverse 
length scale is much larger than the wavelength of the radiation, the Helmholtz equation is well 
approximated by the paraxial wave equation, which is only first order in the longitudinal variable 
and thus much easier to solve.  The Helmholtz equation may be regarded as a singular 
perturbation of the paraxial wave equation, and some of the difficulties arising in the solution of 
the former partial differential equation are related to this fact. 

The Huygens-Fresnel principle provides a very intuitive picture of the diffraction of light from 
an aperture.  The mathematical expression of the Huygens-Fresnel principle takes the form of an 
integral over the aperture:  the Rayleigh-Sommerfeld diffraction integral.  The oscillatory nature 
of the integrand makes exact evaluation of the Rayleigh-Sommerfeld integral problematic, so 
one frequently employs the simplifying Fresnel approximation in evaluating the integral.  We 
have demonstrated how these same results may be obtained without appeal to the Huygens-
Fresnel principle by using standard methods to solve the appropriate partial differential 
equations:  the exact Rayleigh-Sommerfeld integral may be obtained from the scalar Helmholtz 
equation in a linear medium, while the Rayleigh-Sommerfeld integral in the Fresnel 
approximation results from solution of the paraxial wave equation in a linear medium. 
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One can employ the solutions of these linear diffraction problems to attack the more general 
problem of beam propagation in a nonlinear medium through the use of the numerical procedure 
introduced by Feit and Fleck in the late 1970s.  This procedure, known as the “split step” Fourier 
method or simply as the Beam Propagation Method, separately computes the effects of 
diffraction, nonlinear refraction, and nonlinear absorption for each propagation step.   
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