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Notation and Definitions

1. x ∼ CN (µ,Σ) denotes a complex Gaussian random vector x with mean µ and with

independent real and imaginary parts, each having covariance matrix Σ.

2. E [.] is the expectation operator.
3. Superscript “ ∗ ” denotes complex conjugation.
4. Superscript “t” denotes the transpose of a matrix.

5. Superscript “H” denotes the conjugate transpose of a matrix.

6. [k] k mod T , where T is the training period.

7. dae denotes the ceiling of the real number a (i.e., the smallest integer larger than or
equal to a.

8. (A)ij is the element in i
th row and jth column (0 ≤ i, j ≤M−1) of the M ×M

matrix A.

9. Z (p(τ)) denotes the Z-transform of the sequence p(τ). Similarly Z−1 (P (Z)) denotes
the inverse transform.

10. IN is the N ×N identity matrix.

11. A⊗ B denotes the Kronecker product of matrices A and B.
12. A¯ B denotes the Hadamard product of matrices A and B.
13. In the appendices, we often use T 0 T−1 for brevity.
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1. Introduction

Practical communication systems devote part of their power and bandwidth resources to

training. Increasing the power (or bandwidth) allocated to training improves the channel

estimate, but decreases the power (bandwidth) available for data transmission. We expect

that if the channel varies more rapidly, the frequency of training would have to be

increased, and if the channel is noisier, the training energy would have to be increased. But

channel mean square error translates non-linearly into (uncoded) bit error rate (BER), and

computing the impact on coded BER is difficult. To understand these fundamental

tradeoffs, we use the cutoff rate as a metric.

The channel cutoff rate Ro was first proposed by Wozencraft and Jacobs (e.g., see [34]),

and later popularized by Massey [23], who proposed the cutoff rate as the appropriate

metric for evaluating the performance of various modulation schemes in coded systems.

The cutoff rate plays a dual role: being a lower bound on the channel capacity, Ro
indicates a range of rates R over which reliable communication is possible, 0 < R < Ro,

and it also gives a meaningful bound on the error performance Pe of N -length block coding

(at any R < Ro) via the expression Pe ≤ 2−N(Ro−R). In particular, the cutoff rate specifies
the largest linear function Ro −R which lower bounds the random coding exponent of [12].

Contradicting earlier opinion, it is now known that the cutoff rate can be exceeded under

finite complexity constraints, with, e.g., turbo coding and iterative decoding schemes [5].

However, the cutoff rate can still be regarded as a “practical channel capacity” for simple

encoding/decoding strategies. In particular, Ro has been proven to play exactly this role

for the case of sequential decoding [3].

Many previous works consider the performance of coded communications systems

operating over the Rayleigh fading channel under the assumption that either perfect

channel state information (CSI) or no CSI is available at the receiver. In the case of no

CSI, the cutoff rate [15], [28] and capacity [1], [9] have been examined.∗ With perfect CSI,
the capacity has been found in [13], [7]. It is known that, with perfect CSI, the capacity is

invariant with respect to the time-correlation of the channel. Conversely, with perfect CSI

at the receiver, the cutoff rate is maximized for i.i.d. fading, and generally decreases as the

channel correlation increases [24]. This apparent contradiction is resolved by noting that

capacity considers only the horizontal axis of the random coding exponent (i.e., the

maximum reliable rate), whereas the cutoff rate characterizes the vertical axis (i.e., the

magnitude) of the exponent [19]. The cutoff rate with perfect CSI has been examined for

i.i.d. fading [17], as well as temporally correlated fading in [21].

∗In this paper, CSI refers strictly to receiver CSI.
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In the intermediate case of imperfect receiver CSI, one way to characterize reliable rates,

and define optimized estimation parameters, is to first fix a particular channel estimation

scheme (or “front end”), and then maximize the information theoretic metric of interest

(e.g., cutoff rate or mutual information) over the relevant system design parameters. This

simplifying approach is used in both [14] and [26] for a training-based, minimum mean

square error (MMSE) channel estimation front-end. In both cases, the authors have

considered the mutual information metric.

We consider a periodic training scheme as in [26]. Pilot symbols are sent periodically to

provide (inaccurate) estimates of the flat-fading channel coefficient. Knowledge of the

channel correlation allows us to predict the fading channel between pilot symbols. We

consider three MMSE channel predictors: (a) the Q(1,0) estimator uses only the last pilot;

(b) the Q(∞,0) estimator uses all of the past pilots; (c) the Q(1,1) estimator uses the last

and next pilots (non-causal). Using the cutoff rate as a metric, we address the following

issues: What is the optimal energy allocation between data and training? What is the

optimal training frequency? To illustrate the approach, we focus on a first-order

Gauss-Markov model that has often been used to characterize fading channels. We

quantify our results in terms of an α parameter that measures how rapidly the channel is

fading (α = 0 corresponds to i.i.d. fading, and α = 1 to a static channel). To gauge the

performance of our techniques in real-world scenarios, we also consider the Jakes model,

and also the impact of imperfect knowledge of the Doppler spread α at the transmitter.

Major results are as follows:

(a) Given the MMSE estimation front-end, we derive an expression for the cutoff rate for

generalized binary signaling with partial CSI. For any fixed input, the cutoff rate

takes on a simple closed-form expression that is amenable to analysis; it is

parameterized by the mean square estimation error and the received SNR.

(b) The cutoff rate expression holds for any MMSE estimator that forms its estimate

based on any subset of past and future pilots. We provide the mean square error for

the three different estimators listed previously.

(c) When BPSK is used, we consider the Gauss-Markov fading channel and derive exact

expressions for the optimal allocation of energy between the pilot and data

transmission for the Q(1,0) and Q(1,1) estimators. For each of the three estimators, we

find a lower bound on the optimal training frequency that is exact at high SNR.

(d) We consider the scenario where the transmitter has incorrect knowledge of the

Doppler spread. We find that overestimating the Doppler spread (i.e., assuming that

the channel is slower varying than it is) results in a drastic degradation of the cutoff

rate. Conversely, the cutoff rate is robust to underestimation of the Doppler spread.
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(e) We confirm that our analytic insights for optimal training energy and training

frequency, based on the Gauss-Markov channel model, are indeed in close agreement

to those provided using a numerical analysis of the more popular Jakes model.

(f) Among binary distributions, On-Off Keying (OOK) is optimal when no CSI is

available, and BPSK is optimal when full CSI is present. Motivated by this fact, we

derive an analytic design rule that dictates which of these two distributions to use

when only partial CSI is available at the receiver.

2. System Model

In this section, we first describe the Gauss-Markov fading channel. Next, we describe the

estimation scheme and derive the variance of three different MMSE estimators of varying

complexity.

2.1 Gauss-Markov Channel Model

We consider a temporally correlated Rayleigh flat-fading channel model. Typically the

Jakes model [18] is used to describe the temporal correlation of the fading process. It is

known that second- and third-order autoregressive (Gauss-Markov) models provide

excellent fits to the Jakes model [35]. The higher-order models are not analytically

tractable and so do not provide ready insights. We consider the Gauss-Markov fading

channel whose correlation function is described by a first order autoregressive process. The

Gauss-Markov channel has previously been used to characterize the effect of imperfect

channel knowledge on the performance of decision-feedback equalization [25], mutual

information [27], and minimal mean square estimator error [10] of time-correlated faded

communications links. Letting the subscript k denote the time index, the observed signal

at the receiver y0k is given by

y0k =
p
Ekh

0
ksk + n

0
k, (1)

h0k = αh0k−1 + zk.

where h0k ∼ CN (0,σ2h) describes Rayleigh fading, the coded input sk is selected from a

binary signal set S = {A,B} (i.e., sk ∈ S) and subject to a unit average-energy constraint:
pA2 + (1− p)B2 = 1, where p is the probability of transmitting A. The random variable

n0k ∼ CN (0, σ2N) describes additive white Gaussian noise (AWGN), and the transmission

energy used at time k is Ek|sk|2. The parameter α (0 < α < 1) describes the correlation

between successive channel states and is related to the normalized Doppler spread of the

channel. The Gauss-Markov channel is equivalently specified by its correlation function

RA(τ)
1
σ2h
E £h0kh0∗k+τ¤ = α|τ |.
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2.2 Channel Estimation

To obtain (imperfect) channel state information at the receiver, we assume that pilot (i.e.,

known) symbols are periodically inserted into the symbol stream. Specifically, we consider

a scheme in which a single pilot symbol is inserted periodically into the symbol stream,

with period T . The choice of periodic pilot placement is natural given the wide-sense

stationarity of the channel. Motivation for inserting a single pilot at a time, rather than

several, may be found in [2], [10], and [8].

Training is sent periodically once every T transmissions, during the time slots k = mT . At

each time k, an estimate of the channel bh0k is made at the receiver. Denoting the estimation
error by eh0k, the system equation can be written as

y0k =
p
Edk/T e h0ksk + n

0
k

=
p
Edk/T e bh0ksk +pEdk/T e eh0ksk + n0k, (2)

where we have assumed that the energy allocation for all data transmissions E1 is constant

due to practical constraints, e.g., peak-to-average-power ratio specifications and transmitter

complexity (we consider variable-energy data slots in section 5.) The input sk is now

selected from a complex signal set S[k] = {A[k], B[k]} and subject to a unit average-energy
constraint: p[k]A

2
[k] + (1− p[k])B2[k] = 1 ∀k 6= mT . In the training slots, we assume, without

loss of estimator performance, that S0 = {+1}. Given the T -periodic nature of the
estimation process, we require that codewords of length N 0 = N(T−1), N ∈ Z be used.

The particulars of the estimation process follow: At each time mT + `, an MMSE estimate

of the channel bh0mT+` is made at the receiver using some subset N of past (and possibly

future) training symbol observations, so that

bh0mT+` = E [h0mT+`|{y0nT}, n ∈ N ⊂ Z]. (3)

The use of an MMSE estimator implies that bh0mT+` ∼ CN (0, bσ2` ), where bσ2` is the estimator
variance. From orthogonality, eh0mT+` ∼ CN (0,σ2h − bσ2` ). That is, bh0mT+` and eh0mT+` are
independent. To characterize the performance of a particular estimator, we will define the

estimator quality ω` as

ω` bσ2`/σ2h. (4)

Note that orthogonality implies that 0 ≤ ω` ≤ 1. Let

κ0 σ2hE0/σ
2
N ; κ1 σ2hE1/σ

2
N

denote the faded pilot and data energies. We consider the following three estimators

(derivations are given in appendix A with Rh(τ) = α|τ |):
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E1. The Q(1,0) estimator uses only the most recent pilot observation to predict the

subsequent T−1 channel states before the next pilot, i.e., the channel estimate ` positions
after the most recent pilot is given by bh0mT+` = E £h0mT+`|y0mT ¤. Evaluating, we find that

bh0mT+` = √
E0σ

2
h

E0σ2h + σ2N
α`y0mT ,

ω
(1,0)
` = α2`

κ0
1 + κ0

. (5)

E2. The Q(∞,0) estimator uses all past pilots to predict the current channel state, i.e.,bh0mT+` = E hh0mT+`|©y0p Tªmp=−∞i with
ω
(∞,0)
` = α2`

1− 1

1
2
(1 + κ0) +

q
1
4
(1 + κ0)2 + κ0 α2T

1−α2T

 . (6)

Additional details on this derivation are given in appendix B.

E3. The Q(1,1) estimator is a non-causal smoother which uses the last and “next” pilot

observations to predict the current channel state, i.e., bh0mT+` = E hh0mT+`|y0mT , y0(m+1)Ti.
Evaluating, we find that

bh0mT+` = σ2h
σ2N

p
E0
£
Γ(`) y

0
mT + Γ(T−`) y

0
(m+1)T

¤
,

ω
(1,1)
` = (Γ2(`) + Γ

2
(T−`))(κ

2
0 + κ0) + 2κ

2
0Γ(`)Γ(T−`)α

T , (7)

where

Γ(k)
αk(κ0 + 1)− αTαT−kκ0
(κ0 + 1)2 − κ20 α2T

.

We assume that perfect interleaving is performed at the transmitter [4], and that channel

estimation is done before de-interleaving at the receiver (see appendix C for a discussion of

interleaving). The observation equation is now

yk =
p
Ekhksk + nk,

where hk is an i.i.d. sequence representing the interleaved channel, and where

nk ∼ CN (0, σ2N) is another AWGN sequence. Writing this in terms of the channel estimate

and error, we have

yk =
p
Edk/T e hksk + nk

=
p
Edk/T e bhksk +pEdk/T e ehksk + nk, (8)

where bhk, and ehk are independent of each other and are independent sequences with the
same marginal statistics as in equation 2. That is, interleaving does not change the

6



marginal statistics of the channel estimate and estimation error: bhmT+` ∼ CN (0, bσ2` ) andehmT+` ∼ CN (0, σ2h − bσ2` ). The estimator quality is defined by equation 4 as before. Finally,
we assume that codewords are decoded using the ML-detector which treats smT+` as the

channel input and the pair (ymT+`,bhmT+`) as the channel output.
In section 3, it will be seen that the cutoff rate Ro is an (increasing) function of ω`.

Therefore, it is useful to compare the estimator quality expressions in equations 5 to 7, as

we have done previously in [30]: Note that the estimator quality of the Q(1,0) and Q(∞,0)
estimators decreases monotonically with `, i.e., distance from the last pilot; the quality of

the Q(1,1) estimator is symmetric, with worst performance midway between the two pilots.

It can be verified that ω
(1,0)
` ≤ ω

(∞,0)
` , that ω

(1,0)
` ≤ ω

(1,1)
` , and that no similar inequality can

be given between ω
(∞,0)
` and ω

(1,1)
` . In the high SNR regime (κ0 →∞), ω(1,0)` → ω

(∞,0)
` .

This is because the channel is learnt perfectly in each pilot slot, and so additional past

pilots do not improve the estimator. For a rapidly fading channel, as α→ 0,

ω
(1,0)
` → ω

(∞,0)
` , since it is the most recent pilot that provides most of the information

about the channel state. For a nearly static channel, i.e., as α→ 1, ω
(∞,0)
` > ω

(1,1)
` . This is

because the Q(∞,0) estimator provides an infinite number of noisy looks at the static
channel, whereas the Q(1,1) estimator provides only two noisy looks. Further,

ω
(∞,0)
` < ω

(1,1)
` if the channel is varying rapidly or the SNR is large: When α→ 0, it is the

closest pilots that contain channel information; the Q(1,1) estimator provides two “close”

pilots. As κ0 →∞, the Q(∞,0) estimator converges to the Q(1,0) estimator, which is

outperformed by the Q(1,1) estimator. Lastly, we note that all three estimators become

equivalent for high-SNR static channels, i.e., as α→ 1 and κ0 →∞.

3. Cutoff Rate

In this section we derive the cutoff rate for general binary signaling given the estimation

front-end described in section 2. The results and discussion in this section were first given

(without proofs) in [28].

The cutoff rate for the system described by equation 8 is given by

Ro = −min
Q(.)

1

T
log2

Z
y

Z
h

 X
s∈ S1×...×ST−1

Q(s)

q
P(y, bh | s)

2 dbh dy
= −min

Q(.)

1

T
log2 Eh

Z
y

X X
s,v∈ S1×...×ST−1

Q(s)Q(v)

q
P (y | bh, s)qP (y | bh, v)dy

 (9)

where bh hbhmT+1, . . . ,bh(m+1)T−1it, y £
ymT+1, . . . , y(m+1)T−1

¤t
, and
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s
£
smT+1, . . . , s(m+1)T−1

¤t
are the estimated channel, observation, and signal

corresponding to the mth T -length “super-symbol.” The input distribution

Q(s) =
T−1Q̀
=1

Q`(smT+`), where Qk(Ak) = pk and Qk(Bk) = 1− pk.

In appendix D it is shown that the cutoff rate for generalized binary transmission becomes

(setting E` = E1 in the appendix)

Ro = − 1
T

T−1X
`=1

log2 min
p`A

2
`+(1−p`)B2`=1"

1 + 2p` (1− p`)
( p

1 + κ1 (1− ω`) |A`|2
p
1 + κ1 (1− ω`) |B`|2

1 + 1
2
κ1 (1− ω`) (|A`|2 + |B`|2) + 1

4
κ1 ω` |A` −B`|2

− 1
)#

, (10)

where κ1 σ2hE1/σ
2
N was previously defined as the faded SNR during data transmissions.

Next, we too consider two important special case input distributions: OOK and BPSK.

3.1 On-Off Keying

It is shown in appendix E, that when ω` = 0, the optimal input for the `
th slot is a form of

OOK, for which B` = 0 and |A`|2 = 1/p` > 0. For general ω` the OOK cutoff rate becomes

Ro = − 1
T

T−1X
`=1

log2 min
p`A

2
`=1

"
1 + 2p` (1− p`)

(p
1 + κ1(1− ω`)/p`

1 + 1
4
κ1 (2− ω`)/p`

− 1
)#

.

In general, it is not possible to analytically maximize equation 10 over p`, as it leads to

solving a high-order polynomial that has no explicit solution as a function of κ1 and ω`.
However, it is shown in appendix E that as κ1 →∞, p∗` → 1/2, and that as κ1 → 0,

p∗` → 0 (this corresponds to no information transmission). In general 0 ≤ p∗` ≤ 1/2 (i.e., the
probability of being ‘OFF’ ≥ 1/2). In figure 1, we plot p∗` as a function of κ1 for several
values of ω`. We see that for moderate to large values of κ, letting p = 1/2 is a reasonable
approximation to p∗. In the sequel, we let p` = 1/2, for which the cutoff rate becomes

Ro = − 1
T

T−1X
`=1

log2

"
1

2
+
1

2

p
1 + 2κ1(1− ω`)

1 + κ1 (1− ω`
2
)

#
. (11)

To gain insight into the behavior of equation 11, we plot the kth term in the sum above in

figure 2, for several values of ωk. As κ1 →∞, the kth term approaches 1 regardless of ωk.

Therefore, as κ1 → 1, Ro → T/(T−1) for any value of {ω1, . . . ,ωT−1}.

8
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Figure 1. The optimal probability of transmitting a ‘1’ (A), p∗ vs. faded SNR κ (dB),
for different values of the estimator quality ω.
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Figure 2. The OOK cutoff rate Ro,K vs. faded SNR κ (dB), for different values of the
estimator quality ω.

Since A2` =
1
p`
, we can equivalently repeat figure 1 in terms of the optimal OOK amplitude

A∗` versus faded SNR κ1 as shown in figure 3. Note that as κ1 increases, the optimal OOK
amplitude A∗` decreases and (correspondingly) p

∗
` increases. This trend was shown in [1] for

the capacity metric and for no CSI (w` = 0). From the figure, we see that when ω` > 0 this

9
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Figure 3. The optimal OOK amplitude A∗` vs. faded SNR κ1 (dB), for different values
of the estimator quality ω.

general trend is still true, and that for fixed κ1, the optimal amplitude A∗` is a decreasing
function of ω`. As κ1 becomes large, A∗` →

√
2, and correspondingly, p∗` → 1

2
(which is the

conventional form of OOK). In section 3.3 it is noted that the value of Ro is not affected

much if p` = 1/2 is used in place of the optimal value of p`. Thus, conventional OOK can

be used without sacrificing rate.

3.2 BPSK

It can be verified that, when ω` = 1, the optimal input in equation 10 is BPSK (A` = −B`
and p` = 1/2). For BPSK,

Ro = − 1
T

T−1X
`=1

log2

½
1

2
+
1

2

∙
1 + κ1(1− ω`)

1 + κ1

¸¾
. (12)

To gain insight into the behavior of equation 12, we plot the kth term in the sum above in

figure 4, for several values of ωk. We make the following observations:

1. The estimator quality ω` places an asymptotic ceiling on Ro. For large κ1 the cutoff
rate saturates to

Ro = − 1
T

T−1X
`=1

log2

n
1− ω`

2

o
.
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Figure 4. The BPSK cutoff rate Ro,B vs. faded SNR κ (dB), for different values of the
estimator quality ω.

2. When ω` = 0 (i.e., no CSI is available), information transmission is not possible. This

is because the statistics of yk at the receiver are independent of sk; i.e.,

yk|sk = 1 ∼ CN
¡
0, E1σ

2
h + σ2N

¢
,

yk|sk = −1 ∼ CN
¡
0, E1σ

2
h + σ2N

¢
.

3.3 Comparisons

Here we compare the cutoff rate for BPSK to that of OOK. We start by looking at the two

hypothesis for each modulation type. For BPSK, the statistics of yk(1 ≤ k ≤ T−1) under
the two hypotheses, conditioned upon the known part of the channel bhk, are

yk|bhk, sk = 1 ∼ CN ³p
E1 bhk, E1eσ2k + σ2N

´
,

yk|bhk, sk = −1 ∼ CN ³
−
p
E1 bhk, E1eσ2k + σ2N

´
.

The ability to distinguish between the two hypotheses is only through the difference in the

means, and therefore it is critical that ω` > 0. When κ1 À 1
1−ω` (i.e., when E1eσ2k À σ2N ),

the statistics become

yk|bhk, sk = 1 ∼ CN ³p
E1 bhk, E1eσ2k´ ,

yk|bhk, sk = −1 ∼ CN ³
−
p
E1 bhk, E1eσ2k´ .
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Increasing κ1 scales the variance and power in the mean equally, and so for large κ1, i.e.,
κ1 À 1

1−ω` , performance saturates as depicted in figure 4.

Note that the OOK cutoff rate is non-zero when ω` = 0 (see figure 2), which is not the case

for BPSK. As κ1 →∞ the OOK cutoff rate approaches 1 for any value of ω`. The

statistics of yk under the two hypotheses are

yk|bhk, sk = 0 ∼ CN ¡
0, σ2N

¢
yk|bhk, sk = √2 ∼ CN ³√

2E bhk, 2E1eσ2k + σ2N

´
.

The distance between the means is obviously reduced compared to that for BPSK, however

the variance terms are now distinct. We expect that if the difference in the variance terms

is large enough (i.e., if κ1 is large enough), then OOK will be able to outperform BPSK

despite the decreased separation between the means. Conversely, for small κ1 (when the
variance terms are nearly identical), we expect BPSK to outperform OOK. The general

tradeoff is shown in figure 5 for ω` = 0.8. In the figure, we also plot OOK where the

optimum p` is used for each value of κ1. Note that, even for small κ1, the difference
between the two OOK curves is small; note also that there is a significant gain in using

OOK instead of BPSK at moderate-to-large κ1.

In summary, we find that OOK is preferred to BPSK when the SNR is larger, or when the

estimation quality ω` is smaller. We note that BPSK is preferred to OOK for smaller κ1
and/or for better (larger) estimation quality. This qualitative analysis is quantified in

section 6.

-10 -5 0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

κ (dB)

C
u
to

ff
 R

at
e 

(b
it

s/
ch

an
n
el

 u
se

)

Cutoff Rate for BPSK and OOK

BPSK

OOK

Optimized OOK

Figure 5. A comparison of the BPSK cutoff rate, the unoptimized OOK cutoff rate, and
the optimized OOK cutoff rate vs. κ1 (dB) for ω` = 0.8.
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4. Optimized Training for BPSK

Here, we look at the optimized training parameters when the input is BPSK. We study the

optimal energy allocation (κ∗0,κ
∗
1) and optimal training period T

∗ for the estimators
E1-E3. For a meaningful analysis, we impose an average energy constraint,

κ0 + (T−1)κ1 = κavT = κtot. First, we find (κ∗0,κ∗1) for a fixed T . Then, we consider the
optimal value of T . We consider the case of variable energy data slots in section 5. Many of

the results in sections 4.1 through 4.3 were first given in [30], where proofs were omitted

due to space constraints.

4.1 Optimal Energy Allocation

For the Q(1,0) estimator, κ∗1 (from which κ∗0 follows readily) is shown in appendix F to be

κ∗1 = Γ−
r
Γ2 − κavT

T − 1Γ, Γ =
κavT + 1
T − 2 , (13)

for T > 2. For T = 2, κ∗1 = κ
∗
0 = κav. Note that κ

∗
1 does not depend on α; however Ro(κ

∗
1)

does. In the low energy regime (κtot → 0), equation 13 leads to κ∗0 = (κav/2)T , i.e., half of
the available energy should be allocated to the pilot symbol. The 50-percent training

paradigm has also been reported in [14] for a different channel model, metric, and

assumptions. In the high energy regime, (κtot →∞), we find that κ∗0 = κavT
h√

T−1−1
T−2

i
.

For large T , the energy allocated to the training symbol increases as κav
√
T ; a similar

result was reported in [14].

For the Q(∞,0) estimator, κ∗0 is shown in appendix F to be given implicitly by (for T > 2)

κ∗0 = arg max
0≤κ0≤κav T

∙
κavT − κ0

κavT − κ0 + (T − 1)
¸
×

κ0 − 1 +
q
(1 + κ0)2 + 4κ0 α2T

1−α2T

κ0 + 1 +
q
(1 + κ0)2 + 4κ0 α2T

1−α2T
(14)

This implicit solution provides useful insights. In the low energy regime, equation 14 states

that κ∗0 = (κav/2)T . In the high energy regime, κ
∗
0 = κavT

h√
T−1−1
T−2

i
. In these two limiting

cases, the Q(∞,0) and Q(1,0) estimators have the same optimal energy allocation, which is

independent of α. In general, κ∗0 decreases as α (which is a measure of channel
predictability) increases: As α→ 1, κ∗0 → 0. This is because, the Q(∞,0) estimator provides
us with an infinite number of (noisy) observations of the nearly time-invariant channel.

Each observation requires only a minuscule amount of energy, in order to make use of the

13



infinite diversity gain. As α→ 0, κ∗0 converges to the κ
∗
0 of equation 13: for a rapidly

fading channel, the most recent pilot provides all the information about the channel. In

general, it is shown in appendix F that κ∗0,(∞,0) ≤ κ∗0,(1,0); the estimator of higher quality
requires less training energy.

The energy allocation rules of equations 13 and 14 can be extended in a straightforward

way to any causal estimator (i.e., any estimator of the form given in equation 3, where

max {N} ≤ m). For any causal estimator with estimator quality ω`, κ∗0 is given implicitly
in terms of the estimation quality in the pilot slot ω0 as follows:

κ∗0 = arg max
0≤κ0≤κav T

∙
κavT − κ0

κavT − κ0 + (T − 1) ω0 (κ0,α, T,N )
¸

where the notation emphasizes that ω0 is a function of κ0, α, T , and N . The proof follows
easily using the methodology for the Q(∞,0) estimator, and is a consequence of the fact
that, for any causal estimator, ω` = α2`ω0.

Finally, we give κ∗0 for the ω
(1,1)
` estimator. For simplicity, we consider the case where

T > 2. Because no closed form expression for κ0 exists in general, we will focus on the low
energy, high energy, rapidly fading (α¿ 1), and slowly fading (α→ 1) regimes. The

optimal training energy κ∗0 in the low SNR regime can again be shown to be given by
κ∗0 = (κav/2)T . In the high SNR regime, it is shown in appendix F that κ

∗
0 ≈ κav

√
T with

equality when T becomes large. For rapid fading α¿ 1, it can be seen that the optimal

training energy converges to that of the Q(1,0) estimator, i.e., κ∗0,(1,1) → κ∗0,(1,0) as is to be
expected. For slow fading α ≈ 1, it can be shown that κ∗0,(1,1) = −ν +

√
ν2 + νκtot with

ν = κtot+T−1
2T−3 . In figure 15, we plot the optimal training energy for the limiting cases of

rapid fading and slow fading for T = 8. The slowly fading channel makes use of about

10-percent more training energy compared to the fast fading channel. This percentage

decreases for smaller values of κtot. We note that κ∗0,(1,1) ≤ κ∗0,(1,0); i.e., the better estimator
requires less training energy. The optimal training energy for each of the estimators is

summarized in table 1.

4.2 Optimal Training Period

The preceding analysis gives insights into the optimal energy allocation (κ∗0,κ
∗
1) for a fixed

training period T . Below, we consider the optimal training period T ∗ for each estimator.

First we consider the causal estimators. It is shown in appendix G that for all casual

estimators, a lower bound on the optimal value of the training period TB can be found by

considering the high energy regime (κav →∞) (this is equivalent to assuming that the
channel is known perfectly in the relevant training slots). Furthermore, the lower bound

TB is exact at high SNR, and is the same for all casual estimators, depends only on α and
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Table 1. The optimal training energy κ∗0 for the Q(1,0), Q(∞,0) and Q(1,1) estimators for
high SNR (κav → ∞), low SNR (κav → 0), rapid fading (α ¿ 1), and slow
fading (α ≈ 1).

Q(1,0) Q(∞,0) Q(1,1)

κ∗0 see (13) see (14) = N/A

κav → 0 κavT
2

κavT
2

κavT
2

κav →∞ ≈ κav
√
T ≈ κav

√
T ≈ κav

√
T

α→ 0 no change converges to κ∗0,(1,0) converges to κ∗0,(1,0)
α→ 1 no change 0 −ν +√ν2 + νκtot; ν = κtot+T−1

2T−3

is given by:

TB = argmin
T

T−1Y
`=1

∙
1− α2(nT+`)

2

¸1/T
(15)

where n, 0 ≤ n <∞, is the number of pilots between the most recent pilot and the last
pilot used. For any practical scheme, n = 0. For the Q(1,0) and Q(∞,0) estimators, n = 0,
and the bound becomes

TB,(1,0) = TB,(∞,0) = argmin
T

T−1Y
`=1

∙
1− α2`

2

¸1/T
. (16)

Although the high-SNR bounds are equal, we find that, in general, T ∗(1,0) ≥ T ∗(∞,0) for the
equal energy case (κ0 = κ1 = κav). Furthermore, it is shown in appendix G that
T ∗(1,0) ≥ T ∗(∞,0) for any channel with monotonically decreasing correlation function Rh(τ).†
We see that the better estimation scheme requires more frequent pilots. This was noted

heuristically in [26]. Here, it has been proven analytically.

For the Q(1,1) estimator, the lower bound is

TB,(1,1) = argmin
T

T−1Y
`=1

"
1− 1

2

¡
α2` + α2(T−`)

¢
1− α2T

#1/T
. (17)

We find that TB,(1,1) ≥ TB,(∞,0) = TB,(1,0) and that T ∗(1,0) ≤ T ∗(1,1).† Unlike the Q(1,0) vs.

Q(∞,0) case, the better estimation scheme requires less frequent training. This apparent
conflict is resolved by noting that the training period is not determined by the quality ω` of

the estimation scheme, but rather, by how quickly ω` “falls off” as ` is increased. Table 2

compares TB to T
∗ for each estimator, for several values of κav and α. In general, the

bound is accurate for smaller values of α and larger values of κav. From the table, when

†This can be proven for the equal energy case. We conjecture that it is also true when we optimize over
the training and data energy. The conjecture is also supported by numerical evidence.
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Table 2. Comparison of the optimal training period T ∗(.,.) to the lower bound TB,(.,.) for
several different values of α and κav.

T ∗(1,0) T ∗(∞,0)
TB,(∞,0)
TB,(1,0) T ∗(1,1) TB,(1,1)

α = 0.80
κav = 1 3 3 3 4 4
κav = 10 3 3 3 4 4
κav = 100 3 3 3 4 4

α = 0.95
κav = 1 8 5 5 10 7
κav = 10 5 5 5 7 7
κav = 100 5 5 5 7 7

α = 0.99
κav = 1 20 11 9 29 15
κav = 10 11 10 9 17 15
κav = 100 9 9 9 15 15

α = 0.80, the lower bound is exact for all κav ≥ 1. For α = 0.95, the lower bound is exact
for κav ≥ 10. For α = 0.99, the lower bound is tight for κav ≥ 10, and exact for κav ≥ 100.

4.3 Cutoff Rate with Optimized Training

First, we analyze how using each of the three proposed estimators affects the unoptimized

cutoff rate; see figure 6. We use the same energy κav in each transmission slot, and pick a
fixed, but reasonable, value for the training period (T = 10) based on table 2, with

α = 0.99. At low SNR, there is a 3 dB gain in the cutoff rate for the Q(∞,0) estimator over
the Q(1,0) estimator. As expected, this gain diminishes as SNR is increased. Also as

expected, the Q(1,1) estimator outperforms the other two at high SNR. The gain in using

the Q(1,1) estimator over the other two is as much as 3 dB at low to moderate SNR. As

SNR →∞, the cutoff rate for the Q(1,1) estimator saturates to 0.8514; a value that exceeds

the saturation cutoff rate of 0.7829 for either of the other two estimators.

Next, we analyze how using each of three proposed estimators affects the optimized cutoff

rate. In figure 7, we plot the cutoff rate, optimized over the energy allocation (κ0,κ1) and
training period T . Note that optimizing the cutoff rate effectively narrows the gain of the

more complicated estimators over the Q(1,0) estimator. In particular, the Q(1,0) and Q(∞,0)
estimators perform within 1 dB of each other. At high SNR, the optimized energy

allocation provides no gain; even a “sloppy” energy allocation will allow the cutoff rate to
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Figure 6. The cutoff rate for three different estimators for T = 10 for equi-energy trans-
mission slots, and for α = 0.99.
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Figure 7. The cutoff rate for three different training estimators, optimized over the train-
ing period T and energy κ0 for α = 0.99.

saturate to its maximum value. A poor choice of T will result in a large loss of the cutoff

rate relative to the optimized value, even at high SNR.
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Next, we fix the particular estimator used, and by comparing figures 6 and 7, determine

the gain in cutoff rate attained by using optimized training parameters in place of the

unoptimized (but reasonable) parameters. For the Q(1,0) estimator, the gain is typically

between 3 ∼ 4 dB at low SNR. For the Q(1,1) estimator, the gain is typically 2 ∼ 3 dB. For
the Q(∞,0) estimator, the gain is typically ∼ 0.5 dB. Note that the gain in using optimized
parameters diminishes as the estimation scheme uses more pilot symbols. This suggests

that, as more pilot observations are exploited, the less the cutoff rate benefits from an

optimized energy allocation. We emphasize that the gain in the optimized cutoff rate

would have been even more dramatic, had a “poor” value of T been chosen.

4.4 Mismatched Doppler Spread

Previously, we have assumed that the Doppler spread α is known perfectly at the

transmitter. Here, we study how the cutoff rate is impacted when the transmitter has

inaccurate knowledge of the Doppler spread. Given imperfect knowledge of the Doppler

spread, the transmitter will, in general, incorrectly determine the energy allocation and the

training frequency. In the following analysis, we assume that the receiver has perfect

knowledge of the Doppler spread, and therefore, that channel prediction is carried out

without error. Let eα = (1 + δ)α denote the transmitter’s assumed value of the Doppler, so

that δ denotes the relative error. Note that, if the transmitter adapts its rate based on its

perceived value of α, it will transmit at rates larger than the cutoff rate if δ > 0. This

cannot be allowed, for these rates may not be supported by the channel. Hence, in this

section only, we assume that the transmitter uses a fixed transmission rate sufficiently

smaller than the cutoff rate of the channel. The cutoff rate discussed in this section should

be interpreted as a bound on the probability of N -length block decoding error, given by the

expression Pe ≤ 2−N(Ro−R) for transmission rates R < Ro.

For the Q(1,0) estimator, κ∗0 does not explicitly depend on α. However, incorrect knowledge
of α at the transmitter will result in an incorrect assignment of T . If T is assigned

incorrectly, then energy will also be allocated sub-optimally. In figure 8, we plot the

normalized cutoff rate Ro(eα)/Ro(α) for −0.4 ≤ δ ≤ 0.5 (corresponding to
0.57 ≤ eα ≤ 0.998) for α = 0.95 and κav = 100. Also included on the figure is the training
period selected by the transmitter eT as a function of δ. As expected, the normalized cutoff
rate ≈ 1 when eα ≈ 0.95. From the figure, the degradation in the cutoff rate is less than

25-percent even when α is underestimated by 40-percent. When α is underestimated by up

to 5-percent, there is virtually no loss in the cutoff rate. Conversely, if α is instead

overestimated by 5-percent, there is a drastic loss in the cutoff rate, more than 35-percent.

We see that it is better to underestimate α rather than to overestimate it. This is because,

T ∗ changes more rapidly as α is increased than when it is decreased (e.g., see table 2).
When α is overestimated, eT deviates quickly from T ∗. When α is underestimated, eT
deviates less quickly from T ∗. This behavior is emphasized as α itself becomes large. Next,
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Figure 8. The normalized cutoff rate Ro(eα)/Ro(α) and corresponding training periodeT for Doppler mismatch in the range −0.4 ≤ δ ≤ 0.5, when α = 0.95 and
κav = 100 for the Q(1,0) estimator.

we make two points from figure 8: (1) Ro(eα) corresponds to the perfect-α cutoff rate, if eT
were used in place of T ∗, (2) Ro(eα) changes in “discrete” steps (corresponding to changes
in eT as eα is varied. These last two properties are properties of the Q(1,0) estimator, and are

a consequence of the fact that κ∗(1,0) does not depend explicitly on α. For the other
estimators, κ∗0 depends explicitly on α and so the cutoff rate will decline continuously as eα
deviates from α (as will be seen in the sequel). We note that the same general trend holds

as κav is varied, as can be seen in figures 9 and 10 where we repeat the same analysis, this
time for κav = 10 and κav = 0.1 respectively. Considering figure 10, we see that the
disparity is even larger at small SNR; overestimating α by 5-percent degrades the cutoff

rate by about 60-percent, whereas underestimating α by the same percentage results in a

loss of less than 10-percent. We observe that, for a fixed value of δ, the normalized cutoff

rate decreases with decreasing SNR.

Here, we repeat the preceding analysis for the Q(∞,0) estimator. In figure 11, we plot the
normalized cutoff rate under the same parameters as in the previous case, for κav = 10.
Again, we note that it is better to underestimate α rather than to overestimate it. We see

that in practice the normalized cutoff rate still changes in steps that are nearly discrete

(which correspond to incorrect assignments of the training period at the transmitter) for

the Q(∞,0) estimator. This implies that the degradation in the cutoff rate incurred when
using a mismatched value of the Doppler spread is primarily through an incorrect

assignment of T at the transmitter, and is only slightly affected by the incorrect allocation

of energy (κ0,κ1). The normalized cutoff rate is slightly larger for the Q(∞,0) estimator
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than for the Q(1,0) estimator, as seen by comparing figures 9 and 11. This means that the

Q(∞,0) estimator is less sensitive to a mismatched Doppler parameter than is the Q(1,0)

estimator. We will say more on this point in what follows.
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Figure 9. The normalized cutoff rate Ro(eα)/Ro(α) and corresponding training periodeT for Doppler mismatch in the range −0.4 ≤ δ ≤ 0.5, when α = 0.95 and
κav = 10 for the Q(1,0) estimator.
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Figure 11. The normalized cutoff rate Ro(eα)/Ro(α) and corresponding training periodeT for Doppler mismatch in the range −0.4 ≤ δ ≤ 0.5, when α = 0.95 and
κav = 10 for the Q(∞,0) estimator.

Next, figure 12 considers the Q(1,1) estimator for the same parameters as in the previous

two cases with κav = 10. Again, we notice that it is better to underestimate α than to
overestimate it and that the normalized cutoff rate changes in what are effectively discrete

steps. In figure 13 we superimpose the normalized cutoff rates for all three estimators when

κav = 10; figure 14 shows the corresponding training period determined by the transmittereT . We note that in general, any estimator may be the most (or least) sensitive to a
Doppler mismatch, depending on the particular parameters chosen.

In general (i.e., over a wide variety of simulation parameters) we have observed the

following trends: (1) We continue to find that it is better to underestimate α than to

overestimate it. (2) We find that the normalized cutoff rate Ro(eα)/Ro(α) always changes in
(nearly) discrete steps, for each of the three estimators. This implies that when using a

mismatched value of α at the transmitter, the degradation is due primarily to choosing an

incorrect value of T and that the subsequent misallocation of energy has an insignificant

effect on the cutoff rate. The issue of how much the cutoff rate is degraded due to

mismatched α consists of two parts: (1) how quickly does eT change with eα/α? (2) how
quickly does the cutoff rate degrade with eT for a given estimator? These two issues must
be considered jointly. For example, consider the initial set of parameters (where κav = 10).
From table 2 or figure 14, we see that T ∗(1,1) changes most rapidly with α and is followed by
T ∗(1,0) and lastly by T

∗
(∞,0). However, from figure 13, it is evident that the cutoff rate of the

Q(1,1) estimator changes least rapidly with eT over a wide range of δ (e.g., the range
−0.16 ≤ δ ≤ 0), so that the Q(1,1) estimator is the least sensitive to Doppler mismatch over

this range.
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Figure 14. The training period determined by the transmitter eT for Doppler mismatch
in the range −0.4 ≤ δ ≤ 0.5, when α = 0.95 and κav = 10 for all estimators.
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5. Variable Energy Data Slots

Here, we generalize the energy allocation problem of section 4 to the case where the kth

sub-channel is allocated an arbitrary energy E`. We impose a total energy constraintPT−1
`=0 κ` ≤ κtot (where κ` ≥ 0), and seek to find the energy allocation κ = {κ0, . . . ,κT−1}

that maximizes the cutoff rate. We treat the training period T as a fixed parameter, and

consider the Q(1,0) estimator. We first presented the results in sections 5.1 through 5.3

below in [28], where proofs were omitted due to space limitations.

For variable energy data slots, the observation equation in equation 8 now becomes

yk =
p
E[k] bhksk +pE[k] ehksk + nk,

and the corresponding cutoff rate is (see appendix D.)

Ro = − 1
T

T−1X
`=1

log2

½
1

2
+
1

2

∙
1 + κ`(1− ω`)

1 + κ`

¸¾
. (18)

In seeking the optimal energy allocation, our intuition from water-filling over parallel

AWGN channels applies, as interleaving removes the correlation between the T

sub-channels with respect to coding (the correlation is exploited instead in the estimator

design). Water-filling predicts that more energy will be allocated to less noisy channels,

and that channels with noise-levels above a threshold will not be used at all. We will see

that both of these ideas are preserved.

5.1 Substitution Function

Optimization of Ro over κ does not lead to a closed form solution for the optimal energy

allocation. Hence, we propose an approximate solution based on optimizing the

substitution function eRo T−1X
`=1

α2`
κ`κ0

(1 + κ0) (1 + κ`)
(19)

over κ. We will denote the optimizer of the substitution function by eκ∗. Let κ∗ be the
optimal energy-vector for Ro in equation 18. We claim that eκ∗ ≈ κ∗ for the following
reasons (proofs and further details are given in appendix H):

A1. The approximate solution is exact (i.e., eκ∗ = κ∗)
as α→ 1 or as α→ 0 or as κtot → 0.

A2. The appropriate Taylor expansion shows that eκ∗ ≈ κ∗ if α2` ¿ 1 or if κ0 ¿ 1 or if

κ` ¿ 1,∀` ≥ 1.
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A3. Numerical simulations show that eκ∗ ≈ κ∗ for moderate values of α, at moderate to
high values of κtot (this is the region where no theoretical justification has been
given).

Illustrative examples of the above remarks are given in the sequel.

5.2 Optimal Energy Allocation

The optimal energy vector eκ∗ is specified by the following:
Theorem. (a) Use the first M data slots (TA =M) iff

φα(M − 1) ≤ κtot < φα(M)

1− δ(M − T + 1) , (20)

where δ(x) is the Kronecker delta, 1 ≤M ≤ T − 1, and

φα(N) =

"
α−N − 1
1− α

−
µ
N +

1

2

¶
+

r
1

4
+
(α−N − α) (α−N − 1)

1− α2

#
.

(b) The optimal training energy (TA 6= 1) is given by:

κ0(TA) = −∆ (TA + κtot) +
q
(∆2 +∆) (TA + κtot)

2 − (∆+ 1) (TA + κtot),

where ∆ = 1
2
(1−α)(1+αTA )

α−αTA .

(c) The data energies (TA 6= 1) are given by, 1 ≤ ` ≤ TA,

κ` = α`−1
1− α

1− αTA
[κtot − κ0(TA) + TA]− 1.

(d) If TA = 1, κ0 = κ1 = κtot/2.

Proof. See appendix I.

The channel assignment strategy of equation 20 is illustrated in figure 16 for a system with

κtot = 50, T = 21, and for several values of α. Consider the curve φ.8(M). The candidate
energy line intersects φ.8(M) between M = 10 and M = 11. Therefore, TA = 11 is the

optimum number of data slots to activate.
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Figure 16. An illustration of the test for determining TA.

We look at some consequences of the Theorem:

1. TA is an increasing function of α (see figure 4). This can be verified by noting that

∂φα(M)

∂α
< 0, for 0 < α < 1.

2. As κtot →∞, all T − 1 slots become active and

κ0(T − 1) = κtot
"p

h(α)− 1
h(α)− 1

#
,

where h(α) = (1+α)(1−αT−1)
(1−α)(1+αT−1) .

3. As κtot → 0, only the first data slot is active and

κ0(1) =
κtot
2
.

5.3 Numerical Simulations

In this section, we show that eκ∗ ≈ κ∗ using numerical techniques. Define the normalized
error metric‡

e
kκ− eκk1
κtot

.

‡Here kak1 denotes the 1-norm of the vector a.
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Figure 17 compares eκ∗ with κ∗ for κtot = 10 and T = 6, and for several values of α.
Remarks A1 and A2 predict that the approximate solution performs well for α = 0.2 and

α = 0.98. This is verified in the figure, both graphically and from the e metric. We observe

that the solution is also close for α = 0.5 and α = 0.7. Note that in all cases the

approximate solution correctly predicts the number of active slots TA.

In figure 18, we compare eκ∗ and κ∗ for α = 0.85, T = 6, and for different values of κtot.
Remarks A1 and A2 predict accuracy for κtot = 0.1. We see that the normalized error e
remains small for the higher values of κtot as well. Again, the approximate solution
correctly predicts TA in each case.
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Figure 17. Comparison of κ∗ with eκ∗ for κtot = 10 and different values of α. The x-axis
indicates each of the T slots. The y-axis shows the energy placed in each of
the slots.

5.4 Effect Upon Cutoff Rate

In this section we assess the value of variable data energy allocation over other energy

allocation strategies using the cutoff rate metric. In figure 19, we plot: (a) R(o,A), the cutoff

rate when all transmission slots use the same energy, so that κ0 = κ1 = κav; (b) R(o,B), the
cutoff rate for equal energy data slots, κ0 is determined from equation 13; (c) R(o,C), the

variable data energy cutoff rate using the approximate optimal energy distribution given by

the substitution function equation 20, and (d) R(o,D), the variable data energy cutoff rate

using the true optimal energy vector determined numerically. The simulation is for

α = 0.98, and in all cases, the optimal value of the training period T is used.

27



0 1 2 3 4 5
0

0.01

0.02

0.03

0.04

0.05

0.06

Slot Number

E
n

er
g

y

  κ
tot

 = 0.1

 e = 5*10
-5

  κ
  κ~

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

Slot Number

E
n

er
g

y

  κ
tot

 = 1

 e = .016

  κ
  κ~

0 1 2 3 4 5
0

1

2

3

4

Slot Number

E
n

er
g

y

  κ
tot

 = 10

 e = .040

  κ
  κ~

0 1 2 3 4 5
0

5

10

15

20

25

30

35

Slot Number
E

n
er

g
y

  κ
tot

 = 100

 e = .040

  κ
  κ~

Figure 18. Comparison of κ∗ with eκ∗ for α = 0.85 and different values of κtot.
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Figure 19. The cutoff rate for four different energy allocation strategies: R(o,A) is the
equal-energy cutoff rate, R(o,B) is the two-dimensional cutoff rate, R(o,C) is
the variable energy cutoff rate using the substitution function, and R(o,D) is
the variable energy cutoff rate using numerical optimization. The Doppler
parameter α = 0.98, and the optimal value of T is used in all cases.
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From figure 19 we make two key observations. First, there is about a 2 dB gain in going

from R(o,A) to R(o,B) at low to moderate values of κav. That is, two dimensional energy
optimization results in significant energy savings over an equal energy strategy. This gain

increases for larger values of α (slowly fading channels) and diminishes for smaller values of

α (rapidly fading channels). As κav →∞, this gain diminishes to zero. This is because, in
the high energy scenario, even a sloppy allocation of energy will be sufficient for the cutoff

rate to saturate. Second, we note that the gain in R(o,C) or R(o,D) over R(o,B) is negligible.

This means that there is practically no benefit in doing variable data energy allocation in

place of the fixed data energy allocation. This result holds true for all tested values of α

and κav.

We also note that these results hold true only if the optimal value of T can be chosen. If

the transmitter is unable to choose the optimal value of T , the more sophisticated energy

allocation strategies do indeed provide gains as illustrated in figure 20. Here, we let

α = 0.88 and fix T = 15 for all strategies. Note that there is as much as an additional 2 dB

gain in going from R(o,B) to R(o,C) (or R(o,D)). This is because, in this example, channel

predictability is poor. Scheme ‘C’ (or equivalently ‘D’) allows the later data slots to be

“turned off” since the channel will not be predicted accurately in those slots. The energy

saved is used instead in the earlier data slots in which the channel is predicted accurately.

Schemes ‘A’ and ‘B’ do not have this freedom; they are forced to allocate the same energy

to all data slots. Also, note that R(o,C) ≈ R(o,D). That is, the energy allocation derived
from the substitution function results in a cutoff rate that is practically the same as if the

exact optimal energy vector had been used.

6. BPSK and OOK Hybrid Modulation

We ask the following question: “Given partial CSI ω` at the receiver, what is the optimal

binary input distribution in each data slot?” In light of the discussion in section 3.3, we

provide a partial answer by confining our interest to BPSK (optimal for full CSI) and OOK

(optimal for no CSI). We will consider the form of OOK for which p` = 1/2. The discussion

and results in this section are based largely on our results in [29], where proofs had been

omitted due to lack of space. Next, we provide the transitional value of the faded SNR

κ̄` = g(ω`), above which OOK is optimal, and below which BPSK is optimal:

Design Rule The transitional faded SNR κ̄` for the `th path is found by equating
equation 11 with 12 and solving for κ1. This yields a third-order polynomial. Retaining
the relevant root yields the transitional SNR in the `th path to be:

κ̄` = g(ω`),
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Figure 20. The cutoff rate for four different energy allocation strategies: R(o,A) is the
equal-energy cutoff rate, R(o,B) is the two-dimensional cutoff rate, R(o,C) is
the variable energy cutoff rate using the substitution function, and R(o,D) is
the variable energy cutoff rate using numerical optimization. The Doppler
parameter α = 0.88, and the value of the training period is fixed, T = 15.

where

g(ω`) =

∙
(a+ b)1/3 + (a− b)1/3 − 2 (4− 10ω` + 3ω2` )

3(2− ω`)2(1− ω`)

¸
,

and where

a = 81ω6` − 468ω5` + 828ω4` − 640ω3` + 624ω2` − 192ω` + 64,
b = 6

√
3(ω` − 2)2ω2`

q
61ω4` − 208ω3` + 168ω2` − 64ω` + 16. (21)

The function g(ω`) depends on the estimator quality, and is shown in figure 21. At the end

points, ω` = {0, 1}, our results agree with existing theory:

1. Observe that g(0) = 0. Therefore, when no CSI is available, it is always better to use

OOK instead of BPSK. This is in agreement with the results of [1], which are for the

ω` = 0 case.

2. It can be verified that

lim
ω→1

κ̄` =∞,
which confirms that, when full CSI is available, BPSK is always optimal independent

of the faded SNR. This is in agreement with the well known fact that, for AWGN

channels, the use of OOK is suboptimal to BPSK for a fixed average symbol energy

constraint.
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Figure 21. The transitional faded SNR κ̄ = f(ω). For larger faded SNR κ OOK is
cutoff-rate optimal, and for smaller faded SNR, BPSK is optimal.

3. As expected from figure 21, it can be verified that g(ω`) is a decreasing function of ω`.

For a fixed κ` the transmitter should switch from BPSK to OOK as CSI diminishes.

The design rule of equation 21 gives an analytic basis for a hybrid modulation scheme in

which the transmitter can select between BPSK and OOK based on the faded SNR κ` and
estimator quality ω` available at the receiver. In [26], the authors used capacity as a metric

and considered a similar analysis, where the transmitter was free to choose the optimal

binary distribution for each sub-channel (among all possible binary distributions). Because

of the intractability of the capacity metric and the input design rule, a numerical analysis

was given. Here, we consider a scheme that alternates between OOK and BPSK using only

an analytic design rule. The cutoff rate for the BPSK/OOK hybrid modulation scheme is

Ro =− 1

T

X
L
log2

½
1

2
+
1

2

∙
1 + κ1(1− ω`)

1 + κ1

¸¾

− 1

T

X
Lc
log2

(
1

2
+
1

2

"p
1 + 2κ1(1− ω`)

1 + κ1
¡
1− ω`

2

¢ #)
(22)

where

L = {` : κav ≥ g(ω`)} {1, . . . , T − 1} (23)

denotes the set of data slots where BPSK is optimal, and where Lc denotes the set of data
slots where OOK is optimal, with L ∪ Lc = {1, . . . , T−1}. For the Q(1,0) and Q(∞,0)
estimators, g(ω`) is a decreasing function of `. Therefore, sub-channels are initially
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assigned BPSK modulation, eventually the transitional CSI-level is reached, and the

remaining sub-channels are assigned OOK modulation. For the Q(1,1) estimator, g(ω`) is

largest near the end points. The leading and trailing data slots are assigned BPSK, and

the middle slots are assigned OOK, as illustrated in figure 22.

. . . . . . B OOB

. . . . . . O . . . O BBBB

Q
(1,0)

Q
(1,1)

Figure 22. For the causal estimators (Q(1,0) andQ(∞,0)), the initial data slots are assigned
BPSK, and the latter OOK. For the Q(1,1) estimator, the beginning and trail-
ing data slots are assigned BPSK, and the intermediary slots are assigned
OOK.

We compare our BPSK/OOK adaptive modulation system to:

C1. The BPSK-only system of equation 12. Denote the cutoff rate of this system by

Ro,BPSK.

C2. The OOK-only system which uses OOK with p = 1/2 in each sub-channel. Denote

the cutoff rate of this system by Ro,OOK; see equation 11.

To simplify the presentation we will consider the equal energy case where κ0 = κ1 = κav.
We start by considering the Q(1,0) estimator in detail. To evaluate equation 22, we first

seek to determine L. Evaluating the threshold function yields,

L =
½
` : κav ≥ g

³
ω
(1,0)
`

´
= g

µ
α2`

κav
1 + κav

¶¾
.

from which L can be found explicitly for fixed values of κav and α (we have added the
superscript (1,0) for clarity).
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The cutoff rate Ro,H for the Q(1,0) estimator is

Ro,H =
T − 1
T
− 1

T

X
L
log2

½
2− α2`

κ2av
(1 + κav)

2

¾

− 1

T

X
Lc
log2

1 +
r
1 + 2κav

³
1− α2` κav

1+κav

´
1 + κav

³
1− α2`

2
κav

1+κav

´
 .

For a fair comparison, each modulation scheme should use the training period T that

optimizes its cutoff rate. Indeed, for the OOK based systems, it is possible that sending no

training data may be optimal since the cutoff rate is non-zero when ω` = 0. We will

consider a system with α = 0.98, and use the results of table 2, which show that for a

BPSK-only system, the optimal training period at large κtot is T = 7 (the cutoff-rate
saturates to 0.71).

In figure 23, we plot the cutoff rate of the BPSK scheme Ro,BPSK, the OOK scheme Ro,OOK,

and the BPSK/OOK adaptive modulation scheme Ro,H. For small κav, BPSK is optimal
for all sub-channels (from equation 21), and so the cutoff-rate Ro,H is equal to Ro,BPSK. For

the intermediate values of κav, BPSK is optimal for the initial sub-channels, while OOK is
optimal for the latter ones. In this region, Ro,H is larger than Ro,BPSK. To find the κav
above which Ro,H becomes larger than Ro,BPSK we solve for κav in the following equation

κav = g
³
ω
(1,0)
T−1

´
= g

µ
α2(T−1)

κav
1 + κav

¶
, (24)

which, with α = 0.98 and T = 7, indicates that the OOK/BPSK hybrid scheme

outperforms the BPSK-only scheme starting at κav ≈ 9.8 dB. This is confirmed in the
figure.

For large κav, Ro,H is equal to Ro,OOK since OOK outperforms BPSK in all sub-channels.
To find the κav above which the OOK only scheme performs as well as the BPSK/OOK
adaptive scheme we solve for κav in

κav = g
³
ω
(1,0)
1

´
= g

µ
α2

κav
1 + κav

¶
, (25)

which yields the intersection point as κav ≈ 20.73 dB.

At any value of the faded SNR κav, the BPSK/OOK scheme performs at least as well as
the best of the BPSK or OOK only approaches, and for some intermediate range of κav,
the adaptive scheme performs better than the best of either the OOK only or BPSK only

schemes. Note again that substantial gains are obtained by using OOK in the latter slots.
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Figure 23. A comparison of the cutoff rate for several modulation techniques for theQ(1,0)

estimator with α = 0.98 and T = 7. Ro,BPSK denotes BPSK only, Ro,OOK
denotes the use of OOK with p` = 1/2, and Ro,H denotes the BPSK/OOK
adaptive modulation scheme.

Next, we repeat the preceding analysis for the Q(∞,0) estimator. The hybrid cutoff rate
Ro,H is again given by equation 22 and L by equation 23, where the estimator quality is
now given by ω

(∞,0)
` (see equation 6). To find the two intersection points, we must solve

κav = g
³
ω
(∞,0)
T−1

´
and κav = g

³
ω
(∞,0)
1

´
in a fashion analogous to equations 24 and 25. This

yields the intersection points κav ≈ 10.4 dB and κav ≈ 20.8 dB (because ω(∞,0)` ≥ ω
(1,0)
` , the

intersection points must be to the right of their values in the previous case). This is

confirmed in figure 24, where we plot Ro,H for the Q(∞,0) estimator for α = 0.98 and T = 7
(the choice T is again derived from table 2).

Next, we consider the Q(1,1) estimator in figure 25. The hybrid cutoff rate Ro,H is again

given by equation 22 and L by equation 23, where the estimator quality is now given by
ω
(1,1)
` . We take α = 0.98 and set T = 11 based on table 2. For this non-causal estimator,

the left intersection point is now found by solving for κav in the equation κav = g
³
ω
(1,1)

dT−1
2
e

´
;

this yields the value of κav above which the central data slot will be assigned OOK. To find
the right intersection point, we solve κav = g

³
ω
(1,1)
T−1

´
; this yields the κav above which the

last (and also the first) data slot is assigned OOK.
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Figure 24. A comparison of the cutoff rate for several modulation techniques for theQ(∞,0)
estimator with α = 0.98 and T = 7. Ro,BPSK denotes BPSK only, Ro,OOK
denotes the use of OOK with p` = 1/2, and Ro,H denotes the BPSK/OOK
adaptive modulation scheme.
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Figure 25. A comparison of the cutoff rate for several modulation techniques for theQ(1,1)

estimator with α = 0.98 and T = 11. Ro,BPSK denotes BPSK only, Ro,OOK
denotes the use of OOK with p` = 1/2, and Ro,H denotes the BPSK/OOK
adaptive modulation scheme.
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For each of the three estimators considered, we see that the hybrid scheme captures the

optimality of BPSK at low SNR (resulting in a energy savings of up to 2 ∼ 3 dB versus the
pure OOK scheme), and the optimality of OOK at high SNR (allowing the cutoff rate to

saturate to its maximum possible value of T/(T − 1) as κav →∞). In addition, there is a
region, located between the two intersection points as discussed above, for which the

hybrid scheme outperforms the best of the pure OOK and pure BPSK schemes at each

value of κav.

7. Optimal Training for the Jakes Model

In this section, we will consider the cutoff rate for the Jakes channel correlation model [18].

The Jakes model is considered to be an excellent description of the channel correlation of

real-world communication channels. However, the Jakes model is often not amenable to

analysis, leading to use of autoregressive models (e.g., the Gauss Markov AR(1) model) in

its place. In this section, we consider the effect on cutoff rate Ro if the Jakes model

describes the channel correlation. We also assess the value of the optimal energy and

training period rules designed for the AR(1) model when they are instead applied to the

Jakes model. In this section, we will consider BPSK signaling.

The observation under the Jakes model is the same as before, from equation 1,

y0k =
p
Ekh

0
ksk + n

0
k,

where h0k is again a zero-mean complex Gaussian random process with variance σ2h, but

now has the channel correlation RJ(τ) = Jo(2πfDTD|τ |) where Jo(.) is the zero-th order
Bessel function of the first kind, fD is the maximum Doppler frequency and TD is the

symbol duration. After interleaving, estimation, and de-interleaving, the observation

equation becomes (rewriting equation 8)

yk =
p
Edk/T e bhksk +pEdk/T e ehksk + nk,

and the corresponding cutoff rate for the Q(x,y) estimator under the Jakes model is given by

R
(x,y)
o,J = − 1

T

T−1X
`=1

log2

(
1

2
+
1

2

"
1 + κ1(1− ω

(x,y)
`,J )

1 + κ1

#)
,

where ω
(x,y)
`,J denotes the estimator quality for the Q(x,y) estimator, under the Jakes model.

In appendix A, the estimator quality equations are found to be (letting Rh(τ) = RJ(τ))

ω
(1,0)
`,J = J2o (2πfDTD`)

κ0
1 + κ0

,

ω
(1,1)
`,J = (Γ2(`) + Γ

2
(T−`))(κ

2
0 + κ0) + 2κ

2
0Γ(`)Γ(T−`)Jo(2πfDTDT ),

36



where

Γ(k)
Jo [2πfDTDk] (κ0 + 1)− Jo [2πfDTDT ] Jo [2πfDTD(T − k)]κ0

(κ0 + 1)2 − κ20J2o [2πfDTDT ]
.

Next, we will test our design paradigms for energy allocation and the training period that

were derived from the AR(1) model, on the Jakes model. Do our designs obtain

near-optimality in the Jakes channel correlation model? If they do, then the results are

useful, as the Jakes model is taken to be an excellent model of real-world wireless channels.

Next, we will compare the value of the Jakes cutoff rate with the AR(1) cutoff rate. It is

desirable that they be in close agreement, as this will validate the insights gained from

studying the cutoff rate curves based on the AR(1) model in the previous analysis.

In comparing the Jakes and AR(1) models, an important issue arises: what value of α

(used to measure Doppler in the AR(1) model) corresponds to a fixed value of fDTD (used

to measure Doppler in the Jakes model)? One plausible way to compare models is to use a

weighted mean square error distortion metric so that

bα(TDfD,M) = argmin
α

MX
`=1

v` |RJ(`)− RA(`)|2 (26)

where RA(τ) = α|τ |, RJ(τ) = Jo(2πfDTDτ), M is the number of lags over which we wish to

match the two correlation functions, and {v`}M`=1, v` ≥ 0 are the weights. This weighting is
certainly necessary. For example, for causal estimators, earlier “lags” contribute more to

the cutoff rate than later lags. However, there is a problem with this approach. Note that

α(TDfD,M) changes as the number of lags of interest (M) changes. More importantly, how

do we determine the value of the weights v` in equation 26?

Here, we will not attempt to design a universal mapping rule. Instead, we will require that

each value of the pair (fDTD, T ) should be mapped to one value of α, i.e., for all κav. We
will be omniscient in how this value of α is chosen. We will always pick the “best-fit” α, as

will be described in the sequel.

7.1 Energy Allocation

Here, we compare the optimal energy allocation (κ∗0,J ,κ
∗
1,J) when the Jakes model is used

to that when the AR(1) model is used (κ∗0,A,κ
∗
1,A). As before, we impose a total energy

constraint κ0 + (T − 1)κ1 ≤ κavT and consider the value of the training period to be fixed
(the optimal training period is considered in the next section).

For the Q(1,0) estimator, it is easy to verify that the optimal energy allocation is the same

for both the Jakes and AR(1) models. This is because, for this estimator, the optimal

energy allocation does not depend on the channel correlation function at all. As a special
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case, we note that this result also holds for the purely bandlimited fading process

considered in [31]. The optimal data energy is given by (see equation 13)

κ∗1,J = κ
∗
0,J = Γ−

r
Γ2 − κtot

T − 1Γ, Γ =
κavT + 1
T − 2 ,

for T > 2. For T = 2, κ∗1,J = κ
∗
1,A = κtot/2. For this simple estimator, the AR(1) model

correctly predicts the optimal energy allocation for the Jakes model.

Next, we consider the Q(1,1) estimator. In figure 26, we plot the cutoff rate for both the

Jakes model and for the AR(1) model for two different values of the Doppler spread. We

choose a carrier frequency of 900 MHz and maximum Doppler spreads fD = 25 Hz (with

T = 15) and fD = 100 Hz (with T = 5) (this corresponds to mobile speeds of 30 km/hr and

120 km/hr, respectively [32, pp.141-143]). The symbol period TD is 1 msec. At each value

of κtot, the cutoff rate is optimized over the energy allocation (κ0, κ1) separately for each
model. For the AR(1) model, the best-fit α is found by finding the single value of α that

minimizes the average difference in the cutoff rates |Ro,J −Ro,A| over all κtot. We find that
fDTD = 0.1 corresponds to α = 0.88 and that fDTD = 0.025 corresponds to α = 0.99. From

the figure, we see that, when the appropriate value of α is chosen, the cutoff rate of the

Jakes model closely matches that of the AR(1) model over all κtot.

We note that the best-fit value of α is chosen using the |Ro,J −Ro,A| criteria, and thus, the
difference in the associated training energies |κ0,J − κ∗0,A| may be large, as is evident from
figure 27. Next, we ask the following question: If we allocate training energy to the Jakes

model based on the optimal training energy for the AR(1) model (i.e., we let κ0,J = κ∗0,A),
what is the effect upon cutoff rate? In figure 28, we plot the cutoff rate for the Jakes model

when κ0,J = κ∗0,J (denote this cutoff rate by R
∗
o,J) and when κ0,J = κ

∗
0,A (denote this cutoff

rate by Ro,J). The system parameters are the same as in the previous case. We see that

there is virtually no loss in the cutoff rate when the energy allocation based on the AR(1)

model is used to dictate the energy allocation for the Jakes model, provided that an

appropriate value of α is chosen.

7.2 Training Period

In this section we consider the optimal training period T ∗ under the Jakes model. We will
assume that fDTD ¿ 1, so that we are interested only in the first decreasing “half-lobe” of

the Jakes function. In appendix G, it is shown that for the Q(1,0) estimator, a lower bound

on the optimal training period in the high SNR (κtot →∞) scenario, under the Jakes
model, is again given by

TB,(1,0) = argmin
T

T−1Y
`=1

∙
1− J

2
o (2πfDTD`)

2

¸1/T
. (27)
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Figure 26. The cutoff rate for the Jakes model Ro,J and AR(1) model Ro,A for two sets of
parameters: fD = 25 Hz,α = 0.99, T = 15 and fD = 100 Hz,α = 0.88, T = 5.
The symbol period is TD = 1 msec and the carrier frequency fc = 900 MHz.
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Figure 27. The training energy ratio κ∗J,0/κtot for the Jakes model and AR(1) model for
two sets of parameters: fD = 25 Hz,α = 0.99, T = 15 and fD = 100 Hz,α =
0.88, T = 5. The symbol period is TD = 1 msec and the carrier frequency
fc = 900 MHz.

Also in the appendix, it is shown that this lower bound is exact at high SNR, and valid for

any channel correlation function that decreases monotonically in the range of interest.
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Figure 28. The cutoff rate for the Jakes model for two sets of parameters: fD = 25 Hz,α =
0.99, T = 15 and fD = 100 Hz,α = 0.88, T = 5. R

∗
o,J denotes the cutoff rate

using the true optimal energy allocation. Ro,J denotes the cutoff rate when
the optimal energy allocation based on the AR(1) model is used instead.

Even without the assumption fDTD ¿ 1, numerical evidence indicates that equation 27 is

valid. The lower bound is illustrated in table 3. Again, we choose TD = 1 msec and a

carrier frequency of 900 MHz. The values of fDTD shown in the table are 0.1, 0.05, 0.025,

and 0.01 and correspond to mobile speeds of 120, 60, 30, and 12 km/hr, respectively. If we

approximate fDTD = 0.1 and fDTD = 0.01 in the Jakes model as being equivalent to

α = 0.80 and α = 0.99 in the AR(1) model (based on our analysis in the previous

subsection), we see that both the AR(1) model and Jakes model result in very similar

training period designs. The value of the lower bound is nearly the same for the two

models. Additionally, we see that in both models, the bound is tight even at low to

moderate SNR, with this tightness increasing as the Doppler spread increases. Therefore,

we conclude that for the Q(1,0) estimator, the training period results derived from the

AR(1) model are also applicable when the Jakes model describes the channel correlation.

Based on the preceding discussion, we conclude that an analysis of the AR(1) model results

in useful insights on how to allocate energy, choose the training period, and determine a

range of reliable transmission rates. Furthermore, these results are useful even if the “true”

wireless channel (i.e., the channel encountered in practice) is described well by the Jakes

model.
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Table 3. Comparison of the optimal training period T ∗(1,0) to the lower bound TB,(1,0)
for several different values of fDTD and κav under the Jakes model.

T ∗(1,0) TB,(1,0)
fDTD = 0.1

κav = 1 3 2
κav = 10 2 2
κav = 100 2 2

fDTD = 0.05
κav = 1 4 3
κav = 10 4 3
κav = 100 3 3

fDTD = 0.025
κav = 1 7 5
κav = 10 5 5
κav = 100 5 5

fDTD = 0.01
κav = 1 14 9
κav = 10 10 9
κav = 100 9 9

So far we have considered two particular channel correlation models (the AR(1) and Jakes)

and three MMSE estimators (Q(1,0), Q(∞,0), and Q(1,1)). In the next section, we generalize

the framework to an arbitrary channel correlation function Rh(τ) =
1
σ2h
E £h0kh0∗k+τ¤ and for

an entire class of MMSE estimators.

8. Generalized Channel and Estimation Model

In this section, we will generalize the channel correlation model and the channel estimation

model to show how our previous results follow as special cases of a more general system

model. For the sake of completeness, we restate the channel observation, state, and

estimation expressions in general terms. We will, however, consider only binary input

strategies and consider the case where all data transmissions are assigned equal energy.

The channel observation is given by

y0k =
p
Ekh

0
ksk + n

0
k,

where the coded input sk is selected from a binary signal set S = {A,B} (i.e., sk ∈ S) and
subject to a unit average-energy constraint: pA2+ (1− p)B2 = 1, where p is the probability
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of transmitting A. The sequence n0k ∼ CN (0,σ2N ) describes AWGN, and the transmission

energy used at time k is Ek|sk|2. The Gaussian channel h0k ∼ CN (0,σ2h) has a general

correlation function Rh(τ)
1
σ2h
E £h0kh0∗k+τ¤ and describes time-correlated Rayleigh fading.

Codewords of length N 0 = N(T−1), N ∈ Z are used.

Training is sent periodically once every T transmissions, i.e., during the time slots k = mT .

At each time mT + `, an MMSE estimate of the channel bh0mT+` is made at the receiver
using some subset N of past (and possibly future) training symbol observations, so that

bh0mT+` = E [h0mT+`|{y0nT}, n ∈ N ⊂ Z]. (28)

The use of an MMSE estimator implies that bh0mT+` ∼ CN (0, bσ2` ), where bσ2` is the estimator
variance. From orthogonality, that eh0mT+` ∼ CN (0, σ2h − bσ2` ). That is, bh0mT+` and eh0mT+` are
independent. To characterize the performance of a particular estimator, we will define the

estimator quality ω` as

ω` bσ2`/σ2h. (29)

Note that orthogonality implies that 0 ≤ ω` ≤ 1.

Denoting the estimation error at time k by eh0k, the system equation can be written as

y0k =
p
Edk/T e h0ksk + n

0
k

=
p
Edk/T e bh0ksk +pEdk/T e eh0ksk + n0k,

where we have assumed that the energy allocation for all data transmissions E1 is constant

due to practical constraints (e.g., peak-to-average-power ratio specifications and transmitter

complexity). The input sk is now selected from a complex signal set S[k] = {A[k], B[k]} and
subject to a unit average-energy constraint: p[k]A

2
[k] + (1− p[k])B2[k] = 1 ∀k 6= mT . In the

training slots, we assume, without loss of estimator performance, that S0 = {+1}.

We assume that perfect interleaving is performed at the transmitter, and that channel

estimation is done before de-interleaving at the receiver. The observation equation is now

yk =
p
Ekhksk + nk,

where hk is an i.i.d. sequence representing the interleaved channel, and where

nk ∼ CN (0, σ2N) is another AWGN sequence. Writing this in terms of the channel estimate

and error

yk =
p
Edk/T e hksk + nk

=
p
Edk/T e bhksk +pEdk/T e ehksk + nk. (30)

Interleaving implies that bhk and ehk are independent sequences in k, and also with respect
to each other. However, interleaving does not change the marginal statistics of the channel

42



estimate and estimation error: bhmT+` ∼ CN (0, bσ2` ) and ehmT+` ∼ CN (0,σ2h − bσ2` ).
Furthermore, bhmT+` and ehmT+` are independent. The estimator quality is defined by
equation 29 as before. Finally, we assume that codewords are decoded using the

ML-detector which treats smT+` as the channel input and the pair (ymT+`,bhmT+`) as the
channel output.

The cutoff rate for generalized binary transmission, given the front-end above, is given by

(see appendix D with κ` = κ1)

Ro = − 1
T

T−1X
`=1

log2 min
p`A

2
`+(1−p`)B2`=1"

1 + 2p` (1− p`)
( p

1 + κ1 (1− ω`) |A`|2
p
1 + κ1 (1− ω`) |B`|2

1 + 1
2
κ1 (1− ω`) (|A`|2 + |B`|2) + 1

4
κ1 ω` |A` − B`|2

− 1
)#

,

where κ1 σ2hE1/σ
2
N was previously defined as the faded SNR during data transmissions.

Additionally, we define κ0 σ2hE0/σ
2
N as the faded training energy.

Next, we compute the estimator quality for three particular estimators (derivations are

given in appendix A) Consider the following estimators for 1 ≤ ` ≤ T−1:

G1. The Q(1,0) estimator for which N = {m}. The channel estimate and the estimator
quality ω

(1,0)
` are given by

bh0mT+` = √
E0σ

2
h

E0σ2h + σ2N
Rh(`)y

0
mT ,

ω
(1,0)
` = R2h(`)

κ0
1 + κ0

.

G2. The Q(∞,0) estimator for which N = {m,m−1,m−2, . . .}. The channel estimate and
the estimator quality ω

(1,0)
` are given by

bh0mT+` = 1√
Eo

∞X
v=0

y0vT+`γv,` and

ω
(∞,0)
` =

1

σ2h

∞X
n=0

∞X
m=0

Rh(nT + `)Rh(mT + `)z(|n−m|)

where z(τ) Z−1
½

1
Z[Rh(T τ)]+ 1

κ0

¾
and γv,`

∞P
n=0

Rh(nT + `)z(|n− v|).
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G3. The Q(1,1) for which N = {m,m+1}. The channel estimate and the estimator
quality ω

(1,0)
` are given by

bh0mT+` = σ2h
σ2N

p
E0
£
Γ(`) y

0
mT + Γ(T−`) y

0
(m+1)T

¤
,

ω
(1,1)
` = (Γ2(`) + Γ

2
(T−`))(κ

2
0 + κ0) + 2κ

2
0Γ(`)Γ(T−`)Rh(T ),

where

Γ(k)
Rh(k)(κ0 + 1)− Rh(T )Rh(T − k)κ0

(κ0 + 1)2 − κ20 R2h(T )
.

In this section, we have shown how to formulate the cutoff rate for a general channel

correlation matrix Rh(τ) and for a general MMSE estimator. By letting

Rh(τ) = RA(τ) = α|τ | we are able to derive the results for the AR(1) model. Similarly, by
letting Rh(τ) = RJ(τ) = Jo(2πfdTD|τ |) we are able to derive the results for the Jakes
model. Additionally, we see that it is easy to consider an entire class of MMSE estimators

for which our cutoff rate metric holds, each defined by the pilot set N , or equivalently, it’s
estimator quality ω`.

9. Discussion and Summary

In this report we have considered the optimal allocation of resources (training energy and

training frequency) for correlated fading channels when partial CSI is available at the

receiver through periodic training. We have used the channel cutoff rate as our

optimization metric. Mainly, we have assumed that the transmitter has perfect knowledge

of the channel Doppler spread, but have also treated the case where the transmitter’s

knowledge is incorrect.

First, we reviewed the Gauss-Markov correlated fading channel and discussed a periodic

training-based channel estimation scheme which provides partial CSI to the receiver by

taking an MMSE estimate of the channel based on some subset of the received pilots.

Three different MMSE estimators (i.e., three different pilot subsets) were considered, and

the characteristic estimator quality of each estimator was given.

Next, we derived the cutoff rate Ro for our training-based front end. Although our

emphasis is on the Gauss-Markov channel, this cutoff rate metric (which is parameterized

by the estimator quality, SNR, and training period) holds for any channel correlation

function. We focused on binary signaling and noted that OOK is optimal when no CSI is

available, whereas BPSK is optimal when full CSI is available. To study the intermediate

region of partial CSI, we derived a design rule which gives, as a function of the CSI and
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SNR available at the receiver, the optimal input distribution (OOK or BPSK). We have

shown that adaptively switching from BPSK to OOK as CSI diminishes (or as SNR

increases) results in dramatic gains in the cutoff rate versus a static (pure OOK or pure

BPSK) approach.

Next, we confined our interest to BPSK and determined the optimal energy allocation

between training and data for each of the three estimators under consideration. Initially,

all data slots were required to have the same training energy. For the Q(1,0) and Q(∞,0)
estimators, exact expressions for the optimal training energy were given (implicitly for the

Q(∞,0) estimator). For the Q(1,1) estimator, analytic bounds were given at high SNR, and

were supplemented by numerical simulations. For each of the three estimators, we gave a

lower bound on the optimal training period that is exact at high SNR, and gave several

relations that describe the relative lengths of the training period amongst the three

estimators. We have shown that optimizing training over the energy allocation and

training period is worthwhile; gains of up to 4 dB are to be had versus an un-optimized

(but quite reasonable) training approach.

We also considered energy allocation when each data slot may have a different amount of

energy allocated to it, resulting in a T -dimensional energy allocation problem. We gave an

analytic solution for the optimal energy vector which is exact in several limiting senses. We

have shown that, if a reasonable (close to optimal) value of T can be chosen at the

transmitter, then there is little gain in a T -dimensional energy allocation in place of the

simpler 2−D energy allocation. However, if a “loose” value of T is chosen, the

T -dimensional energy allocation results in significant gain to the cutoff rate. Finally, we

tested the validity of our design paradigms for energy allocation, training period, and

cutoff rate for the AR(1) model, by using these same design rules when the channel

correlation is described by the popular Jakes correlation model. We find that the cutoff

rate predicted by the AR(1) model is extremely close the corresponding cutoff rate for the

Jakes model when an equivalent value of the Doppler spread is used in each model.

Furthermore, we find that the energy allocation dictated by the AR(1) model can be used

in the Jakes model with little loss in the cutoff rate. Although we have focused on the

AR(1) and Jakes models, our results (see section 8) hold for general channel correlation

models, included the perfectly bandlimited fading channel.

There are many avenues of future work: Using average capacity as a metric, and assuming

a perfectly bandlimited Doppler spectrum, optimal training frequency and energy

allocation were considered in [31]. Extensions of our results to (possibly redundantly)

precoded transmissions are of interest. Given the wide-sense stationarity of the channel,

periodic placement of pilots is reasonable, but what is the optimal periodic pilot scheme?

In the context of minimizing the maximum mean square estimation error, single pilot

placement has been shown to be optimal for the Gauss-Markov model [10]. However, it is

not clear that the same result holds for the cutoff rate, for it is precisely the data slot with
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the largest mean square error that contributes least to the cutoff rate. This motivates the

study of other periodic placement schemes. Next, it is expected that for fast-fading

channels, superimposed training will outperform a periodic placement approach (a MMSE

and BER analysis was given in [11] for the AR(1) model). A characterization of the region

in which a form of superimposed training outperforms periodic placement is an interesting

topic of further research. Also, the results in this report have been primarily for binary

signaling (motivated by the popularity of binary signaling techniques, particularly at low

SNR and for low complexity systems). Still, it is of interest to determine how the cutoff

rate is affected by higher order constellations. Indeed, the cutoff rate expressions provided

in this paper can easily be extended to arbitrary signal constellations, albeit, a closed form

expression rarely exists for constellations of order larger than two.

Other extensions of interest include: a generalization of the cutoff rate analysis for the

MIMO case when the receiver has partial CSI, an analysis of the merits of PSAM when

on-off keying is used (i.e., is PSAM-type training beneficial in this scenario? A partial

answer was given in [26]), a Doppler analysis when the transmitter has a statistical

estimate of α (rather than a deterministic estimate, as given in section 4.4).
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A. Estimator Quality Equations (Sections 2.2, 7, and 8)

Derivation of equation 5, The Q(1,0) estimator

The pilot observation y0mT and channel state h
0
mT+k are jointly Gaussian with correlation

E [h0mT+k (y0mT )∗] =
√
Eoσ

2
hRh(k). The conditional expectation of one Gaussian vector given

another is evaluated in, e.g., [20]. Evaluating bh0mT+` = E £h0mT+`|y0mT ¤ we obtain:
bh0mT+` = √

E0σ
2
h

E0σ2h + σ2N
Rh(`)y

0
mT ,

ω
(1,0)
` = R2h(`)

κ0
1 + κ0

.

Derivation of equation 6, The Q(∞,0) estimator

Let y = [y00, y
0
−T , . . . , y

0
−(M−1)T ] be the last M pilot observations. Then, from [20, pp.

508—509], the Q(M,0) estimator is described bybh0mT+` = E £h0mT+`|y¤ = Ch0mT+`yC−1yyy, and (31)

ω
(M,0)
` =

1

σ2h
Ch0mT+`yC

−1
yyC

H
h0mT+`y

(32)

where

(Cyy)ij =
¡E £yyH¤¢

ij
= E0σ

2
hRh(|i− j|T ) + σ2Nδ(|i− j|), and³

Ch0mT+`y

´
1j
= E £h0mT+`y¤ =pEoσ2hRh(jT + `).

Next, define the function

z(τ) Z−1
(

1

Z [Rh(T τ)] + 1
κ0

)
. (33)

As M →∞, spectral factorization can be used to show that¡
C−1yy

¢
ij
=

1

Eoσ2h
z(|i− j|). (34)

under mild conditions on Rh(T τ). Substituting equation 34 into 31 and 32 we find that the

estimate and estimator quality for the Q(∞,0) estimator are given by

bh0mT+` = 1√
Eo

∞X
v=0

y0vT+`γv,` and (35)

ω
(∞,0)
` =

∞X
n=0

∞X
m=0

Rh(nT + `)Rh(mT + `)z(|n−m|) (36)
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where γv,` =
∞P
n=0

Rh(nT + `)z(|n− v|).

Derivation of equation 7, The Q(1,1) estimator

Observe that h0mT+`y0mT
y0(m+1)T

 ∼ CN
0,
 σ2h Rh(`)

√
Eoσ

2
h Rh(T−`)

√
Eoσ

2
h

Rh(`)
√
Eoσ

2
h σ2hE0 + σ2N Rh(T )Eoσ

2
h

Rh(T−`)
√
Eoσ

2
h Rh(T )Eoσ

2
h σ2hE0 + σ2N


Evaluating bh0mT+` = E hh0mT+`|y0mT , y0(m+1)Ti we obtain:

bh0mT+` = σ2h
σ2N

p
E0
£
Γ(`) y

0
mT + Γ(T−`) y

0
(m+1)T

¤
,

ω
(1,1)
` = (Γ2(`) + Γ

2
(T−`))(κ

2
0 + κ0) + 2κ

2
0Γ(`)Γ(T−`)Rh(T ),

where

Γ(k)
Rh(k)(κ0 + 1)− Rh(T )Rh(T − k)κ0

(κ0 + 1)2 − κ20 R2h(T )
.
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B. The Infinite Past Estimator for the AR(1) Model (Section
2.2)

In Appendix A. we found the estimator quality for the Q(∞,0) estimator, for a general
channel correlation Rh(τ). Alternatively, the variance has been derived in [20, pp.443]

using standard Kalman filter theory. The estimator quality ω
(∞,0)
` is given implicitly to be

(using the current notation)

ω
(∞,0)
` =

σ2N
E0

h
α2Tω

(∞,0)
` +

¡
1− α2T

¢i
α2Tσ2hω

(∞,0)
` + σ2h(1− α2) +

σ2N
E0

. (37)

Solving for the estimator variance yields

ω
(∞,0)
` = α2`

1− 1

1
2
(1 + κ0) +

q
1
4
(1 + κ0)2 + κ0 α2T

1−α2T

 .

49



Intentionally Left Blank.

50



C. Interleaving (Section 2.2)

The system operates on codewords of length N 0 = N(T−1). Without loss of generality,
consider the codeword that starts at time k = 0 denoted by

v =
£
s1 . . . sT−1, sT+1, . . . , s2T−1, . . . , s(N−1)T+1, . . . , sNT−1

¤t
.

Similarly, let h0 =
£
h01 . . . h

0
T−1, h

0
T+1, . . . , h

0
NT−1

¤t
denote the channel,bh0 = hbh01 . . .bh0T−1,bh0T+1, . . . ,bh0NT−1it denote the channel estimate, andeh0 = heh01 . . .eh0T−1,eh0T+1, . . . ,eh0NT−1it denote the channel estimation error during the

transmission of a codeword. It follows that Σ 1
σ2h

¡E £h0h0H¤¢
ij
= Rh(|i− j|), where Rh(.)

is the normalized channel correlation function. Similarly, we define normalized correlation

matrices for the channel estimate and estimation error,

bΣ 1

σ2h
E
hbhbhHi and eΣ 1

σ2h
E
hehehHi .

The output is y0 =
√
Ebh0 ¯ v +√Eeh0 ¯ v + n, where E diag {E`}T−1`=1 ⊗ IN is the energy

matrix, and where the noise vector n = [n1 . . . nT−1, nT+1, . . . , nNT−1]
t. The matrices eΣ andbΣ depend on the particular estimation scheme, but, in general, the diagonal elements are

given by bΣ¯ IN 0 = IN ⊗ diag {ω`}T−1`=1 and
eΣ¯ IN 0 = IN ⊗ diag {1− ω`}T−1`=1 .

The cutoff rate for generalized binary signaling without interleaving can be found in a

manner similar to that described in section 3. Considering a super-symbol of length N 0, the
cutoff rate is given by

Ro = lim
N→∞

max
Q(.)
− 1

NT
log2

Z
y0

Z
h
0

 X
v∈ SN1 ×...×SNT−1

Q(v)

q
P (y, bh | v)

2 dbh0 dy0.
Evaluating, the non-interleaved cutoff rate is

Ro = − lim
N→∞

min
Q(.)

1

NT
log2

X X
v,w∈ SN1 ×...×SNT−1

Q(v)Q(w)

¯̄̄
IN 0 +KV eΣV H ¯̄̄1/2 ¯̄̄ IN 0 +KW eΣWH

¯̄̄1/2¯̄̄
IN 0 + 1

2
K
³
V eΣV H +W eΣWH

´
+ 1

4
K(V −W )bΣ(V −W )H ¯̄̄ , (38)

where V = diag {v}, W = diag {w}, and where K diag {κ`}T−1`=1 ⊗ IN is the faded energy
matrix.
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In practice, P -depth (finite) interleavers are often used to reduce the correlation within a

transmitted codeword. The P -depth interleaver collects a codeword for transmission; it

then transmits consecutive letters of the codeword once every P−1 symbols slots. To avoid
a loss in overall transmission rate, P codewords are multiplexed in this fashion. For

channels which can be accurately modelled as wide sense stationary with a monotonically

decreasing correlation function (e.g., a channel described by a first order AR(1) process,

Rh(τ) = RA(τ) α| τ |, −1 ≤ α ≤ 1), the correlation of the channel within a codeword
decreases as the depth of the interleaver P increases. For channels whose correlation

function can only be bounded by an exponentially decreasing envelope, i.e.,

|Rh(τ)| ≤ exp−ψ| τ |, ψ > 0, correlation is not reduced for each increase in P , but, as a

general trend, it does decrease with increasing P . If the value of P is chosen large enough

for this class of channels, the correlation within a codeword can be made arbitrarily small,

presumably leading to better system performance (at the expense of added complexity, and

delay) when using codes designed for independently fading channels.

A common assumption used in the analysis of correlated fading channels is that of a

“perfect” (or infinite depth) interleaver at the transmitter and a corresponding

deinterleaver at the receiver. The infinite depth interleaver simplifies the analysis of

correlated fading channels, and is often an implicit assumption when i.i.d. channel models

are used in analysis. The infinite depth interleaver effectively removes the correlation of the

channel within a codeword transmission. The assumption of infinite interleaving is

equivalent to setting the non-diagonal entries of the correlation matrices bΣ and eΣ to 0, so
that

bΣ← bΣ¯ IN 0 = IN ⊗ diag {ω`}T−1`=1 , andeΣ← eΣ¯ IN 0 = IN ⊗ diag {1−ω`}T−1`=1 .

Also, given the perfect interleaving assumption, bh0 and eh0 are mutually independent, i.e.,
E
hbh0 eh0Hi = 0N 0 , so that the ML-decoder, generally given by

bv = max
v
P (y0, bh0 | v)

reduces to a product-wise detector

bv = max
v

N 0Y
k=1

P (yk,bhk | sk).
where the sequence

nbhko is an independent sequence having the same marginal statistics
as
nbh0ko, as described the post-estimation post-interleaving system equation 30.
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Note that under perfect interleaving,

Q(v) =

"
T−1Y
`=1

Q`(sk)

#N(T−1)
,

and that equation 37 reduces to the interleaved cutoff rate given by equation 10.

53



Intentionally Left Blank.

54



D. Cutoff Rate Derivation (Section 3)

Here, we evaluate equation 9, and show that it yields equation 10. Expanding equation 9

Ro = −min
Q(.)

1

T
log2

X X
s,v∈ S1×...×ST−1

Q(s)Q(v)Eh
∙Z

y

q
P (y|s, bh)qP (y|v, bh) dy¸ . (39)

Note that bh ∼ CN (0, bΣ), where bΣ = diag{ω`}T−1`=1 . Next, we make the following definitions:

E diag {E`}T−1`=1 , us
√
ESbh, uv √

EV bh, Σs σ2hES
eΣSH + σ2NIT 0 , and

Σv σ2hEV
eΣV H + σ2NIT 0 where S = diag{s}, V = diag{v}, and eΣ = diag{1− ω`}T−1`=0 .

Note that

y|s, bh ∼ CN (us, Σs) ,

y|v, bh ∼ CN (uv, Σv) ,

and that

P (y|s, bh)P (y|v, bh)
=
exp

©−(y− us)HΣ−1s (y− us)− (y− uv)HΣ−1v (y− uv)ª
π2T 0|ΣsΣv|

=
exp

©−yH(Σ−1s + Σ−1v )y+ 2Re
¡
yH(Σ−1s us + Σ

−1
v uv

¢− usΣ−1s us − uvΣ−1v uvª
π2T 0|ΣsΣv| .

Evaluating the integral, we obtainZ
y

q
P (y|s, bh)P (y|v, bh)

= Ez
h
eRe{ z

H(Σ−1s us+Σ
−1
v uv)}

i
e−

1
2(uHs Σ

−1
s us+uHv Σ

−1
v uv)

¯̄̄̄³
Σ−1s +Σ−1v

2

´−1 ¯̄̄̄
|ΣsΣv|1/2

,

where z ∼ CN
µ
0,
³
Σ−1s +Σ−1v

2

´−1¶
. Evaluating the expectation and simplifying the ratio of

determinants above, we getZ
y

q
P (y|s, bh)P (y|v, bh)

= e
1
4(Σ

−1
s us+Σ

−1
v uv)

H Σ−1s +Σ−1v
2

−1
(Σ−1s us+Σ

−1
v uv)

e−
1
2(uHs Σ

−1
s us+uHv Σ

−1
v uv) |Σs|1/2 |Σv|1/2¯̄

Σs+Σv
2

¯̄
= e−

1
2
(us−uv)H(Σs+Σv)−1(us−uv) |Σs|1/2 |Σv|1/2¯̄

Σs+Σv
2

¯̄ . (40)
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Next, we take the expectation of equation 39 with respect to bh. We get (substituting back
for us and uv):

= Eh
h
e−

1
2(
√
E(S−V )h)H(Σs+Σv)−1(

√
E(S−V )h)

i |Σs|1/2 |Σv|1/2¯̄
Σs+Σv
2

¯̄
=

|Σs|1/2 |Σv|1/2¯̄̄
IT 0 +

1
2
σ2h
bΣ √E(S − V )H(Σs + Σv)−1(S − V )√E ¯̄̄ ¯̄Σs+Σv2

¯̄
=

|Σs|1/2 |Σv|1/2¯̄̄
IT 0 +

1
2
σ2h (S − V )

√
E bΣ √E(S − V )H(Σs + Σv)−1 ¯̄̄ ¯̄Σs+Σv2

¯̄
=

|Σs|1/2 |Σv|1/2¯̄̄
Σs+Σv
2

+ 1
4
σ2h (S − V )

√
E bΣ √E(S − V )H ¯̄̄ .

Substituting for Σs and Σv, we get

Eh
∙Z

y

q
P (y|S, bh)P (y|V, bh)¸

=

¯̄̄
IT 0σ

2
N + σ2h

√
ESeΣSH√E ¯̄̄1/2 ¯̄̄ IT 0σ2N + σ2h

√
EV eΣV H√E ¯̄̄1/2¯̄̄

IT 0σ2N +
1
2
σ2h
√
E
³
SeΣSH + V eΣV H´√E + 1

4
σ2h
√
E(S − V )bΣ(S − V )H√E ¯̄̄ (41)

All matrices above are diagonal. Simplifying equation 40 we obtain

T 0Y
`=1

p
1 + κ`(1− ω`)|s`|2

p
1 + κ`(1− ω`)|v`|2

1 + κ`

2
(1− ω`)(|s`|2 + |v`|2) + κ`

4
ω`|s` − v`|2

.

Substituting this result into equation 38, we obtain

Ro = − 1
T

T−1X
`=1

min
Q`(.)

log2

X
s`,v`∈{A`,B`}

Q`(s`)Q`(v`)

p
1 + κ`(1− ω`)|s`|2

p
1 + κ`(1− ω`)|v`|2

1 + κ`

2
(1− ω`)(|s`|2 + |v`|2) + κ`

4
ω`|s` − v`|2

. (42)

Finally, evaluation of the double sum in equation 41 yields equation 10.
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E. OOK Optimality with No CSI (Section 3.1)

It is sufficient to consider the `th term in equation 10. Setting ω` = 0 and then dropping

the subscript for brevity, we seek to minimize

p (1− p)
(p

1 + κ|A|2p1 + κ|B|2
1 + κ

2
(|A|2 + |B|2) − 1

)
, (43)

subject to the constraint set J = {p|A|2 + (1− p)|B|2 = 1, 0 < p < 1, |A|2, |B|2 ≥ 0}. For
any fixed value of p, we will show that the minimizer of equation 42 is a form of OOK.

Without loss of generality assume that |A|2 ≥ 1 and |B|2 ≤ 1, so that |A|2 = |B|2 +∆B,

where ∆B ≥ 0 is a real number. Fixing p, we restate the minimization problem

min
J 0

f(|B|2,∆B)

p
1 + κ (|B|2 +∆B)

p
1 + κ|B|2

1 + κ
2
(2|B|2 +∆B)

where J 0 = {|B|2 + p ∆B = 1, |B|2 ≥ 0,∆B ≥ 0}. Note that
∂f

∂|B|2 =
κ [2 + 2∆Bκ+∆2

Bκ
2 + |B|2κ (2 +∆Bκ)]p

1 + |B|2κp1 + (|B|2 +∆B)κ (2 + |B|2κ+∆Bκ)
2
≥ 0, (44)

∂f

∂∆B
= −κ2 (|B|2 +∆B)

p
1 + κ|B|2

(2 + |B|2κ+∆Bκ)
2
p
1 + (|B|2 +∆B)κ

≤ 0. (45)

Equation 43 implies that, for any fixed ∆B, |B|2 should be made as small as possible. The
smallest possible value |B|2 can take in J 0 is 0. Equation 44 implies that, for any fixed
|B|2, ∆B should be made as large as possible. The largest possible value ∆B can take in J 0

is 1
p
. Both of these objectives can be satisfied simultaneously, and therefore, for any fixed p,

|B|2 = 0 and ∆B = |A|2 = 1
p
minimizes equation 42. Therefore, when ω` = 0, an ON-OFF

keying solution (B = 0) is always optimal. To find the optimal value of p (and hence, the

optimal value of A), we substitute |B|2 = 0 and |A|2 = 1
p
into equation 42, the optimal

value of p is given implicitly by

p∗ = arg min
0<p<1

p (1− p)

q
1 + κ1

p

1 + κ
2
1
p

− 1


as κ→∞, p∗ → 1
2
, and as κ→ 0, p∗ → 0.
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F. Derivation of the Optimal Training Energy (Section 5.1)

Optimal Energy for the Q(1,0) Estimator

For T = 2, the proof of the theorem follows easily. We prove the theorem for T > 2.

Substituting the energy constraint into equation 12, we wish to maximize

Ro = − 1
T

T−1X
`=1

log2

∙
1 +

1

2
α2`

κ21(T − 1)− κ1κtot
−κ21(T − 1) + κ1(κtot − T + 2) + κtot + 1

¸
. (46)

over the region 0 ≤ κ0 ≤ κtot.

The pth term (1 ≤ p ≤ T−1) in the summation above has a maximizer κ∗1,p that is
independent of p. Therefore, since each term in equation 45 is maximized by κ∗1,p, the
overall maximizer of equation 45, κ∗1, is given simply by κ

∗
1 = κ

∗
1,p. Finding κ

∗
1 = κ

∗
1,p is

equivalent to

κ∗1 = argminκ1

κ21(T − 1)− κ1κtot
−κ21(T − 1) + κ1(κtot − T + 2) + κtot + 1

.

It follows readily that§

κ∗1 = Γ−
r
Γ2 − κtot

T − 1Γ, Γ =
κavT + 1
T − 2 . (47)

Finally, we must verify that κ∗1 is in the valid range
£
0, κtot

T−1
¤
. Note that, since Γ ≥ κtot

T−1 ,
equation 46 always yields a real number. Verifying κ∗1 ≥ 0 is equivalent to verifying that
the first term in equation 46 is larger in magnitude than the second term, which follows

easily. To verify that κ∗1 ≤ κtot

T−1 , we must verify that

Γ−
r
Γ2 − κtot

T − 1Γ ≤
κtot
T − 1 ,

or (expanding and cancelling), that κtot

T−1 ≤ Γ, which is true.

§The critical points of
a1x

2 + a2x

a3x2 + a4x+ a5

are (a1a4 6= a2a3)
−a1a5 +−

p
a21a

2
5 − (a1a4 − a2a3)a2a5

a1a4 − a2a3
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Optimal Energy for the Q(∞,0) Estimator

We consider T > 2. Substituting the energy constraint into equation 12, we seek to

maximize

Ro = − 1
T

T−1X
`=1

log2

∙
1− α2`

2

κtot − κ0
κtot − κ0 + (T − 1)1− 1

1
2
(1 + κ0) +

q
1
4
(1 + κ0)2 + κ0 α2T

1−α2T


over the region 0 ≤ κ0 ≤ κtot. The maximizer of the pth term is given by

max
0≤κ0≤κtot

∙
κtot−κ0

κtot − κ0 + (T − 1)
¸1− 1

1
2
(1 + κ0) +

q
1
4
(1 + κ0)2 + κ0 α2T

1−α2T

 ,
which is independent of p. Therefore,

κ∗0 = max
0≤κ0≤κtot

∙
κtot−κ0

κtot − κ0 + (T − 1)
¸1− 1

1
2
(1 + κ0) +

q
1
4
(1 + κ0)2 + κ0 α2T

1−α2T

 . (48)

At low SNR, we simplify the LHS and RHS above by noting that κ0 ≤ κtot → 0, and

rewrite the maximization problem as

κ∗0 = max
0≤κ0≤κtot

∙
κtot−κ0

(T − 1)
¸ ∙
κ0

µ
1 +

α2T

1− α2T

¶¸
, (49)

where we have used the fact that
√
1 + x ≈ 1 + x/2 for small x. The maximizer is seen to

occur for κ∗0 = κtot/2. At high SNR, we first assume that as κtot →∞, the ratio κ∗0/κtot
remains finite, so that κ∗0 →∞ as well. Under this assumption, equation 47 becomes

κ∗0 = max
0≤κ0≤κtot

κtot−κ0

κtot − κ0 + (T − 1)
∙
1− 1

1 + κ0

¸
,

from which we find that

κ∗0 =
−κtot +√κtot

√
T − 1√T − 2 + κtot
T − 2 .

Since κtot →∞, the expression above can be simplified, κ∗0 = κtot
h√

T−1−1
T−2

i
. Next, we

assume that as κtot →∞, the ratio κ∗0/κtot → 0. In this case, equation 47 becomes

κ∗0 = max
0≤κ0≤κtot

1− 1

1
2
(1 + κ0) +

q
1
4
(1 + κ0)2 + κ0 α2T

1−α2T

 , (50)
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which produces the zero-rate result κ∗0 = κtot. Therefore, the first high SNR assumption is
the correct one, i.e., κ∗0 = κtot

h√
T−1−1
T−2

i
as κtot →∞.

Bounds on Optimal Energy for the Q(1,1) Estimator

For the (1, 1) estimator, the cutoff rate is given by

Ro = − 1
T

T−1X
`=1

log2

∙
1− ω

(1,1)
`

κ1
1 + κ1

¸
(51)

where, rewriting equation 7, ω
(1,1)
` = κ2

0A`+κ0B`
κ2
0C+2κ0+1

with A` = α2` + α2(T−`) − 2α2T ,
B` = α2` + α2(T−`), and C = 1− α2T .

When α¿ 1, the estimator quality simplifies to w
(1,1)
` = κ0

1+κ0

£
max

¡
α2`,α2(T−`)

¢¤
for

` = T/2 or w
(1,1)
` = 2 κ0

1+κ0
α2` for T = `, which implies that only the “closest” pilot aids in

estimation. The optimization of equation 50 is equivalent to the maximization problem for

the Q(1,0) estimator, and yields κ∗0,(1,1) = κ
∗
0,(1,0).

When α ≈ 1, the estimator quality simplifies to w(1,1)` = 2κ0

2κ0+1
. We find that

κ∗0,(1,1) = arg max
0≤κ0≤κtot

κ0
κ0 + 1/2

κtot − κ0
κtot − κ0 + (T−1) .

which yields

κ∗0,(1,1) = −µ+
p
µ2 + µκtot, where µ =

κtot + (T−1)
2T − 3 . (52)

Next, we consider the low and high SNR cases. Returning to equation 50, we denote the

maximizer of the pth term in the expression above by κ∗0,p, and note that

κ∗0,p = max
0≤κ0≤κtot

∙
κtot − κ0

κtot − κ0 + T−1
¸ ∙

κ20Ap + κ0Bp
κ20C + 2κ0 + 1

¸
(53)

where we have used the total energy constraint in the left term above.

In general, explicit knowledge of κ∗0,p is not enough to determine κ
∗
0. However, at low SNR

κ∗0,p = κtot/2 which is independent of p, and so κ
∗
0 = κ

∗
0,p = κtot/2. To see this we rewrite

equation 52 under the condition that κ0 ≤ κtot → 0, and obtain

κ∗0,p = max
0≤κ0≤κtot

∙
κtot − κ0
T−1

¸
κ0Bp. (54)

From equation 53, it is easy to verify that κ∗0 = κ
∗
0,p = κtot/2.

At High SNR, we return to equation 52, and multiply out terms to obtain

κ∗0,p = max
0≤κ0≤κtot

κ30Ap − κ20(κtotAp −Bp)− κ0(κtotBp)
κ30C − κ20 [C(κtot + Z)− 2]− κ0 [2 (κtot + Z)− 1]− (κtot − Z)

(55)
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where Z T−1. Next, we note that the function

j(x) =
a1x

3 + a2x
2 + a3x

a4x3 + a5x2 + a6x+ a7

has critical points given implicitly by

(a1a5 − a2a4)x4 + (2a1a6 − 2a3a4)x3 + (3a1a7 + a2a6 − a3a5)x2 + 2a2a7x+ a3a7 = 0.

Applying this fact to equation 54, we determine the relevant quartic for which at least one

root equals κ∗0,p:
κ∗40,p + b1κ

∗3
0,p + b2κ

∗2
0,p + b3κ0,p + b4 = 0

where

b1 = 2
(2Ap −BpC)κtot + Ap(2Z − 1)

BpC +Ap(CZ − 2) ,

b2 =
κ2tot [−2Ap +BpC] + κtot [−2Ap(−2 + Z) +BpCZ] + 3ApZ +Bp(2Z − 1)

BpC +Ap(CZ − 2) ,

b3 = 2
−Apκ2tot + κtot(Bp −ApZ) +BpZ

BpC +Ap(CZ − 2) ,

b4 =
−Bpκ2tot − BpκtotZ
BpC +Ap(CZ − 2) .

Next, we invoke the high SNR assumption. The coefficients can be simplified:

b1 =
4Ap−2BpC

Γ
κtot, b2 =

−2Ap+BpC
Γ

κ2tot, b3 = −2Ap
Γ
κ2tot, and b4 = −B`

Γ
κ2tot, where

Γ BpC +Ap(CZ − 2). We continue to evaluate the quartic in this fashion (e.g., see [33,
pp.11]). Retaining the relevant (positive) root, we eventually find that

κ∗0,p = κtot
h
γ(p) +

p
γ(p)2 − γ(p)

i
, (56)

where

γ(p) =
−2Ap + BpC

BpC +Ap(CZ − 2)
=

α4p + α2T + α4T − 4α2(p+T ) + α2(2p+T )

−(T − 2)α4p − (T − 2)α2T + Tα4T + 2(T − 3)α2(p+T ) + Tα2(2p+T ) − 2(T − 1)α2(p+2T ) ,

where the last expression is in terms of fundamental quantities only. It can be verified that

the root given in equation 55 (i.e., the maximizer of the pth term) is the only root within

the range 0 ≤ (.) ≤ κtot, and that κ∗0,p is decreasing for p = 1, . . . , dT−12 e and increasing for
p = dT−1

2
e+ 1, . . . , T−1. This implies that, the overall maximizer, κ0, satisfiesγµdT−1
2
e
¶
+

s
γ

µ
dT−1
2
e
¶2
− γ

µ
dT−1
2
e
¶ ≤ κ∗0

κtot
≤
h
γ(1) +

p
γ(1)2 − γ(1)

i
. (57)
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When α << 1, we find that γ(p) = − 1
T−2 . Therefore, when κtot →∞ and α << 1,

equation 56 implies that κ
∗
0

κtot
= 1

T−2
£√
T−1− 1¤, since both sides of the bound are equal.

When α ≈ 1, two application’s of L’Hopital’s rule shows that γ(p) = 2p2−2pT+T 2
2p2−2pT−(T−2)T 2 . Using

this fact in equation 56 reveals that, at high SNR when α ≈ 1, a bound on κ∗0 is given by
equation 56 where

γ(1) =
T 2 − 2T + 2

−T 3 + 2T 2 − 2T + 2 ,

γ

µ
dT − 1
2

e
¶
=

T 2 + mod (T, 2)

−2T 3 + 3T 2 + mod (T, 2)
.

The expressions for κ∗0,(1,1) at large SNR, for small and large α, can be evaluated for large
T to show that κ∗0,(1,1) =

√
Tκav in each case. Since κ∗0,(1,1) is a continuous function of α,

we conclude that at high SNR, κ∗0,(1,1) ≈
√
Tκav with equality for large T .

Proof that κ∗0,(∞,0) ≤ κ∗0,(1,0)
The optimal training energies can be written in implicit form as

κ∗0,(1,0) = arg max
0≤κ0≤κtot

g(κ0),

κ∗0,(∞,0) = arg max
0≤κ0≤κtot

g(κ0)f(κ0)

where

g(κ0)
∙

κtot−κ0

κtot − κ0 + (T − 1)
¸ ∙

κ0
1 + κ0

¸
, and

f(κ0) g(κ0)
∙
1 + κ0
κ0

¸1− 1

1
2
(1 + κ0) +

q
1
4
(1 + κ0)2 + κ0 α2T

1−α2T

 . (58)

Note that g(x) has one critical point (a maximum) in the range 0 ≤ x ≤ κtot located at
x = κ∗0,(1,0), and so is decreasing for κ

∗
0,(1,0) ≤ x ≤ κtot. Note also that

p(κ0)
∙
1 + κ0
κ0

¸1− 1

1
2
(1 + κ0) +

q
1
4
(1 + κ0)2 + κ0 α2T

1−α2T


is a decreasing function in the range 0 ≤ κ0 ≤ κtot. These two facts imply that f(x) is a
decreasing function for κ∗0,(1,0) ≤ x ≤ κtot, and therefore, κ∗0,(∞,0) = argmax0≤κ0≤κtot

g(κ0)f(κ0) ≤ κ∗0,(1,0).

Proof that κ∗0,(1,1) ≤ κ∗0,(1,0)
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We would like to show that

arg min
0≤κ0≤κtot

1

T

T−1X
`=1

log2 ω
(1,0)
`

κavT − κ0
κavT − κ0 + T−1 ≥ arg min

0≤κ0≤κtot

1

T

T−1X
`=1

log2 ω
(1,1)
`

κavT − κ0
κavT − κ0 + T−1 .

Each term in the left-hand sum is minimized by the same value of κ0. Each term on the

right-hand side has one critical point (a minimum) in 0 ≤ κ0 ≤ κtot. Therefore, a sufficient
(but not necessary) condition is to show that, for every 1 ≤ ` ≤ T−1,

arg max
0≤κ0≤κtot

ω
(1,0)
`

κavT − κ0
1 + κavT − κ0 ≥ arg max

0≤κ0≤κtot

"
ω
(1,1)
`

ω
(1,0)
`

#
ω
(1,0)
`

κavT − κ0
1 + κavT − κ0 .

This is proven by verifying that ω
(1,1)
` /ω

(1,0)
` is a decreasing function of κ0.
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G. Derivation of the Training Period Bounds (Section 5.2)

Proof that High SNR Yields a Lower Bound on Training Period for Casual

AR(1) Estimators

Here, we prove that for the AR(1) model, equation 15 gives a lower bound on the optimal

training period that is exact at high SNR. Suppose that the last pilot used in the

estimation is n pilots old. Note that ω` = ω0α
2` = ω−nTα2(nT+`) for any casual estimator,

and that at high SNR, ω` = α2(nT+`). We wish to show that

argmax
T
− 1
T

T−1X
`=1

log2

½
1− ω−nT

κ1
1 + κ1

α2(nT+`)

2

¾
≥

argmax
T
− 1
T

T−1X
`=1

log2

½
1− α2(nT+`)

2

¾
.

where the right-hand side of the above equation is the cutoff rate as κav →∞.
Equivalently, we must show that

− 1
T+1

TP̀
=1

log2 {1− β(T+1)c(T+1)}

− 1
T

T−1P̀
=1

log2 {1− β(T )c(T )}
≥
− 1
T+1

TP̀
=1

log2 {1− c(T+1)}

− 1
T

T−1P̀
=1

log2 {1− c(T )}

where β(T ) w−nT κ1

1+κ1
is optimized over κ0 and κ1 for a fixed T , and where

c(T ) α2(nT+`). Next, note that B(T ) is an increasing function of T (a consequence of the

fact that ∂
∂κ0

ω−nT ≥ ∂
∂κ0

κ0

1+κ0
). It is enough to show that

TP̀
=1

log2 {1− β(T )c(T+1)}
T−1P̀
=1

log2 {1− β(T )c(T )}
≥

TP̀
=1

log2 {1− c(T+1)}
T−1P̀
=1

log2 {1− c(T )}

or that
TP̀
=1

log2 {1− β(T )c(T+1)}
T−1P̀
=1

log2 {1− β(T )c(T )}

is a decreasing function of 0 ≤ β(T ) ≤ 1 which is easily proven (noting that
C(T +1) ≤ C(T )). Therefore, the optimal training period at high SNR is a lower bound on
the training period at any SNR; it is obviously attainable.
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Proof that Training Period for Last Pilot Estimation is Larger than that for

Infinite Past Estimation

Here we prove that the training period for the Q(1,0) estimator is larger than that of the

Q(∞,0) estimator T
∗
(1,0) ≥ T ∗(∞,0) for any channel with monotonically decreasing correlation

function Rh(τ) under the equal energy assumption κ0 = κ1 = κav. We wish to show that

argmax
T
− 1
T

T−1X
`=1

log2

"
1− R

2
h(`)

2

µ
κav

1 + κav

¶2#

≥ argmax
T
− 1
T

T−1X
`=1

log2

∙
1− R2h(`)ω(∞,0)0 (κav, T )

κav
1 + κav

¸
.

where we emphasize that the estimator quality for the Q(∞,0) estimator is a function of κav
and T . To show that the inequality above is satisfied, we show that

−
TP̀
=1

log2

∙
1− R2h(`)

2

³
κav

1+κav

´2¸
−
T−1P̀
=1

log2

∙
1− R2h(`)

2

³
κav

1+κav

´2¸ ≥
−

TP̀
=1

log2

h
1− R2h(`)ω(∞,0)0 (κav, T+1) κav

1+κav

i
−
T−1P̀
=1

log2

h
1−R2h(`)ω(∞,0)0 (κav, T ) κav

1+κav

i
Note that, because Rh(τ) is monotone decreasing, ω

(∞,0)
0 (κav, T ) is a decreasing function of

T . We use this fact to increase the right-hand side of the above expression, and prove the

resulting inequality

−
TP̀
=1

log2

∙
1− R2h(`)

2

³
κav

1+κav

´2¸
−
T−1P̀
=1

log2

∙
1− R2h(`)

2

³
κav

1+κav

´2¸ ≥
−

TP̀
=1

log2

h
1−R2h(`)ω(∞,0)0 (κav, T ) κav

1+κav

i
−
T−1P̀
=1

log2

h
1−R2h(`)ω(∞,0)0 (κav, T ) κav

1+κav

i
by showing that

−
TP̀
=1

log2

h
1− R2h(`)

2
ρ
i

−
T−1P̀
=1

log2

h
1− R2h(`)

2
ρ
i = 1 + − log2

h
1− R2h(T )

2
ρ
i

−
T−1P̀
=1

log2

h
1− R2h(`)

2
ρ
i (59)

is a decreasing function in 0 ≤ ρ ≤ 1, which is easily proven by noting again that
R2h(T ) ≥ R2h(`).

Proof that High SNR Yields a Lower Bound on Training Period for the Last

Pilot Estimator

Here, we consider the Q(1,0) estimator, and prove that for any channel with decreasing

correlation function Rh(τ), equation 27 gives a lower bound on the optimal training period
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that is exact at high SNR. The cutoff rate is

Ro = −
T−1X
`=1

log2

½
1− R

2
h(`)

2
p(T )

¾

where p(T ) κ0(T )
1+κ0(T )

κ1(T )
1+κ1(T )

is optimized over κ0 and κ1 for a fixed value of T . Note that
p(T ) is an increasing function of T . We wish to show that

argmax
T
− 1
T

T−1X
`=1

log2

∙
1− R

2
h(`)

2

κ0(T )
1 + κ0(T )

κ1(T )
1 + κ1(T )

¸

≥ argmax
T
− 1
T

T−1X
`=1

log2
£
1−R2h(`)

¤
.

It is sufficient to show that

−
TP̀
=1

log2

h
1− R2h(`)

2
p(T+1)

i
−
T−1P̀
=1

log2

h
1− R2h(`)

2
p(T )

i ≥ −
TP̀
=1

log2

h
1− R2h(`)

2

i
−
T−1P̀
=1

log2

h
1− R2h(`)

2

i
We can replace the left hand side of the above expression by a smaller quantity and show

that the resulting inequality holds. Replacing, p(T + 1) with p(T ), we must show that

− log2
h
1− R2h(T )

2
p(T )

i
−
T−1P̀
=1

log2

h
1− R2h(`)

2
p(T )

i ≥ − log2
h
1− R2h(T )

2

i
−
T−1P̀
=1

log2

h
1− R2h(`)

2

i ,
or that the left-hand side is a decreasing function in 0 ≤ p(T ) ≤ 1. A sufficient condition is
to show that

f(p) =
− log2

h
1− pR2h(`)

2

i
− log2

h
1− pR2h(T )

2

i
is increasing in the range 0 ≤ p ≤ 1 which follows by nothing that 0 ≤ Rh(T ) ≤ Rh(`) ≤ 1.
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H. Variable-Energy Substitution Function (Section 6.1)

First we show that eκ∗ = κ∗ as α→ 1. As α→ 1, all data slots following a pilot have the

same estimator quality or “predictability,” and so we expect all data slots to be activated

and for κ∗ to converge to the solution for the fixed-data energy case equation 13. That is,
we expect κ∗ = [κ0,κ1, . . . ,κ1], where κ0 and κ1 are given in equation 13. This is the
case, as will be shown below.

From equation 20, we activate all T−1 data slots iff κtot ≥ φα(T−2). Note that

lim
α→1

φα(T − 2) = (T − 2)− (T − 3
2
) +

r
1

4
= 0,

and, therefore, all T−1 data slots are activated. Note that

lim
α→1

κ` =
1

T−1 [κtot − κ0(T−1) + (T − 1)]− 1

=
κtot − κ0(T − 1)

T − 1 , (60)

Therefore, each data slot is allocated an equal amount of data energy. Next, note that

lim
α→1

κ0(T − 1) = −κtot + T−1
T−2 +

s
T−1
(T−2)2 (κtot + T−1)

2 − T−1
T−2(κtot + T−1). (61)

Substituting equation 60 into 59 and simplifying, we get

κ` =
κtot + 1
T−2 −

s
(T−1)(κtot + T−1)2 − (T−1)(T−2)(κtot + T−1)

(T−2)2(T−1)2

=
κtot + 1
T−2 −

s
(κtot + 1)(κtot + T − 1)

(T−1)(T−2)2

which, with minor simplification, is seen to match equation 13.

Here, we show that eκ∗ = κ∗ as α→ 0. As α→ 0, predictability of the channel is lost and

we expect only one data channel to be activated, and allocated half of the total available

energy (for TA = 1, the variable data energy problem reduces to the fixed data energy

problem of equation 13). Next, we show that this is the case: From equation 20, we

activate only one data channel if 0 ≤ κtot < φα(2). Since limα→0 φα(2) =∞, only one data
channel should be activated. From part (c) of equation 20, we see that the activated data

slot if allocated half the total energy.

Here, we show that eκ∗ = κ∗ as κtot → 0. Note that κtot → 0 implies that

κ` → 0, 0 ≤ ` ≤ T−1. We start from the cutoff rate expression in equation 18 and note
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that, since α2` ≤ 1,

Ro = − 1
T

T−1X
`=1

1

2
α2`

κ0
1 + κ0

κ`
1 + κ`

+O

"
1

4
α4`
µ

κ0
1 + κ0

¶2µ κ`
1 + κ`

¶2#

where a Taylor series expansion has been taken (around 0) for each term in the sum of

equation 18. As κtot → 0

Ro = − 1
T

T−1X
`=1

1

2
α2`

κ0
1 + κ0

κ`
1 + κ`

(62)

It is clear that optimization of equation 61 and 19 over κ yields the same optimizer, and

therefore, that eκ∗ = κ∗ as α→ 0.
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I. Energy Allocation for Variable-Energy Data Slots (Section
6.2)

We will give the proof of the theorem for the case where TA > 1. First, we verify that eR0 is
concave in κ. This follows easily:

∂2 eRo
∂κ20

= − 2

(1 + κ0)3

T−1X
p=1

α2p
κp

1 + κp
≤ 0,

∂ eR2o
∂κ2`

= −2α2` κ0
(1 + κ0) (1 + κ`)

3 ≤ 0, for 1 ≤ ` ≤ T−1.

Suppose M slots are active (the optimal value of M = TA will follow from the analysis).

From the Kuhn-Tucker conditions [22], a necessary and sufficient condition for the

elements of κ to optimize eRo (given that M slots are active) is

∂ eRo
∂κ`

|κ`
= λ, for 0 ≤ ` ≤M, (63)

∂ eRo
∂κ`

|κ`=0 ≤ λ, for M + 1 ≤ ` ≤ T−1, (64)

Consider the following candidate solution: let the training energy be given by

κ0(M) = −∆ (M + κtot)

+

q
(∆2 +∆) (M + κtot)

2 − (∆+ 1) (M + κtot), (65)

where ∆ = 1
2
(1−α)(1+αM )

α−αM , and let the data energy be given by

κ` =
½
α`−1 1−α

1−αM [κtot − κ0(M) +M ]− 1, for 1 ≤ ` ≤M
0, for M + 1 ≤ ` ≤ T−1.

¾
(66)

Substituting equations 64 and 65 into equation 62, we see that the condition is satisfied

and that

λ = α2
κ0

1 + κ0

µ
1− αM

1− α

¶2
1

(κtot − κ0 +M)2
,

(we abbreviate κ0(M) as κ0 for brevity). Substituting equation 65 into 63, we see that the
condition in equation 63 is satisfied only if

α2(M+1) κ0
1 + κ0

≤ λ = α2
κ0

1 + κ0

µ
1− αM

1− α

¶2
1

(κtot − κ0 +M)2
,

or, equivalently, only if

κtot − κ0 +M ≤ α−M − 1
1− α

(67)
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Substituting equation 64 into 66 and solving explicitly for κ0, we see that this condition is
equivalently satisfied if

κtot ≤
"
α−M − 1
1− α

−
µ
M +

1

2

¶
+

r
1

4
+
(α−M − α) (α−M − 1)

1− α2

#
, (68)

Therefore, if the initial choice of M satisfies equation 67, then equations 64 and 65 are

indeed the maximizers of eRo. Rewording: first we choose TA to be the smallest integer in
{1, . . . , T − 1} such that equation 67 holds (or, if no such integer exists, choose TA = T − 1).
Then, we select the training and data energies as in equations 67 and 64. This establishes

equation 20.
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