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1. Introduction 

This report extends the papers by Cooper (1) and Cooper and Costello (2) which examined the 
aerodynamic jump characteristics of a spinning projectile subjected to a single lateral impulse.  
The extension considers a sequence of lateral impulses, each separated by a constant arc 
length T .  Jump effects attributable to gravity have now been included since experience has 
shown that when one ignores gravity, as is usually done, it may lead to incorrect results (3).  The 
modification parallels the analysis of Cooper (1) and Cooper and Costello (2) where the changes 
in the analysis stem from the impulse sequence driving terms and a corrected limiting procedure 
that retains the pertinent gravity terms influencing aerodynamic jump. 
 

2. Projectile Dynamic Model 

The analysis here follows the same analysis presented in Cooper and Costello, and the equations 
of motion continue to have the following form for the linear theory (see figures 1 and 2): 
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Following the usual linear assumptions, the forward velocity and projectile roll rate are taken to 
be constant (4), i.e., 0VV ≈ , 0pp ≈ . 

 

3. Pulse Force and Moment Conditions 

The pulse forces applied to the projectile are taken to be lateral impulsive forces and each force 
is attributable to an actuator attached to the projectile body (see the source terms of equation 10).  
For this investigation, the force actuators are modeled as a sequence of scaled square wave 
pulses of length nL  and actuated at sn + jT, making the resulting force and moment components 
in the non-rolling frame 
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Note that the last expressions are equivalent to delta function impulses in the limit of 0Ln → . 

Swerving motion is measured along the earth-fixed IJ  and IK  axes.  To an observer standing 
behind the gun tube, these axes are oriented so that positive IJ  is to the right and positive IK  is 
pointed downward.  The swerving motion results from a combination of the normal aerodynamic 
forces, as the projectile pitches and yaws, plus the forces and moments attributable to the applied 
impulses.  Swerving motion is thus described by the following equations (1,2,4): 
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For a stable projectile, the swerve caused by epicyclical vibration decays as the projectile 
progresses down range and does not affect the long-term lateral motion of the projectile.  Long-
term center of mass solution, or swerve, contains terms that remain bound with arc length s  plus 
terms that are linear with s, and if the total gravity contribution is included, the solution will have 
higher order diverging terms.  These higher order terms are typically denoted as gravity drop and 
are generally ignored since they are well understood.  The linear terms are called aerodynamic 
jump, caused by initial conditions at the gun muzzle, lateral pulse forces, and aerodynamic 
characteristics.  Setting the diverging gravity terms to zero and subsequently evaluating the 
following limits formally define aerodynamic jump 

 K
s

J
s sD

)s(z
sD
)s(y limlim Γ=Γ=

∞→∞→

 (20) 



 

4 

When a lateral pulse is applied to the projectile at arc length ns , its effect on the target impact 
point is predominantly attributable to aerodynamic jump because damping rates and target 
distance are sufficient to allow the epicyclical transients to decay.  As shown in equation 21, 
each of the two components of aerodynamic jump is expressed with terms attributable to muzzle 
conditions and linear gravity effects, plus a term attributable to the uniform sequence of lateral 
pulse forces and moments: 
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in which 
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The magnitude, Λ , and phase angle, ( )JK
1 ΓΓtan − , of the jump component are calculated from 

equation 22. 
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Figure 1.  Projectile position coordinate definition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Projectile orientation definition. 
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4. Changes Caused by a Sequence of Lateral Pulses 

To examine the swerve response resulting from a sequence of lateral pulses, it is helpful to write 
the last term in equation 21 in complex form 
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The last expression shows that the jump attributable to 1K
m

+  impulses is simply the result of a 
single impulse multiplied by 
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The most important features of equally spaced multiple impulses are found by examination of the 
last equation for various values of T  and mK .  To emphasize the smearing effects, the roll 
position, Nφ , of the lateral impulse force is assumed to act primarily along the non-rolling Y-
axis.  This means the arc length, Ns , corresponding to the center of the pulse satisfies the 
expression 2,1,0N,N2s BNN =π=φ+φ′=φ .  To assure that this force is acting nominally 
along the non-rolling Y-axis, the activation point begins at 2Lss nNn −=  so that the duration of 
the impulse brackets N2N π=φ . 

Assuming that all multiple impulses bracket N2N π=φ  means that the separation arc length 
must be T = 2πN/P, and an inspection of equation 24 shows 1Km +=ℜ .  This makes physical 
sense because repeated impulses in the same direction should result in a jump that is 1Km +  
times the jump for a single impulse.  Considering cases when successive impulses are activated 
at π+π=φ integerN2N  implies that one way to do this is to let ( ) P/1N2T +π= .  Equation 24 
leads directly to  
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which also confirms physical reasoning. 

Plots comparing the effect of smearing between a one- and a two-impulse sequence, 1,0Km =  
are given in figures 3 and 4 for the applied force 510836.3F −∗ ×=  and moment arm 
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0.635DrX −= (see appendix A).  These parameters correspond to the case in Cooper’s (1,2) 
report for which the jump resulting from a single impulse was greatest.  Negative values of rX  
indicate that the application point of the pulse force is aft of the mass center.  The chosen value  

P2
3T π=  

shows that a sequence of impulses can cause considerable changes in both jΓ  and kΓ  and these 

in turn impact the phase angle ( )JK
1 ΓΓtan −  because of the pre-multiplier 2

TKmPi

e  in equation 24.  
Changes in the phase angle response are readily seen so that the phase angle from a single 

impulse is shifted by 2
TKP m  for mK  additional impulses.  In this example, i.e., 

P2
3T π= , 2mK = , the phase is shifted by 

2
3π  or increased by 270 degrees. 

-20

0

20

40

60

80

0 20 40 60 80 100 120 140

nL

( )
0Km0.635DXr

6
10ΠcosΛ

=−=
×

( )
2Km0.635DXr

7
10ΠcosΛ

=−=
×

P2π3T   YZtanNπ2-Π   103.836F -15 ==×= −∗

 

Figure 3.  Jump component-J because of lateral impulse versus impulse duration. 
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Figure 4.  Jump component-K because of lateral impulse versus impulse duration. 

Figure 5 gives a chart showing the respective magnitudes, Λ , of the two sample cases given 
here.  These clearly show that repeated impulses that do not bracket N2N π=φ  can greatly 
impact the direction of jump induced by lateral impulses.  In any case, the magnitude has 
changed by the factor 

( )





















 +

2
TPsin

2
1KTPsin m

. 

Increasing pulse length, nL , causes the jump components to cyclically decay while the value of 

nL  at 0Ln =  corresponds to a lateral impulse that is proportional to the delta function ( )nss −δ .  
Values of nL  where the jump is zero represent situations when the duration of the lateral pulse 
coincides with a roll cycle.  Notice for the case presented that the response attributable to a two-
sequence pulse has a predominant direction that depends on the particular choices of T  and 
sequence length mK . 
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Figure 5.  Jump magnitude because of lateral impulse versus impulse duration. 

 

5. Conclusions 

The analytical approach for quantifying the effect of a uniform sequence of lateral square 
impulses disturbing a projectile during free flight is presented.  All the analysis was based on 
projectile linear theory, which produces simple closed form solutions for the assumed square 
pulse disturbances.  The swerving motion caused by a single impulse (1) is modified by a 
multiplying factor, equation 24, which accounts for a uniform sequence, length Km + 1, of 
impulses.  Changes in aerodynamic jump caused by a sequence of lateral impulse forces are 
shown to produce easy-to-understand additive contributions to the usual aerodynamic jump.  
Magnitude and phase angle changes that depend on the sequence length and spacing are readily 
obtained, which may prove useful guidance, navigation, and control.   
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Appendix A.  Flight Coefficients for a 40-mm Projectile 

The numerical values used for the graphical presentations given in this report are shown in the 
following matrices: 

Aerodynamic coefficients: 
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Flight characteristics:   
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Symbols 

iC  Projectile aerodynamic coefficients 
D  Projectile characteristic length (diameter) 

dF  Dimensional impulse force  
∗F  Non-Dimensional impulse force 2

0d VmFDF =∗  

g  Gravitational constant 

G  Scaled gravitational constant 0VDgG =  

Y

X

I
I

 Mass moments of inertia 

N~
M~
L

 Applied moments about projectile mass center expressed in the no-roll frame 

m  Projectile mass  
P  Non-dimensional spin rate 0VpDP =  

r~
q~
p

 Angular velocity components vector of projectile in the no-roll frame 

S  Surface area 4DS
2

π=  

w
v
u

 Mass center velocity components in the body reference frame 

0V  Forward velocity of projectile 

w~
v~
u

 Mass center velocity components in the no-roll reference frame  

rX   Dimensional moment arm length  

I

I

Z
Y

 Applied force components in the no-roll reference frame 













z
y
x

 Position vector of body center of mass in an inertial reference frame 
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α  Longitudinal aerodynamic angle of attack 
β  Lateral aerodynamic angle of attack 

K

J

Γ
Γ

 
K
J

 Components of aerodynamic jump 

Π  Phase angle of the aerodynamic jump caused by a lateral impulse 
Σ  Magnitude of jump caused by a lateral impulse 

ψ
θ
φ

 Euler roll, pitch and yaw angles of the projectile 

Bφ  Euler roll angle of the applied impulse 
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