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1. Introduction 

Very long finned projectiles carrying very dense metallic rods have been observed to be subjected 
to large inelastic deformations during hypersonic flight (1).  Spark shadowgraphs of these 
projectiles have shown elastic bending motion with amplitudes as large as the rod’s radius (2).  It 
has been conjectured that the cause of the inelastic deformation was the bending loads associated 
with pitching and yawing motion at resonant spin frequencies.  These frequencies would be near 
to the aerodynamic frequency of a rigid projectile or the elastic frequencies of the rod. 

Spinning motion at a resonant frequency can be caused by a nonlinear roll moment associated 
with the roll orientation of the fins or by mass asymmetry due to damage or poor construction of 
the projectile.  This spin-yaw lockin mechanism has been discussed for a rigid missile by several 
authors (3–7). 

The linear flight motion of an elastic missile has been considered in references (8–13).  In 
reference (11), a very simple theoretical model of a projectile composed of three components 
connected by two bent mass-less elastic beams was used to approximate an elastic missile.  For 
appropriate selection of beam parameters spin-yaw lockin was demonstrated and large amplitude 
oscillations occurred.  In references (12) and (13), the correct linear partial-differential equation 
for a continuously elastic missile was derived, and special solutions for harmonic transient 
motion and trim motion were obtained.  A nonlinear roll moment was shown to be capable of 
producing equilibrium spin near resonance.  Although the lateral motion of the pitching and 
yawing missile was linearized, it was necessary to retain the quadratic terms in the roll equation.  
A time history of motion going to lockin was not obtained at that time.  It is the purpose of this 
report to compute such a time history by use of the finite element method (FEM) (14). 

The lateral motion of a symmetric rigid missile has often been described by complex variables 
(15), and complex variables were used in references (8) and (11–13) to describe the lateral 
flexing motion of the rotationally symmetric rod.  The equations of motion of a spinning missile 
are usually derived by vector analysis and Newtonian mechanics, but FEM equations for elastic 
bodies require the use of the more sophisticated Lagrangian mechanics.  The Lagrangian of a 
system must be stated in body-fixed coordinates.  Separate differential equations in the two 
lateral directions can be obtained from the appropriate Lagrangian.  Pairs of equations are 
combined and complex variables introduced to yield half as many complex equations. 

If five elements are used to describe the pitching and flexing motion of the missile, 20 
parameters, usually called connectors, are introduced and 25 second-order differential equations 
and one first order differential equation are required.  The introduction of complex angles and 
complex connections reduce this system to 12 second-order complex differential equations and 
two real differential equations.  
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2. Coordinate System 

The elastic missile is assumed to consist of a very heavy elastic circular rod of fineness ratio, L, 
and mass, m, embedded in a very light symmetric aerodynamic structure that may be longer than 
the rod.  The rod’s axial moment of inertia is Ix and its transverse moment of inertia about its 
center is It0.  The rod’s diameter can vary over its length, and its maximum diameter will be 
denoted by “d.”  All distances will be expressed as multiples of the rod diameter and its length is 
Ld.  A nose windshield of length 23x d  may be attached to the forward end of the rod, and the 
fins may extend beyond the end of the rod at a distance of 01x d .  Thus, the rod is located 
between 1x L 2= −  and 2x L 2= , while the aerodynamic structure extends from 0 1 01x x x= −  
to 3 2 23x x x= + .  

An earth-fixed coordinate system will be used with the Xe-axis oriented along the initial 
direction of the missile’s velocity vector.  The Ze-axis is downward-pointing and the Ye-axis is 
determined by the right hand rule.  A nonrotating coordinate system, XYZ is then defined with 
origin always at the center of the rod and the X-axis tangent there.  The X-axis pitches through 
the angle,θ , and yaws through the angle,ψ , with respect to the Xe-axis.  Body-fixed coordinates 
XYb-Zb are now defined for which the Yb-Zb axes rotate with the missile through the roll angle, 
φ , with respect to the Y-Z axes.  

We will conceptually slice the missile into a large number of thin disks perpendicular to the  
X-axis with thickness, dx.  When the rod flexes, the disks shift laterally perpendicular to the  
X-axis and cant to be perpendicular to the centerline of the disks.  This canting action neglects 
the shear deformation of the rod, and this constraint is called the Bernoulli assumption (14).  The 
lateral displacement of a disk has body-fixed coordinates by bzand δ δ , and the disk is canted at 
angles by bz and Γ Γ . 

 by bz
by bz;

x x
∂δ ∂δ

Γ = Γ =
∂ ∂

. (1) 

It important to note that at the central disk 

 ( ) ( ) ( ) ( )by bz by bz0, t 0, t 0, t 0, t 0δ = δ = Γ = Γ = . (2) 

Reference (12) used the nonspinning elastic coordinate system with XYZ axes ( )0φ = .  The 

lateral displacements of a disk in this elastic coordinate system are shown in figures 1 and 2 and 
can be computed from body-fixed quantities. 

 ( ) i
E Ey Ez by bzi i  e φδ = δ + δ = δ + δ , (3) 

and 
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Figure 2.  X-Y coordinates of cross-sectional disk. 
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 ( ) i
y z by bzi i  e φΓ = Γ + Γ = Γ + Γ . (4) 

The earth-fixed coordinates of the central disk are e e ex , y ,  and z , and the earth-fixed coordinates 
of the other disks are computed in terms of the central disk earth-fixed coordinates, their  
body-fixed displacements, and the Euler angles ,  ,  and θ ψ φ . 

 ( ) ( ){ } ( ){ }2 2 i i
de e by bz by bzx x x 1 2 Re i e Im i eφ φ = + − ψ + θ −ψ δ + δ + θ δ + δ  , (5) 

 ( ){ }i
de e by bzy y x Re i e φ= + ψ + δ + δ , (6) 

and 

 ( ){ }i
de e by bzz z x Im i e φ= − θ+ δ + δ . (7) 

ye, ze, by bz,  ,  ,  θ ψ δ δ  and their derivatives are assumed to be small quantities, but xe and ex�  are 

not small.  Lagrangian dynamics yields the correct linearized differential equations for these six 
variables when the kinetic energy expansion retains all quadratic terms in these variables.  Thus, 
equations 6 and 7 consist of only linear terms, but equation 5, which contains xe, retains 
quadratic terms in these variables.  The coefficient of x in equation 5, for example, is the 
quadratic form of the cosine of the angle between the Xe-axis and the X-axis. 

The angular velocity of the central disk in the body-fixed coordinates is 

 p = φ−ψθ� � , (8) 

 ( ){ }i
bq Re i  e− φ= θ + ψ� � , (9) 

and 

 ( ){ }i
br Im i  e− φ= θ+ ψ� � . (10) 

The angular velocity of any other disk along axes aligned with the disk’s axes of symmetry is 

 ( ) ( ){ }d d by d bzp p 1 2 q r p Re i 2 i  = −ΓΓ + Γ + Γ = + θ+ ψ −φΓ + Γ Γ� � �� , (11) 

 ( ){ }i
d b bz byq q Re i i  e− φ= −Γ −φΓ = θ+ ψ + Γ� �� �� , (12) 

and 

 ( ){ }i
d b by bzr r Im i i  e− φ= + Γ −φΓ = θ+ ψ + Γ� �� �� . (13) 
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3. Motion of Central Disk 

The mass of each circular disk is ( ) ( )1m L  x  dxρ ; its roll moment of inertia is 
( ) ( )2

d 22a md  x  dxρ , and its transverse moment of inertia is ( ) ( )2
d 2a md  x  dxρ , where da  is 

( ) 116L − .  ( )1 xρ  and ( )2 xρ  describe the variation of mass and moments of inertia along the rod, 
and both become unity for a homogeneous rod with constant diameter.  The kinetic energy of a 
disk is therefore 

 ( )( ) ( )( )2 2 2 2 2 2 2 2
d 1 de de de d 2 d d dT dx = md ρ 2L x + y + z + a md ρ 2 2p + q + r  dx  � � � . (14) 

The total kinetic energy of the missile can be obtained by integrating dT  over the length of the 
rod: 

 ( ) ( )( )
2

1

x
2 2

d R 11 12 21 22
x

T T dx T md T T md 2L T T= = + + + +∫ , (15) 

( )( ) ( )
( )

( ) ( ){ }
( ) ( )( ){ }

( ) ( ) ( )

( )

2 2

1 1

2 2 2 2 2 2 2
R e e e x t 0

2
c e e e

11 e c c

12 e e c 6 8

x x
2 2 2 2

21 Ey Ez 1 d y z 2
x x

22 d

where T md 2 x y z I p 2 I 2

 md x y z x ,

T x Re i i ,

T Re y iz i J J ,

T dx a L dx,

T 2 a L Re 2i

= + + + + ψ + θ

 + ψ − θ− ψψ + θθ 

= − ψ + θ δ + ψ + θ δ

= − δ + ψ + θ +

= δ + δ ρ + Γ +Γ ρ

= φ Γ

∫ ∫

��� � �

� �� �� � �

� ���

� � ��� �

� � � �

� �( )
2

1

x

2
x

dx ,
  −φΓ Γρ 
  
∫ �

 

and 

( )
2

1

x

c 1
x

x 1 L x dx= ρ∫ . 

The ey and ez  components of the central disk velocity can be approximated by linear relations in 
angles of pitch and yaw with respect to inertia axes ( ),θ ψ  and angles of attack and sideslip with 
respect to the velocity vector ( ),α β  as shown in figures 1 and 2.  The magnitude of the velocity 
vector is V. 

 ( ) ( )ey V d  = β+ψ� , (16) 

and 
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 ( ) ( )ez V d  = α −θ� . (17) 

Equations 16 and 17 can be written as a single complex equation: 

 ( ) ( )e e 1 1ey iz V d  q q+ = +� � , (18) 

where 1q i= β+ α  and 1eq i= ψ − θ . 

In reference (12), the linear aerodynamic force loading is expressed in terms of three force 
distribution functions, ( ) ( ) ( )D f1 f 2c x ,  c x ,  and c x  and the base pressure coefficient, CDbp, plus a 

body-fixed force associated with possible bent fins.  Because the lateral motion of the missile is 
quite small, 1 1eq q≅ −� �  and the aerodynamic damping force terms in the aerodynamic loading on 
the aerodynamic structure can be combined.  This aerodynamic loading in nonrotating elastic 
coordinates is 

 ( )x
1 D

dF g c x
dx

= − , (19) 

 
( ) ( ) ( ) ( )

( ) ( )( ) ( )

i
f1 1 BF E 1y z

1 i
f 2 1 BF

c x  q x  e xq  d VdF dFi g
dx dx c x  2q i x  e  d V

φ

φ

  −Γ −Γ + δ −  + = −
 + −Γ − φΓ 

� �

���
, (20) 

and 

 xbp 1 DpbF g C= − . (21) 

The total aerodynamic force acting on the aerodynamic structure is given by the integrals of 
equations 19 and 20 and by adding the base drag of equation 21 to the axial force, 

 ( )
3

0

x

x 1 D 1 D Dbp
x

F g C g c x dx C
 

= − = − + 
  
∫ , (22) 

and 

 ( ) ( ) ( ) ( )i
1 1 1 2 1 NBF 1 2F g c q c q d V C e J t J t  d Vφ = − + − − − 

�� , (23) 

where various functions are defined in appendices A and B. 

The primary components of drag are head drag and base pressure drag.  The third component is 
skin friction drag that is ~15% of the total drag and will be neglected in this report to simplify 
the FEM calculations. 

Similarly, the total aerodynamic moment about the rod’s center can be computed from the 
transverse aerodynamic force and a small axial force contribution: 



 7

 
( ) ( ) ( ) ( )( ) ( )
y z

i
1 3 1 4 1 MBF 3 4 5

M M iM

i g d c q c q d V C e J t J t d V J tφ

= +

 = − + − − − − 
�� . (24)

 

The motion of the central disk is described by the variables e e ex ,  y ,  z ,  ,  ,  and φ ψ θ .  The motion 
of any other section on the aerodynamic structure located at x with thickness dx is the sum of this 
motion plus its motion relative to the central disk.  The work done on any section caused by 
motion of the central disk is 

 
( )cd 1x e 1y e 1z ex

2x 2y 1ey 2z 1ez

dW dx = dQ dx + dQ dy + dQ dz

     + dQ d + dQ dq + dQ dqφ , (25)
 

where the sectional generalized forces are defined in appendix B. 

The total generalized forces can be obtained by integrating the sectional generalized forces and 
adding the work done by the base pressure drag.  These are also given in appendix C. 

The linearized Lagrangian differential equation for ex and φ  gives the usual drag and spin 
equation, 

 e 1 DmV mx g C≅ = −� �� , (26) 

and 

 x xI Mφ =�� . (27) 

The Lagrangian differential equation for ez  can be multiplied by i and added to the Lagrangian 
differential equation for ye to yield a single second-order differential equation in complex 
variables.  Next, the Lagrangian differential equation for θ  can be multiplied by i and subtracted 
from the Lagrangian differential equation for ψ ,  

 ( )1 2 1 c 2 cm V q q Vq d q x d F + + + δ + = 
���� �  (28) 

and 

 ( )2 2 2
t0 c 2 x 2 6 8 c c cI md x  q i I q md J J x iM x Fd + − φ + + + δ = − − 

� ���� �� , (29) 

where ( )
2

1

x

c 1
x

x 1 L x dx= ρ∫ , ( )
2

1

x

c E 1
x

1 L dxδ = δ ρ∫ , and 2 1eq q= � . 

These differential equations for cx 0=  are the same as those derived by Newtonian mechanics in 
reference (12).  Equations 28 and 29 contain eight integrals of Eδ  and Γ .  Three of these are 
integrals of dynamics properties ( )c 6 8, J , Jδ  over the rod ( )1 2x , x  and five are integrals over 
aerodynamic properties ( )1 2 3 4 5J , J , J , J , J  over the aerodynamic structure ( )0 3x , x . 
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For constant spin and velocity, a rigid unbent missile with its center of mass at the rod center, 
equations 28 and 29 predict a simple epicyclic angular motion: 

 1 1 2 2t i t i
1 10 20q K e K eλ + φ λ + φ= + , (30) 

where ( ) ( ) 2
m x t 1 t 3 x tI 2I g d I c I 2Iφ = φ ± − + φ� � � . 

For zero spin, 1 2 Rφ = −φ = ω� � , where ( )R 1 t 3g d I cω = . 

4. FEM 

The rod is assumed to be represented by the sum of an inelastic bent component rotating with the 
missile and an elastic deformation, 

 ( ) ( ) ( )i
E EB E 1 2x, t x  e x, t  ; x x xφδ = δ + δ ≤ ≤� , (31) 

and 

 ( ) ( ) ( )b EB b 1 2x, t x x, t  ; x x xδ = δ + δ ≤ ≤� , (32) 

where ( ) ( )EB
EB

d 0
0 0

dx
δ

δ = = . 

Because the aerodynamic structure is rigidly attached to the rod, 

 ( ) ( ) ( ) ( )E E 1 1 1 0 1x, t x , t x x  x , t  ; x x xδ = δ + − Γ ≤ ≤ , (33) 

and 

 ( ) ( ) ( ) ( )E E 2 2 2 2 3x, t x , t x x  x , t  ; x x xδ = δ + − Γ ≤ ≤ . (34) 

The motion of the elastic component of the rod is controlled by the elasticity of the rod and the 
aerodynamic force acting on it. 

FEM is a very powerful method for calculating the time history of the elastic flexing motion.  
The rod is divided into nj elements of length e jL L n= .  The shape of the j-th element is given 

by a linear combination of third-order Hermitian polynomials (see appendix C). 

 ( ) ( ) ( )
4

by bpy p
1

ˆx, t q t  N zδ =∑� , (35) 

and 
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 ( ) ( ) ( )
4

bz bpz p
1

ˆx, t q t  N zδ =∑� , (36) 

where ( )e j j 1 ex L z z ; z x L j 1  0 z 1= + = + − ≤ ≤ . 

The coefficients of the polynomials are functions of time and are called connectors.  The first 
two are the deflection and slope of the left end of the element and the third and fourth are the 
deflection and slope of the right end.  To ensure continuity in deflection and slope at junction 
points, the corresponding pairs of connectors are equal.  We will consider only an odd number of 
elements and require that the connecters of the central element satisfy equation 2. 

 b3 b1 e b2ˆ ˆ ˆq 5q L q= + , (37) 

and 

 1
b4 e b1 b2ˆ ˆ ˆq 24L q 5q−= + , (38) 

where bq bqy bqzˆ ˆ ˆq q iq= + . 

For jn  elements, there are j2n  independent complex connectors.  It is convenient to let the index 

for the connectors run from 3 to nt, where nt = 2nj + 2.  The usual FEM procedure calculates the 
elastic parts of the integrals in equations 28 and 29 by first obtaining integrals over each element.  
These are linear functions of that element’s four connector functions.  Due to equations 37 and 
38, the central element has only two independent connector functions, and the next adjacent 
element connector functions are related to them.  Integrals for these elements are specially 
computed.  The desired elastic integrals are sums of these subintegrals and are linear 
combinations of the j2n  complex connector functions. The three integrals can be written as 

 
tn

1 i
c 1n n cB

3
L a q e− φδ = + δ∑ , (39) 

 
tn

1 i
6 2n n 6B

3
J L a q J e− φ= +∑ , (40) 

and 

 ( )
tn

i
8 d 2n n n 8B1

3
J a b q 2i q i J e φ= − φ − φ∑ � �� , (41) 

where i
n bnq q e φ= . 

The five integrals have contributions from the aerodynamic structure extensions as well as from 
each element,  
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( ) ( ) ( ) ( )

( )

tn

1 2 1n a1n n 1n a1n n
3

i
1B 2B

J + J d V = f + f q + g + g  q d V

+ J + i d V J  e ,φ

  

 φ 

∑

 (42)

 

 
( ) ( ) ( ) ( )

( )

tn

3 4 2n a2n n 2n a2n n
3

i
3B 4B

J + J d V = f + f  q + g + g  q d V

 + J + i d V J  e ,φ

  

 φ 

∑

 (43) 

and 

 ( )
tn

1 i
5 D 1n an n 5B

3
J C a L h  q J e− φ= − + +∑ . (44) 

Expressions for cB kB an,  J ,  hδ  and all FEM coefficients in equations 39–44 for 1, 3, 5, and 7 
elements are given in appendices A, D, and E. 

Equations 39–44 can be used with equations 28 and 29 to write these two complex differential 
equations in a standard format: 

 ( ) ( ) ( )
tn

* *
mn n mn mn n mn mn n m

n 1
R q S i S  q T i T  q t exp  i

=

 + + φ + + φ = φ ∑ . (45) 

The coefficients for m = 1, 2 are given in appendix F. 

5. Flexing Motion 

In order to derive the equations for flexing motion, the kinetic energy given by equation 15 must 
be expressed in terms of the rigid-body parameters, plus the connector functions.  The usual 
FEM process is used to express T2j in terms of two matrices, two vectors, and two constants. 

 
t t tn n n

i 2
21 mn my ny mz zn Bm m xB1

3 3 3
T k  q q q q 2 Re i e k q I L− φ 

 = + − φ + φ  
 

∑∑ ∑ , (46) 

and 

 ( ) ( )
t t tn n n

i 2
22 d mn m m n Bm m m xB2

3 3 3
T 2 a L Re b 2iq q  q 2ie b q 2i q I L− φ 

= φ − φ + + φ + φ 
 
∑∑ ∑ , (47) 

where xB1 xB2I , I  are defined in appendix A and mn Bn mn Bnk , k , b , b  are defined in Appendix G. 

The potential energy stored by an elastic deformation is 
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 ( ) ( )
2

1

2 2x 2 2
by bz
2 2

x

P.E. 1 2 EI d   dx
x x

  ∂ δ  ∂ δ = +    ∂ ∂    
∫

� �
, (48) 

where ( ) ( ) ( )0 0 3E x  I x E I x= ρ . 

0E  and 0I  are values of Young’s modulus and the area moment of inertia at the rod’s center.  

( )3 xρ  gives the variation of their product along the rod.  For a homogeneous rod with constant 

diameter, the product is E0I0.  The potential energy integral can be replaced by a sum of integrals 
over each of the jn  elements.  After integrating over each element, the results can be summed to 
yield a linear combination of the j4n  real connectors, 

 ( ) ( )
t tn n

2 2
0 bmy bny bmz bnz mn

m 3 n 3
V  md 2L  q q q q c

= =

= ω +∑∑ , (49) 

where 2 3
0 0 0E I md ,ω = mnc  are defined in appendix G. 

The work done on the rod by this elastic force can be expressed in terms of generalized force 
terms, 

 ( )
tn

2 2
E 0 Emy bmy Emz bmz

m 3
dW  md L   Q dq Q dq

=

 = ω + ∑ , (50) 

where 
tn

Emy Emz mn bn
n 3

Q iQ c q
=

+ = −∑ . 

The Kelvin-Voight elastic damping force (16), which is proportional to the time derivative of the 
elastic shear force, has generalized force terms: 

 ( )
tn

2 2
D 0 Dmy bmy Dmz bmz

m 3
dW  md L   Q dq Q dq

=

 = ω + ∑ , (51) 

where )
tn

Dmy Dmz 1 mn bn
n 3

ˆQ iQ  2k  c q
=

+ = − ω ∑ � , ( )2
1 04.730 Lω = ω . 

The scale factor 1
12 −ω  is selected so that k̂ 1=  corresponds to critical damping of the first elastic 

mode. 

The external aerodynamic force is divided between the force acting on the rod and the force 
acting on the aerodynamic structure extensions at the ends of the rod.  The total work done on 
the missile is the sum of the work done by these forces. 
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( )

j

j

t

n

A Aj an
j 1

n

1 Amy bmy Amz bmz
m 3

dW dW dW

g d  Q dq Q dq ,

 
=

=

 = + 

 = + 

∑

∑
 (52) 

where ( ) ( ) ( )
tn

-i
Amy Amz mn amn n mn amn n Bm aBm Bm aBm

n=3
Q + iQ = f + f q + g + g q e + f + f + i g + gφ φ  ∑ ��  

and mn mn amn amn Bm Bm aBm aBmf ,g , f ,g , f ,g , f ,g are defined in appendix G. 

Equations 50–52, in conjunction with the kinetic energy defined by equations 15, 46, and 47, can 
be used to derive the j4n  Lagrangian differential equations for the bmy bmzq ,q ’s for 

jm 3,  4,...2n 2= + .  The equation for bmzq  should be multiplied by i and added to the 
corresponding equation for bmyq  to yield j2n  complex differential equations for the complex 
variables bm.q .  If the bmq are replaced by mq in each equation, the result has the standard form 
given by equation 45, where the 14nj complex coefficients for jm 3,  4...2n 2= +  are given in 

appendix F. 

6. Special Solutions 

A rigid symmetric finned missile flying with constant spin has two natural frequencies: 1Rφ�  and 

2Rφ� , where 1R 2Rφ ≅ −φ� � .  For zero spin, each of the flexure frequencies would give rise to two 
coning frequencies, K±ω .  The frequencies present in the motion of an elastic projectile would 
form an infinite sequence, where the first two would be related to 1Rφ�  and 2Rφ� , while the later 
ones would evolve from K±ω , i.e., 2K 1 K 2K 2 K;+ +φ ≅ ω φ ≅ −ω� � .  The odd numbered modes have 

positive frequencies and are called positive modes, while the even numbered modes are called 
negative modes. For nonzero spin, the pairs of frequencies would no longer be equal in 
magnitude. 

Transient harmonic solutions of the homogeneous constant spin version of equation 45 have the 
form 

 ( )iAt
m mk k jq q e A A k 1,  2,  3,...2 2n 1= = = + . (53) 

After substituting equation 53 into equation 45, a set of linear homogeneous algebraic equations 
is derived, which is specified by an tn  × tn  matrix, 
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 ( )2 * *
mn mn mn mn mn mnu A R A  S i S  T i T= + + φ + + φ� � . (54) 

For nj elements, there are 2nj + 1 pairs of positive and negative frequencies.  The lowest 
frequency pair is related to the two aerodynamic frequencies and the other 2nj pairs are 
approximations of first 2nj elastic frequencies of the infinite set of frequencies for the elastic rod.  

The paired frequencies are equal in magnitude when spin is zero but the positive frequency has a 
larger magnitude when spin is positive.  For an elastic beam considered by Geradin and Rixen 
(14), the first nj approximations are close to the correct value.  This accuracy is determined by 
the ability of nj elements to describe the corresponding mode shape correctly.  Geradin and 
Rixen (14) also observe that the approximations are upper bounds of correct value.  

For constant spin, the trim motion in response to the spinning bent missile forces can be obtained 
by assuming a solution of the form 

 i t
n nTq q e φ= � . (55) 

The response parameters, nTq , vary with particular values of the constant spin and are solutions 
of a set of tn linear inhomogeneous algebraic equations, 

 
tn

mn nT m
n 1

B q t
=

=∑ , (56) 

where ( ) ( )2 * *
mn mn mn mn mn mnB  R S i   S T T= −φ + + φ + +� � . 

In reference (12), both these special solutions were computed from iterative solutions of a 
second-order differential equation specified by special boundary conditions.  The FEM approach 
obtains the same results and more by much simpler matrix operations. 

7. Quadratic Roll Equation 

The linear roll equation (equation 26) was derived from a kinetic energy function, which 
neglected cubic terms in 1y 1z 2y 2z bny bnzq ,  q ,  q ,  q ,  q ,   qand .  In order to derive the quadratic roll 

equation, cubic terms involving φ and φ� must be retained.  The resulting roll equation is the same 
as that derived in reference (12) from Newtonian mechanics, 

 ( ){ }2
x 7 2 6 2 8 c xI Re md J iq J iq J iF d Mφ+ − + − δ =�� � � , (57) 

where J7(t) is defined in appendix F. 
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The aerodynamic roll moment is the X-component of the aerodynamic moment about the center 
of the central disk.  The linear roll moment coefficient for a rigid finned projectile is usually 
expressed in terms of a roll-damping coefficient and a steady state spin, 

 ( ) ( ) ( )p sslinear
C C p  d V= φ− . (58) 

The steady state spin is usually determined by a differential canting of the fins caused either 
intentionally by the designer or unintentionally by damage to the projectile. 

The roll moment of one of the projectile’s thin disks is the sum of the linear roll moment it has as 
part of a projectile and the quadratic roll moment induced by the transverse aerodynamic force 
acting on its lateral displacement relative to the center of the central disk.  If we retain only the 
dominant cf1 term in equation 20, the quadratic roll moment has the form 

 
( ) ( ) ( )

( ) ( ) ( ) ( ){ }
x z Ey y Ezquadratic

i
1 f1 1 BF E 1 E

  dM dF dF  

g d c Re   i q e xq  d V  dx 
φ

=  δ − δ 
 = −Γ −Γ + δ − δ 

. (59)
 

The total aerodynamic roll moment acting on the projectile, therefore, 

 ( ) ( ) ( ){ }1
x 1 A 1 clinear

M g d   C Re  Q t ig F  − = + − δ  , (60) 

where ( ) ( ) ( ) ( ) ( )
3

0

x
i

A f1 1 BF E 1 E c
x

Q t i c q e xq  d V   dxφ = −Γ −Γ + δ − δ − δ ∫ . 

The nonlinear roll moment from equation 60 can be placed in the spin equation 57 to yield: 

 ( ){ } ( )2
X D 2 6 2 8 1 A 1 linear

I Re md Q iq J iq J g d Q g d Cφ+ − + − = , (61) 

where the quadratic terms X DI .Q  are defined in appendix F. 

For trim motion, { } i t
D 2 2TRe   Q 0, q i q e φφ = = = φ and equation 61 become a simple equality of 

two functions of p. 

 ( ) ( )2 1f fφ = φ , (62) 

where 1 ssf p= φ− , ( )( ){ }( )–1

2 AT 2T 1 6T 8T lpf = -R Q – q md g J + iJ C d Vφ , and 

( ) ( )( )
0

x3

AT f1 1T T BF ET 1T T
x

Q = i c q – Γ – Γ + i δ – xq d V δ dx φ ∫ . 

ET T,δ Γ are computed from the solution to equation 56 and J6T, J8T are J6, J8 evaluated for 

ET T,δ Γ . For moderate spin QAT is the dominant part of f2.  Equilibrium values of spin are 

determined by the intersection of these two curves.  Lockin occurs at stable equilibrium spin. 
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Spin lockin can only occur when the missile has some rigid asymmetry such as that described by 
EBδ  or BFΓ .  For a rigid missile ETδ  and TΓ  are EBδ  and BΓ .  q1T is a function of spin which has 

a large resonant amplitude when spin is near Rω .  For an elastic missile 1T ET Tq , ,δ Γ  are all 
functions of spin and have large resonant amplitudes when spin is near 2k 1−φ�  or near 2kφ�  for 
negative spin. 

8. Numerical Results 

In reference (12), calculations were made for a 20-cal. fin-stabilized rod, flying at 6000 ft/s.  The 
finned missile has a 1-cal. nose extension and a 1-cal. fin extension (figure 3).  The mass and 
aerodynamic parameters for the finned missile are given in appendix H.  The bent rod will be 
described by a pair of quartic curves. 

 
2 4

EB 11 21
2 4

12 22

δ = d x + d x 10 x 0

= d x + d x 0 x 10.

− ≤ ≤

≤ ≤  (63) 

d 10d 10d

2d 2d

d

d/2

2d

 
Figure 3.  Sketch of finned missile. 

The rear of the rod is undeformed ( 11 21d d 0= = ), and the values of 12 22d ,  d  are given in 
appendix G.  Two values of BFΓ  will be considered.  These are unbent fins and the rear 1 cal. of 
fins bent uniformly to an angle of 0.02 radians. 

A measure of the flight flexibility of a missile is the ratio of the first elastic frequency to the rigid 
missile aerodynamic frequency, 1 Rσ ≡ ω ω .  Calculations of 1φ�  vs. σ  have been made for the 1-, 
3-, 5-, and 7-element rod.  The results for all but the 1-element rod are practically identical, and 
the curve for a 3-element rod is given in figure 4.  At 5σ = , the aerodynamic frequency is 60% 
of the rigid missile aerodynamic frequency; and even at 10σ = , it is 10% less than the rigid 
missile aerodynamic frequency.
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Figure 4.  1 R/φ ω� vs. σ for finned missile. 

The first six positive frequencies and their damping rates for 5σ =  have been calculated for a  
1-, 3-, 5-, and 7-element rod.  These results, together with calculations from the theory of 
reference (12), are tabulated in table 1.  We identify frequencies which differ from the reference 
(12) value by >10% as poor values and mark them with x’s.  Thus the 1-element rod yields one 
moderately good result while the 3-element and 5-element rods yield three and five good results, 
respectively. For this elastic problem, nj – 1, elastic frequencies are well calculated.  For zero 
spin, the negative frequencies are the negatives of the positive frequencies.  

Because the 3-element rod predicts the lower three frequencies quite well, all of the calculations 
given in this report are based on a 3-element rod.  Most of these have been repeated for a  
5-element rod, and almost identical results have been obtained. 

In figure 5, 2f  for BF5, 0σ = Γ =  is plotted vs. Rφ ω�  for spin near the first elastic frequency.  
Large resonance values occur at R 5.1φ ω ≅�  and an 1f  line for ss Rp 6.0= ω  is also shown.  This 

1f  line has three intersections with the 2f curve, which are values of equilibrium spin.  The 
intersection near ss Rp ω  is denoted as ss Rp ω , while the other two are 1e R 2e Rp ,  p ,ω ω  and all 
their numerical values are given in table 2. 

 

1 R/φ ω�  
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Table 1.  Transient frequencies and damping rates. 

σ = 5 = 0�φ  

Code k k Rω�φ  k Rλ ω  

1 element 1 0.645 –0.0530 
3 element 1 0.612 –0.0528 
5 element 1 0.613 –0.0528 
7 element 1 0.613 –0.0528 
reference (12) 1 0.614 –0.0529 

 
1 element 3 6.146× –0.0855 
3 element 3 5.194 –0.0724 
5 element 3 5.181 –0.0718 
7 element 3 5.180 –0.0717 
reference (12) 3 5.184 –0.0717 

 
1 element 5 20.31× –0.0644 
3 element 5 13.81 –0.0518 
5 element 5 13.79 –0.0523 
7 element 5 13.76 –0.0518 
reference (12) 5 13.74 –0.0506 

 
1 element 7 — — 
3 element 7 30.00× –0.1018 
5 element 7 26.97 –0.0914 
7 element 7 26.79 –0.0881 
reference (12) 7 26.69 –0.0825 

 
1 element 9 — — 
3 element 9 53.37× –0.2060 
5 element 9 44.28 –0.1389 
7 element 9 44.18 –0.1462 
reference (12) 9 43.84 –0.1427 

 
1 element 11 — — 
3 element 11 100.44× –0.4708 
5 element 11 72.19× –0.1309 
7 element 11 65.88 –0.1256 
reference (12) 11 64.49 –0.1202 

In figure 6, spin histories are plotted for all initial conditions equal to zero except  0 R0, 5.4φ = ω� .  
For low values of initial spin, lockin occurs at the first elastic frequency, 1ep , and large strains 
result.  For larger values of initial spin, lockin occurs at ssep .  This behavior was predicted by the 
simple three-body theory of reference (11). 

It is very unlikely that sufficient fin damage occurs to produce a ssp  in excess of five times Rω .  
Because it is much more likely that a ssp  near Rω can be produced, the observed inelastic 
deformation is probably caused by lockin at the aerodynamic frequency, and this case is 
considered in detail in the following section. 
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Figure 5.  fj vs. R/φ ω�  for BF ss RΓ = 0,  σ = 5, p = 6ω . 

 
Table 2.  Equilibrium spin rates. 

σ = 5  
BFΓ  0 0 0.02 

ss Rp ω  6.000 0.800 0.400 

sse Rp ω  5.944 0.788 0.429 

1e Rp ω  5.097 0.590 0.564 

ss Rp ω  5.393 0.647 0.627 
 
In figure 7, 2f is plotted for spins near the aerodynamic frequency, and 1f  is shown for 

ss Rp 0.8= ω .  The three intersection points are given in table 2.  Spin histories are plotted in 
figure 8 for zero initial conditions except for 1

0 0, 3 s−ψ = −� .  Here, we see that ssep spin-yaw 
lockin occurs for zero initial angular velocity, and 1ep  spin-yaw lockin for an initial yaw rate of  
–3 s–1.  The angular motion in body-fixed coordinates is plotted in figure 9.  For lockin at ssep , 
the motion is smaller than 0.09 rad, while for lockin at 1ep , it is as large as 0.15 rad.  The motion 
of the forward end of the rod in body-fixed coordinates is given in figure 10.  Motion for ssep  
lockin is <0.17 (0.7 in), and after 1 s, it is never >0.09 (0.4 in).  For 1ep  lockin, it exceeds 0.28 
(1.2 in). 

fj 
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Figure 6.  R/φ ω� vs. time for BF ss R 0 RΓ 0,  5,  p 6.0ω ,  /ω 0, 5.4= σ = = φ =� . 

 

 
Figure 7.  fj vs. R/φ ω�  for BF ss RΓ = 0,  σ = 5,  p = 0.8ω . 

fj 

R/ωφ�

 

psse 
 

p2e 
 

p1e 

R/ωφ�  

time(s)
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Figure 8.  R/φ ω�  vs. time for BF ss R 0Γ = 0,  σ = 5,  p = 0.8ω ,  ψ = 0, – 3�  s-1. 

 
 

 
Figure 9.  Angular motion (qb1y vs. qb1z) for BF ss R 0Γ 0,   5,   p 0.8ω ,   ψ 0,   3= σ = = = −�  s–1. 

 

psse 
 

 
p2e 
 
 

p1e 

R/ωφ�  

 time(s)

- - - 00 =ψ�  
___ 30 −=ψ�  

qb1y 

• = 1 s 
o = 0 s 

qb1z

- - - - 00 =ψ�  
____ 30 −=ψ�  
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Figure 10.  Rod forward tip motion (qb7y vs. qb7z) for BF ss R 0 Γ 0,   5,   p 0.8ω ,   ψ 0, 3= σ = = = −�  s–1. 

The maximum strain on the rod is located on the rod’s surface at its center.  In terms of  
3-element parameters, the maximum strain is 

 ( ) ( )2
E 2

M e 5 e 62

0
1 2 L 12q 2L q

x
−∂ δ

ε = = +
∂

. (64) 

The time history of the maximum strain is plotted in figure 11 for -1
0ψ = 0,  – 3 s� .  For most 

metals, yield occurs for maximum strains in excess of 0.0015, and we see that yield does occur 
for resonance lockin. 

The two regions of the initial angular rate plane, i.e., the 0 0ψ −θ��  plane, which induces either 
lockin, can be determined by a number of trial and error calculations, and the boundary curve 
between these regions is shown in figure 12.  Initial conditions outside this curve will cause 
resonance lockin while conditions inside it induce ssep  lockin. 

For BF 0Γ = , the first resonance peak of the 2f  curve is negative, and ssp  must be greater than 
the aerodynamic frequency for three intersections to occur. 

As is shown in figure 13, bent fins corresponding to BF 0.02 11 x 10Γ = − ≤ ≤ −  will produce a 
positive peak in the 2f  curve and a ssp  less than the aerodynamic frequency can produce 
resonance lockin.  The plots corresponding to figures 8–12 are given by figures 13–19. 

- - - 00 =ψ�  
___ 30 −=ψ�  

•= 1 s 
o = 0 s 

qb7z 
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Figure 11.  Maximum strain ( Mε ) for BF ss R 0Γ 0,   5,   p 0.8ω ,   ψ 0,  3= σ = = = −�  s-1. 

 

9. Summary 

The application of FEM to the calculation of the motion of a pitching, yawing, and flexing 
missile has resulted in the construction of a family of linear differential equations.  

Computer codes have been developed for 1, 3, 5, and 7 elements and used to obtain the first four 
elastic frequencies.  The 3-element code has given excellent values of the first two elastic 
frequencies.  The 5-element and 7-element codes provide equally good values for the first four 
elastic frequencies. 

Integration of these differential equations has demonstrated resonant spin lockin at the 
aerodynamic frequency and the first elastic frequency.  Lockin can occur near the design steady 
state spin or near resonance with a transient frequency.  Calculations have identified regions of a 
yaw rate-pitch rate plane that determine which lockin will occur. 

- - - 00 =ψ�  
___ 30 −=ψ�  

Mε  

time(s)
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Figure 12.  0ψ� vs. 0θ�  showing regions of sse 1ep , p  lockin BF ss R0, 5, p 0.8Γ = σ = = ω . 

 

 
Figure 13.  fj vs. R/φ ω�  for BF ss R0.02,   5,   p 0.4Γ = σ = = ω .
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Figure 14.  R/φ ω�  vs. time for BF ss R 0Γ = 0.02,  σ = 5,  p = 0.4ω ,  θ = 0,  5�  s-1. 

 

 
Figure 15.  Angular motion (qb1y vs. qb1z) for BF ss R 0Γ = 0.02,  σ = 5,  p = 0.4ω ,  θ = 0,  5�  s-1.
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Figure 16.  Rod forward tip motion (qb7y vs. qb7z) for BF ss R 00.02,  5,   p 0.4 ,  0Γ = σ = = ω θ =� s-1. 

 

 
Figure 17.  Rod forward tip motion (qb7y vs. qb7z) for BF ss R 0Γ = 0.02,  σ = 5,  p = 0.4ω ,  θ = 5�  s-1.
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Figure 18.  Maximum strain ( )Mε  for BF ss R 0Γ = 0.02,  σ = 5,  p = 0.4ω ,  θ = 0, 5�  s-1. 

 

 
Figure 19.  0ψ� vs. 0θ�  showing regions of sse 2ep , p  lockin BF ss R0.02, 5, p 0.4Γ = σ = = ω . 
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Appendix A.  Integrals 

A.1 Aerodynamic Terms 
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A.2 Boundary Terms 
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A.3 Bent Missile Terms 
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Appendix B.  Functions  
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Appendix C.  Generalized Forces and Hermitian Polynomials  
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Appendix D.  Connector Coefficients for Equations (39–41) 

D.1 Rod Parameters 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1
1
qj e 1 q e j

0
1

2
qj e 1 q j 1 e

0
1

2 '
qj 2 q

0
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â L x x  N z  dz   z x L j 1

b̂ x  N z  dz  q 1,  2,  3,  4.

= ρ = +

= ρ = + −

= ρ =

∫

∫

∫  (D-1)

 

For central element jn 1
r

2
+

=  

 1 1 1 1 1 1 1 1 1
1c 1r 3r e 4r 2c 2r e 3r 4rˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆa a 5a 24L a a a L a 5a−= + + = + +  

For adjacent element jn 3
r

2
+

=  

 
1 1 1 1 1 1 1
1a 1r e 2r 2a e 1r 2r
1 1 1 1
3a 3r 4a 4r

ˆ ˆ ˆ ˆ ˆ ˆa 5a 24L a a L a 5a
ˆ ˆ ˆ ˆa a a a ,

−= + = +

= =
 

2 2 2 2
qc qa qc qa

ˆ ˆˆ ˆa ,  a ,  b , and b  are computed from 2 2
qj qj
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Appendix E.  Connector Coefficients for Equations (42–44) 

E.1  Rod Terms 
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E.2  Nonzero Aerodynamic Extension Terms 
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Appendix F.  Differential Equations Coefficients 

F.1 Equation 44 m = 1, 2 
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F.3 Quadratic Spin Equation (61) 
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Appendix G.  Flexing Motion Finite Element Method (FEM) Quantities 

G.1 Kinetic and Potential Energy Coefficients 
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ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆa a a a a a a a a a a a a a
ˆ ˆ ˆ ˆ ˆ ˆ ˆa a a a a a a a a a a a a

= = = =
= = = =

= = = + = + = =

= = = + = + =

( )

( )

8 242

75 312 76 322 77 332 11c 11a 78 342 12c 12a 79 13a 14a7 10

85 412 86 422 87 432 21c 21a 88 442 22c 22a 89 23a 24a8 10

97 31a 98 32a 99 33a

â
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆa a a a a a a a a a a a a a    a a

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆa a a a a a a a a a a a a a    a a

ˆ ˆ ˆ ˆa a a a a a

=
= = = + + = + + = =

= = = + + = + + = =

= = = + ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

115 34a 125 135 1459 10 9 11 9 12

41a 42a 43a 215 44a 225 235 24510 7 10 8 10 9 10 10 10 11 10 12

315 32511 9 11 10 11 11

ˆ ˆ ˆ ˆa            a a a            a a    a a

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆa a a a a a a           a a a           a a   a a

ˆ ˆa a      a a       a

= + = =

= = = + = + = =

= = = ( )

( ) ( ) ( ) ( )

335 34511 12

415 425 435 445 mn12 9 12 10 12 11 12 12

ˆ ˆa                    a a

ˆ ˆ ˆ ˆa a      a a       a a                    a a other a 's are zero

=

= = = =
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 tn 16=  

 eL L 7=  

33 111 34 121 35 131 36 141

43 211 44 221 45 231 46 241

53 311 54 321 55 331 112 56 341 122 57 132 58 142

63 411 64 421 65 431 212 66 441 222 6

ˆ ˆ ˆ ˆa a a a a a     a a
ˆ ˆ ˆ ˆa a a a a a     a a
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆa a a a a a a    a a a a a  a a
ˆ ˆ ˆ ˆ ˆ ˆa a a a a a a a a a a

= = = =
= = = =
= = = + = + = =
= = = + = +

( )

( )

7 232 68 242

75 312 76 322 77 332 113 78 342 123 79 133 1437 10

85 412 86 422 87 432 213 88 442 223 89 233 2438 10

97 313 98 323 99 333 11c 11a

ˆ ˆa  a a
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆa a a a a a a a a a  a a    a a

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆa a a a a a a   a a a a a a a

ˆ ˆ ˆ ˆ ˆa a a a a a a a    a

= =
= = = + = + = =

= = = + = + = =

= = = + + ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

343 12c 12a 13a 14a9 10 9 11 9 12

413 423 433 21c 21a 443 22c 22a 23a 24a10 7 10 8 10 9 10 10 10 11 10 12

31a 32a 33a 116 34a 126 1311 9 11 10 11 11 11 12 11 13

ˆ ˆ ˆ ˆ ˆa a a a a   a a

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆa a a a   a a a a a a a a a a a a

ˆ ˆ ˆ ˆ ˆ ˆ ˆa a a a a a a    a a a a a

= + + = =

= = = + + = + + = =

= = = + = + = ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

6 14611 14

41a 42a 43a 216 44a 226 236 24612 9 12 10 12 11 12 12 12 13 12 14

316 326 336 117 346 127 137 14713 11 13 12 13 13 13 14 13 15 13 16

416 42614 11 14 12

ˆa a

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆa a a a a a a    a a a a a a a

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆa a a a   a a a      a a a a a a a

ˆ ˆa a a a a

=

= = = + = + = =

= = = + = + = =

= = ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

436 217 446 227 237 24714 13 14 14 14 15 14 16

317 327 337 34715 13 15 14 15 15 15 16

417 427 437 447 mn16 13 16 14 16 15 16 16

ˆˆ ˆ ˆ ˆ ˆa a     a a f  a a  a a

ˆ ˆ ˆ ˆa a a a a a     a a

ˆ ˆ ˆ ˆa a a a a a  a a other a 's are zero

= + = + = =

= = = =

= = = =

mn mn pqj pqc pqa pqj pqc pqa
ˆ ˆ ˆ ˆ ˆ ˆb  and c computed from b , b , b , c , c , and c in the same manner as previously 

shown.
 

 ( )mn mn d mnk a a L  b= +  

G.2 Kinetic Energy FEM Vectors 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

Bpj e 1 EB p e j
0

1
'

Bpj 2 B p j 1 e
0

â L x  x  N z  dz x L z z

b̂ x  x  N z  dz z x L j 1.

= ρ δ = +

= ρ Γ = + −

∫

∫  (G-2)
 

1
Bm Bm Bpj Bpj 1n nj

ˆˆ ˆa  and b. are computed from a  and b in the same manner as a was computed from a ,  
 

( )Bm Bm d Bmk a a L  b= + . 
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G.3 Rod Aerodynamic Force Terms 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1
/

pqj f1 q p e j
0

1
/

pqj f 2 q f1 q e p j 1 e
0

f̂ c x  N N z  dz x L z z

ĝ c x  N z c x  N z  L  N z  dz z x L j 1

p,q 1,  2,  3,  4.

= = +

 = − = + − 

=

∫

∫
 (G-3)

 

mn mn pqj pqj mn pqj
ˆ ˆ ˆf  and g  are computed from f  and g in the same manner as a was computed from a .  

 

( ) ( ) ( )

( ) ( ) ( )

( )

1

pj1 e f1 p e j
0
1

pj1 e f 3 p j 1 e
0

f 3 f 2 f1

f̂ L c x  N z  dz x L z z

ĝ L c x  N z  dz z x L j 1

c x 2c xc         p 1, 2, 3, 4

= − = +

= − = + −

= − =

∫

∫  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

Bpj e f1 B BF p
0

1

Bpj e f 2 B BF p
0

f̂ L c x  x x  N z  dz

ĝ L c x  x x  x  N z  dz

= Γ +Γ  

= Γ +Γ  

∫

∫
 

m1 m1 Bm Bm pj1 pj1 Bpj Bpj 1n

1
nj m1 m1 Bm Bm

ˆ ˆˆ ˆf ,   g ,   f ,  and g  are computed from f ,  g ,  f , and g  in the same manner as a  was

ˆcomputed from a .  All other f ,  g ,  f ,  and g 's are zero.

 

G.4 Nonzero Aerodynamic Extension Terms 

 tn 4=  

( )
( ) [ ]
( ) ( ) ( )

( ) ( )

1 1 1
a31 1 2 e 4 a33 e 2 2D e 4

1
a34 1 2 2D e 4 4D a 41 3 e 2 4

1
a 43 Dbp 2 2D e 4 4D a 44 3 e 2 2D 4 4D

aB3 1 B 1 2 B 2

f I 5I 24L I f 24L 5 I I 24L I

f I 25I 24I 120L I I  f I L I 5I

f c 24I 25I 120L I I f I 5L I I 25 I I

f I x 5I x 24

− − −

−

−

   = − + + = + +   
 = + + + + = − + + 
 = + + + + = + + + +   

= Γ + Γ + ( ) ( ) ( )1 1
e 4 B 2 1BF aB4 5 B 1 6 B 2 e 8 B 3BFL I x I f I x 5I x 24L I I− −Γ + = Γ + Γ + Γ +
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 tn 4≠  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
t tt t t t t t

tt

a31 1 a34 1 a 43 Dbp a 41 3 a 44 3

2 2 2D 4 an n 4 4Da n 1 1 a n 1 n an n 1 a n 1

aB3 1 B 1 1BF aB4 3 B 1 3BF 2 B 2 aBn 4 B 2aB n 1

Amn

f I f I  f c      f I   f I

f I f I f I    f I f I I

f I x I  f I x I f I x f I x

other f 's are zero

− − −

−

= − = = = − =

= − = = = − = +

= Γ + = Γ + = Γ = Γ

tn 4=  

( ) ( ) ( )

( ) ( )
[ ] ( ) ( )

( )

22 1 2
a31 11 12 e 14 a33 1 2 e 4 6 e 10 8

a34 3 5 e 2 4 6 10 8

1
a 41 13 e 12 14 a 43 3 e 2 4 6 e 10 8

2
a 44 9 7 e 2 e 4 6

g I 5I 24L I g I 25I 120L 2I I 24 L I I

g I I 5L I 24 2I I 25 I I

g I L I 5I g I 5L I 24 2I I 120L I I

g I I L I 5L 2I I

− − −

−

  = − + + = − + + − + −   
= − − + + − + −  

 = − + + = − + + − + − 

= − − + + − ( )
( ) ( ) ( )
( ) ( ) ( )

10 8

1
aB3 5 B 1 6 B 2 e 8 B 2 5BF

aB4 7 B 1 e 6 B 2 8 B 2 7BF

25 I I

g I x 5I x 24L I x I

g I x L I x 5I x I

−

 + − 
= Γ + Γ + Γ +

= Γ + Γ + Γ +

 tn 4≠  

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

( ) ( ) ( )

n n n n n

t t t t t

t

a31 11 a33 1 a34 5 3

a 41 13 a 43 3 a 44 7 9

12 2 6 4a n 1 1 a n 1 n 1 a n 1 n

14 4 8 10a n 1 a n n 1 a n n

aB3 5 B 1 5BF aB4 7 B 1 7BF aB n 1

g I g I      g I I
g I g I          g I I

g I I          g I I

g I g I      g I I

g I x I    g I x I   g

− − − −

−

−

= − = − = −
= − = − = −
= − = − = −

= − = − = −

= Γ + = Γ + ( ) ( )
t6 B 2 aBn 8 B 2I x g I x= Γ = Γ

 

 amnother g 's are zero . (G-4) 
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Appendix H.  Finned Missile Parameters 

 1 2 3 cρ = ρ = ρ = 1 x = 0  

   L = 20 V = 6000 ft/s 
   d = 0.35 ft. ρ= 0.002 slugs/ft3 
  m = 3.50 slug 01 23x x 1= =  
  xI = 0.054 slug-ft2 sa = 1100 ft/s 

  tI = 14.318 slug-ft2 ( )
1

2
L sa 2 V a 1

−
 = −    

( )
( )

( ) ( )
( )

f1

2 x 10

L

L

c 4 11 x

e
2 15 3x a

12 a

−

= −

=

= − π +

= π

 

10 x 11
5 x 10
7 x 5
11 x 7

< ≤
− < ≤
− < ≤ −
− ≤ ≤ −

   

( )
( )( )

( ) ( )
( ) ( )

2
f 2

2 x 10

2
L

L

c 2 11 x

2 0.5 1 e

2.5 1 3  15 3x a

2.5 12  6 x  a

−

= −

= + −

= + π +

= − π +

 

10 x 11
5 x 10
7 x 5
11 x 7

< ≤
− < ≤
− < ≤ −
− ≤ ≤ −

    

( ) ( )Dc 0.30  11 x
0

= −

=
 

10 x 11
x 10
< ≤
≤

   

DbpC 0.14=  pC 18= −A  
3

12d 10−=  5
22d 0.25x10−= −  

N M

Mq M

C 9.7 C 34.4
C 980 C 190

α α

α

= = −

= − = −�
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List of Symbols, Abbreviations, and Acronyms 

( )f jc x  aerodynamic force distributions functions 

d rod diameter 

E Young’s modulus 

F y zF iF+  complex transverse aerodynamic force 

da  ( ) 116L −  

g1 2
1g V S 2ρ  

I ( ) ( )4 42 2d y dydz d z dydz=∫∫ ∫∫  , area moment of rod  

Ix axial moment of inertia of projectile 

It transverse moment of inertia of projectile 

k̂  beam damping coefficient 

L rod length / rod diameter 

m projectile mass 

jn  number of rod elements 

tn  j2n 2+  

p projectile spin 

1q  iβ+ α , complex angle of attack of central disk (nsc) 

1eq  iψ− θ  complex yaw and pitch of central disk (nsc) 

2q  iψ − θ��  complex yaw and pitch rate of central disk (nsc) 

nq  tn 3.4 n= …  FEM connectors  (nsc) 

bnq  tn 3.4 n= …  FEM connectors  (bfc) 

eL  jL n  

S 2d 4π  
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T total kinetic energy 

dT  kinetic energy of disk at x with thickness dx 

V magnitude of projectile velocity 

1 2x , x  location of beam ends 

01 23x , x  dimensionless length of fore and aft aerodynamic extensions 

cx  axial location of center of mass 

α  angle of attack of central disk 

β  angle of sideslip of central disk 

Γ E

x
∂δ
∂

, complex cant of disk 

Mε  maximum strain of rod 

2

1

x
1

c E
x

L dx−δ δ∫ , lateral location of missile’s cm 

E Ey Eziδ δ + δ , lateral displacement of disk (nsc) 

φ  roll angle  

kφ�  frequency of k-th mode 

kλ  damping of k-th mode 

ρ  air density 

jρ  axial variation of mass, moment of inertia, elasticity 

σ  1 Rω ω  

( )2
0 0 0ω E I L md=  

1ω  lowest elastic frequency of beam in vacuum 

Rω  rigid projectile zero-spin frequency 

( )x y zF F ,F ,F=
G

, aerodynamic force exerted on missile (nsc) 

( )x y zM M ,M ,M=
G

, aerodynamic moment exerted on missile (nsc) 



 51

{ }Re z  real part of z 

{ }Im z  imaginary part of z 

Carat superscript denotes quantity for a single element 

Tilde superscript denotes elastic parameter for bent missile 

B subscript denotes parameter for bent projectile 

BF subscript denotes bent fin parameter 

E subscript denotes an elastic coordinate parameter (nsc) 

T subscript denotes trim motion parameter 

b subscript denotes an elastic coordinate parameter (bfc) 

(bfc) body-fixed coordinates 

(efc) earth-fixed coordinates 

(nsf) non-spinning coordinates 
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