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1. Introduction 

Biomolecular simulations can play a pivotal role in the development of new vaccines and 
therapeutics for the war fighter.  For instance, in vaccine development for toxins, the protein 
structure of the toxin needs to be modified to reduce its toxicity while retaining the shape 
characteristics and solubility of the native fold.  Since there are an overwhelming number of 
ways to mutate the sequence of a protein, a computational biologist can offer key insights into 
which residues are most advantageous to modify, thereby greatly simplifying this combinatorial 
task (1).   

An essential tool for the computational biologist is a biomolecular simulation that includes the 
explicit solvent.  However, this method is often computationally intensive.  In recent years, two 
different solutions have emerged to deal with this issue.  One solution is to remove the explicit 
solvent entirely and simulate the biomolecule with an implicit solvent approach such as a 
continuum dielectric treatment of bulk water (2, 3).  This approach is very fast; however, the 
extent to which accuracy is sacrificed in completely ignoring local water-solute interactions such 
as hydrogen bonding has yet to be determined.  The alternative solution is to employ periodic 
boundary conditions in the explicit solvent simulation (4).  This greatly reduces the 
computational effort of evaluating the long-range electrostatic interactions between atoms.  The 
main drawback to this approach, however, is that the solute sees infinite periodic images of itself, 
and hence certain electrostatically-derived thermodynamic properties are difficult or nearly 
impossible to evaluate (5). 

Given that the implicit solvent approach is fast and the explicit solvent approach has the correct 
local interactions, it begs the question whether it is possible to combine the salient features of 
each in a hybrid method.  This idea, known most generally as the finite cluster method, is by no 
means new, having originated in the literature over a decade ago (6).  Nonetheless, the 
widespread usage of such a hybrid method has been held back for a variety of reasons.  First, 
finite cluster methods are often limited to a spherical simulation volume because the reaction 
field Poisson equation is only analytically known for a spherical model (7).  This means that a 
large number of water molecules are necessary to hydrate a system when the solute is highly 
nonspherical.  Second, these methods offer no benefits regarding effort reduction in evaluating 
long-range electrostatic interactions.  A seemingly clever way around both of these issues is the 
generalized reaction field (GRF) approach where the simulation system is arbitrary but the long-
range interactions are truncated, beyond which a dielectric treatment is assumed (8).  This 
approach can be fast; however, it is misleading because the assumption of high dielectric outside 
the cutoff may be wrong if there are still solute atoms beyond the cutoff.
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In section 2 of this report, we develop a new hybrid solvent methodology that successfully deals 
with the two aforementioned issues concerning finite-cluster methods:  the spherical restriction 
and computational inefficiency.  Our hybrid approach uses the Generalized Born (GB) theory 
(3), which is an accurate approximation to the more intensive Poisson equation that can readily 
handle nonspherical simulation volumes.  Furthermore, our approach uses the recent advances in 
multigrid technology (9, 10) to greatly reduce the computational effort in evaluating the long-
range electrostatic interactions between atomic charges.  In section 3, we evaluate the 
computational gain from using a multigrid approach as compared to conventional cutoff 
schemes.  We then show how the combined technologies in our approach make the calculation of 
protein solvation energies possible in an explicit solvent environment, which to our knowledge 
has only rarely been attempted before, due in part to the technical limitations of prior explicit 
solvent approaches.  Given solvation energies of protein conformations obtained by the hybrid 
method, the accuracies of several Poisson implicit solvent models are evaluated.   

2. Methods 

Classical biomolecular simulations involve the motion integration of an empirical molecular 
mechanics (MM) potential in the form   

 solvvdWelecintMM EEEEE +++= , (1) 

where Eint is a parameterized energy function of the internal degrees of freedom (i.e., bond/angle 
stretching and torsional rotations).  The term Eelec is the Coulomb electrostatic interaction energy 
between all pairs of partial atomic charges qi and qj:   

 ∑
<

=
ji ij

ji
elec r

qq
kE , (2) 

where k ~ –332 (kcal/mol)*Å/ecu2* and rij is the distance between atoms i and j.  The term EvdW 
is the sum of an attractive inverse sixth-power distance function and a repulsive inverse  
twelfth-power distance function that simulates the dispersion and Pauli exclusion interactions, 
respectively, between atoms.  Finally, Esolv is an optional term representing the system 
interactions to a continuum reaction field mimicking bulk solvent.  For instance, in the GB 
model, Esolv has the following definition: 

 
( ) ( )[ ]

∑
+−++

−=
ij

jiijjiij

ji
solv

rr

qq
kE

αααα /2exp
2
1 , (3)

                                                 
* ecu = electronic charge unit. 
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where iα  is the Born radius of atom i (3, 11).  The Born radius is approximately the spherically 
averaged distance between the atom and the bulk solvent continuum.  It is exactly defined in 
terms of the Born self-polarization of an atom pol

iE : 

 ( )
pol

i
i E

iqk 211 −−−
=

εα . (4) 

There is no exact definition for the self-polarization energy or Born radius of a point charge 
placed in an arbitrary dielectric volume.  However, we devised an accurate approximation given 
an arbitrary dielectric volume function )(rV  (12): 

 

1 1
4

1/ 4

4 7

1 1 ( )1
42

1 1 ( ) ,
44

i

i

i i
R i

i R i

V rR drd
r x

V r drd
R r x

∞
− −

∞

   α = − − Ω  π −  

 
 + − Ω
 π − 

∫ ∫

∫ ∫

 (5) 

where Ri is the atomic radius of atom i. 

2.1 Simulation Volume Definition 

In our simulation protocol, the collection of solute and explicit solvent molecules is encapsulated 
in a predefined simulation volume.  Our simulation volume is defined as interlocking spheres 
resembling the shape of the initial solute conformation.  Building a sphere around each heavy 
atom turns out to be identical to the criteria that a water molecule should deviate no more than a 
prescribed width w from at least one solute atom.  To ensure a smooth transition between spheres 
of different atoms, we use a volume function similar to that proposed by Im et al. (13).  We 
define a volume function ( )rV  such that V = 1 signifies the internal region and V = 0 signifies 
the external region.  The volume function ( )rV , resulting from superposition of spheres around 
each atom i, has the following mathematical form: 

 ( ) ( )[ ]∏ −−−=
i

ii xrVrV 11 , (6) 

where 

 








≥
<<−+−

≤
=

1,0
10,101561

0,1
)( 345

s
ssss

s
rV ii  (7) 

and 

 
0

1 0 ,i i
i i

i i

r w
s r r x

w w
−

= = −
−

. (8)
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The width parameters 0
iw  and 1

iw  define the endpoints of the contour of sphere i.  The 
polynomial in equation 7 has continuity up to second derivatives at its piecewise endpoints.   

The wall potential and dielectric volume are both defined in terms of this simulation volume.  
The wall potential is a repulsive boundary that confines the solute and the explicit water 
molecules to the simulation volume and is defined as a function of the simulation volume: 

 ( )
( ) 1

11
1max1max +

−
+

= −−

wallwall

wall
ErVE

rE , (9) 

such that V = 1 maps to ( ) 0=rEwall  and V = 0 maps to ( ) 1max −≈ wallwall ErE , where max
wallE   

= 30 kcal/mol in this work.  Because we use a finite value for max
wallE , the wall potential is actually 

penetrable.  This turns out to be useful because a system that is started with too many water 
molecules will actually spill the excess water molecules beyond the simulation volume, thus 
relieving excess pressure on the system.  For this study, the width parameters for the wall 
potential were derived empirically:  0

iw  = w – 0.6 Å and 1
iw  = w + 0.4 Å.  Strictly speaking, a 

wall potential, analogous to the vdW interaction energy, should also have an attractive 
component.  However, we did not incorporate an attractive wall potential because some of our 
initial tests indicated that such a potential would have only a relatively small impact.   

The dielectric volume is the same form as the simulation volume with empirically derived width 
parameters of 0

iw  = w + 1.8 Å and 1
iw  = w + 2.2 Å.  In this work, we assumed a fixed simulation 

volume for the entire molecular dynamics run.  This simplification implies a fixed dielectric 
volume and allows us to precalculate Born radii on a grid.  The Born radii grid has a cubic cell 
size of 2 Å extending over a rectangular region that encompasses the entire simulation volume.  
With this grid, the Born radius of each atom is obtained via cubic interpolation from nearest 
neighbor grid points using the same interpolation basis functions that were employed in the 
multigrid procedure (see section 2.2).  The actual numerical integration procedure to obtain Born 
radii from equation 5 has been described elsewhere (12, 14). 

2.2 Multigrid Algorithm 

The internal energy term Eint in equation 1 requires very little computational effort and has O(N) 
scaling with system size, where N is the number of atoms.  On the other hand, the electrostatic, 
dispersion, and solvation terms are costly because they require O(N2) computational effort.  
Nonetheless, to reduce the cost of these terms, a cutoff is often used, which smoothly zeroes out 
these terms as the interacting atoms reach a certain threshold distance apart.  This works well for 
the dispersion term, since the function has such a sharp decay (i.e., r-6).  However, the 
electrostatic and solvation terms require a much larger cutoff because their functions decay very 
slowly (i.e., r-1).  
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There are two standard alternative means to reducing the computational cost of the electrostatic 
term.  First, the simulation volume can be assumed to be periodic; therefore, an Ewald 
summation in a dual real/Fourier space can be used to compute all of the long-range interactions.  
The main drawback of this approach is that the solute sees images of itself, which can cause 
major artifacts when the solute or solute fragment has a net charge.  Second, the fast multipole 
approximation can be used to accurately estimate long-range electrostatic interactions.  One 
major drawback of this approach, for our purposes, is that it is defined only for the simple 
Coulomb functional form and cannot be used with GB theory. 

Our solution for reducing the computational cost of the long-range interactions is the multigrid 
method.  Multigrid approaches (15) break a problem into local and nonlocal components, and as 
applied to finite difference equations, involve numerical solutions at different grid resolutions.  
The multigrid method for three-dimensional (3-D) Coulomb electrostatics has been developed by 
Skeel et al. (10).  We adapted their method to evaluate the GB electrostatic terms.  The basic 
principle of a multigrid electrostatics procedure is to cast pairwise charge interactions onto grids 
and treat various interaction ranges with different degrees of approximation (indexed as L).  The 
multigrid algorithm is sketched as follows: 

• Perform explicit local interactions of atomic charges, when ar < , where a is a user-defined 
local cutoff (L = 0). 

• Anterpolate atomic charges onto the finest resolution charge grid ( )10 =→= LL . 

• Create a hierarchy of grids by anterpolating each finer resolution charge grid to its next 
coarser resolution charge grid ( )1+=→= nLnL . 

• For each individual charge grid L, build a potential grid such that each grid point sees 
charges less than a distance aL2  away. 

• Interpolate potential grids from coarse to fine resolution ( )nLnL =→+= 1 .  

• Contract atomic charges with finest resolution potential grid to obtain energy and forces 
( )01 =→= LL .   

To separate the ranges precisely, the interaction kernel for each level )(rK L  is split into two 
components:  a soft function and a local function. 

 ( ) )()( rKrKrK L
local

L
soft

L += . (10) 

The soft function for the L = 0 grid has to be slowly varying because it is the basis of interaction 
for the L = 1 grid.  For a Coulombic potential rrK /1)(0 = , the soft function is chosen such that 

)(0 rKlocal  goes to zero beyond some cutoff a.  In the original article of Skeel et al. (10), several 
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soft functions were presented and tested.  Nonetheless, we wanted to reduce the variance of the 
soft function completely in the domain 2ar <  so that certain self-interaction and exclusion 
interaction artifacts could be reduced or eliminated.  Therefore, we created a new piecewise soft 
potential that is continuous up to second derivatives at r = a:  

 ( )

4 3

5 4
0

18 16 31 ,
22 2 243 3 .

31 , 224

soft

aa a r ar r
aa aK r

ar
a

     < <− − − +    
    =

 < 
 

 (11) 

The local function for L = 0, by definition, is the difference of the original kernel and the soft 
function: 

 ( ) ( )rK
r

rK softlocal
00 1

−= . (12) 

The interaction kernels for L = 0 are depicted in figure 1.  Analogously, for each grid level L, 
except the coarsest L = Lmax, the interaction kernel is composed of a soft function, where a in 
equation 11 is replaced by aL 12 − , minus a softer function, where a is substituted with aL2 .  For 
the coarsest grid Lmax, the interaction kernel is simply the softest function corresponding to a in 
equation 11 being replaced by aL 1max2 − . 

Multigrid steps 2, 3, 5, and 6, involving interpolation or anterpolation, use 3-D basis functions of 
the form (10) 

 ( ), , ij ij ijx x y y z z
x y z

h h h
− − −     

φ = Φ Φ Φ     
     

, (13) 

where 

 ( )

( )

( ) ( )

2

2

31 1 , 1
2

1 1 2 , 1 2
2

0, 2

p p p p

p p p p

p

  − + − ≤   


Φ = − − − ≤ ≤


≥



 (14) 

and (x, y, z) are the coordinates of the charge, ( )ijijij zyx ,,  are the coordinates of a grid point, and 
h is the side length of a grid cube. 
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Figure 1.  The interaction kernels used in a multigrid implementation of the Coulomb 
electrostatic term.  The cutoff value a, in this example, is 8 Å.  The dashed 
line corresponds to the standard Coulomb potential.  The solid line 
indicates the local kernel ( )rKlocal , and the dot-dashed line indicates the 
soft kernel ( )rK soft . 

To extend the multigrid procedure to handle the GB theory, the GB kernel 

( ) ( )[ ]
1

/2exp
2
1 −







 +−++= jiijjiij rrJ αααα  also needs to be split into local and soft terms Jlocal 

and Jsoft: 

 ( ) ( ) ( )jiij
L
softjiij

L
localjiij

L rJrJrJ αααααα ,,,,,, += . (15) 

Experimentation determined that a reasonable splitting involves simply setting ijr equal to the 
corresponding inverse of the respective Coulomb kernels L

localK  and L
softK : 

 ( ) [ ]( )ji
L
localjiij

L
local KJrJ αααα ,,,, 1−

=  and ( ) [ ]( )ji
L
softjiij

L
soft KJrJ αααα ,,,, 1−

= . (16) 

Furthermore, Born radii need to be evaluated at every multigrid point.  Born radii at the lowest 
level multigrid (L = 0) are obtained via cubic interpolation of the same Born radii grid used to 
determine atomic Born radii.  Coarser grids (L>0) are obtained by cubic anterpolation of their 
next finest Born radii grid (L–1). 

K
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ne
l V

al
ue
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2.3 Simulation Protocol 

All of the molecular dynamics simulations in this work were performed with the CHARMM 
program (16) using the PARAM22 empirical force field potential (17).  The equations of motion 
were integrated with a Langevin dynamics algorithm at constant temperature (298 K) using a 
friction constant of 5 ps−1 and an integration time step of 2 fs.  Covalent bonds between heavy 
atoms and hydrogens were constrained using the SHAKE algorithm (18). 

The general procedure for adding explicit water molecules to a solute involves two steps: 
determining the number of water molecules needed to fill the simulation volume and carving out 
these water molecules from a large block of water.  The number of desired water molecules is 
calculated by first determining the water simulation volume (WSV), which is equal to the 
expanded solute volume, where each atomic radius is augmented by the specified width w minus 
the standard solute volume.  The desired number of water molecules then equals the WSV 
multiplied by the standard bulk water density, 0.0334 Å–3.  Then, a large cubic box of water 
molecules is overlaid onto the solute.  The water molecules that are less than 2.1 Å from a heavy 
atom are deleted.  Next, an iterative procedure is performed in which water molecules beyond a 
certain cutoff distance from all heavy atoms of the solute are deleted.  The procedure repeats 
deletion with decreasing cutoffs until the number of water molecules remaining is less than or 
equal to the desired number of water molecules.  A large spherical boundary potential is placed 
around the system to prevent the drift of water molecules that escape from the smaller finite 
boundary of equation 9. 

2.4 Calculation of the Solvation Energy Using Free Energy Methods 

A relevant thermodynamic quantity for this study is the electrostatic free energy of solvation 
elec
solvG∆  of an arbitrary solute in a fixed conformation.  To obtain this quantity, we calculate the 

free energy necessary to charge the solute from zero (state 0=λ ) to fully charged (state 1=λ ) 
using the thermodynamic integration formula (19) 

 ∫ ∂
∂

=∆ =→=

1

0
10 λ

λλλ dEGelec . (17) 

In our approach, n simulation windows are run corresponding to values ...,,23,21 nn=λ  
nn 2)12( − .  In each window, the force term λ∂∂Ε  is statistically averaged.  Then, a straight 

line is fit through the force terms λ10 aay +=  to arrive at an electrostatic charging free energy 
2/1010 aaGelec +=∆ =→= λλ .  Finally, the electrostatic free energy of solvation elec

solvG∆  is obtained 
from the formula elecG 10 =→=∆ λλ

solute
elec

elec
solv EG +∆= , where solute

elecE  is the total Coulomb electrostatic 
energy of the solute interacting with itself, which is independent of the solvent environment.
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2.5 Implicit Solvent Protocol 

In this work, we compare the solvation energies obtained from the hybrid method to a 
benchmark implicit solvation scheme, the Poisson equation.  Calculation of the solvation energy 
of a molecule using the Poisson equation can be performed in a variety of software packages.  
We use the Poisson-Boltzmann equation (PBEQ) module in CHARMM (16) for this study.  The 
protocol for Poisson solvation energy involves iterative solution of the Poisson equation on a 
cubic grid to obtain a potential map ( )rψ . 

 ( ) ( )[ ] ( )rrr πρψε 4−=∇•∇ , (18) 

where a dielectric boundary ( )rε  is defined such that ε = 1 signifies the solute and ε = 80 
designates the bulk solvent.  A common dielectric boundary is the one of Lee and Richards (20), 
also known as the molecular surface (MS).  The MS is defined by first superimposing spheres for 
each atom with radius Ri + rprobe.  Then, a water probe of radius rprobe is rolled across this 
boundary to carve out regions where the water probe can reenter.  The resultant molecular 
surface is the vdW surface of the solute plus regions where a water probe cannot access.  The 
partial atomic charges, which make up the charge density ( )rρ  are placed on a grid using  
trilinear interpolation.  Details on the numerical solution of the differential equation  
(equation 18) are available elsewhere (2).   

3. Results and Discussion 

In tables 1 and 2, we evaluate the accuracy of the multigrid approximation compared to standard 
cutoff approaches for two model systems:  a sodium ion embedded in a 17-Å sphere of water 
molecules and a protein surrounded by a 10-Å layer of water molecules.  Three accuracy 
measures were used to evaluate the multigrid and cutoff approximations to the combined 
electrostatic and GB terms.   

Energy error: 

 
exact

exact

E
EE

EE
−

= *%100% . (19) 

Average force error: 

 
∑

∑
−

− −
=

i

exact
ii

i
i

exact
ii

Fm

FFm
AFE

2/1

2/1

*%100% . (20) 
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Table 1.  Accuracy of multigrid and standard cutoff approaches for the model system of a 
sodium ion embedded in a 17-Å sphere.   

 
Method 

 
Cutoff Start 

(Å) 

 
Cutoff Stop 

(Å) 

 
Energy Error

(%)   

Average 
Force Error

(%)   

Maximum Force 
Error  
(%)  

MG 8 8 0.22 3.5 13 
MG 10 10 0.068 1.7 6.9 
MG 12 12 0.015 0.97 3.8 
STD 8 10 0.45 54 250 
STD 10 12 0.031 39 170 
STD 14 16 3.6 22 98 
STD 18 20 0.85 10 42 
STD 22 24 0.65 3.9 19 
STD 26 28 0.013 1.1 5.8 

Notes:  MG = multigrid, and STD = standard cutoff approaches. 
Definitions of error measures are described in the text.  Energies consist of the sum of the 
electrostatic and GB energies. 

Table 2.  Accuracy of multigrid and standard cutoff approaches for two proteins embedded in a 10-Å layer:  
turkey ovomucoid receptor (PDB identifier:  1OMT) and trypsin (PDB identifier:  1TNJ).   

 
Method 

 
Cutoff Start 

(Å) 

 
Cutoff Stop 

(Å) 

 
Energy Error

(%)   

Average Force 
Error 
(%)   

Maximum Force 
Error  
(%) 

 
Time 

(s) 

Turkey Ovomucoid Receptor (PDB Identifier:  1OMT) 
MG 8 8 0.49 4.4 19 35.7 
STD 26 28 0.22 3.3 19 223.7 

Trypsin (PDB identifier:  1TNJ) 
MG 8 8 0.23 4.2 21.6 88.05 
STD 26 28 0.042 6.2 44.7 992.7 

Notes:  MG = multigrid, and STD = standard cutoff approaches. 
Definitions of error measures are described in the text.  Energies consist of the sum of the electrostatic and GB 
energies.  Last column indicates central processing unit times necessary to run 100 steps of geometry 
optimization. 

 
Maximum force error: 

 
[ ]
∑ −−

− −
=

i

exact
ii

i
exact

ii

FmN

FFm
MFE

2/11

2/1max
*%100% , (21) 

where mi is the mass of atom i, Fi is the total electrostatic + GB force acting on atom i, and N is 
the total number of atoms.  As can been seen in tables 1 and 2, a cutoff >20 Å is required to 
match the results of the multigrid approach that uses a local cutoff of 8 Å.  Furthermore, when 
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compared to the central processing unit times required to perform 100 steps of geometry 
optimization, the multigrid method is approximately an order of magnitude faster than the 
standard cutoff approach. 

In table 3, we evaluate the accuracy of the hybrid method at different simulation widths for 
calculating the electrostatic charging free energy of four small molecules.  It appears that at 
about a 10- to 12-Å width, the free energies converge more or less to a bulk limit.  This width 
range corresponds to approximately three shells of water molecules surrounding a solute.  This is 
reasonably consistent with experimental studies, which indicate that the first two layers of water 
molecules surrounding a protein surface have properties deviating from bulk solvent (21).   

Table 3.  Charging free energies of small solutes in various 
layers of solvent.   

Width  
(Å) 

Na+ 

(kcal/mol)
Cl 

(kcal/mol)
H2O 

(kcal/mol)
Ethanol 

(kcal/mol) 
6 −104.4 −82.6 −8.74 −12.54 
8 −104.5 −82.6 −8.44 −12.27 

10 −105.3 −83.0 −8.68 −12.34 
12 −105.6 −83.9 −8.80 −12.32 
24 −105.0 −84.0 −8.41 −12.12 

Note:  thermodynamic integration was performed over 10 equally 
spaced 100-ps windows. 

With a sense of what simulation protocol is reasonable to use, we evaluated the solvation free 
energies of several model compounds.  In table 4, solvation energies of the 20 capped amino 
acids [CH3C(= O)-X-NCH3] are compared between hybrid and fully implicit solvent schemes.  
One can see that for the uncharged species, the implicit solvent scheme has an excellent 
correspondence to the explicit approach.  However, for the charged groups (Asp-, Glu-, Lys+, and 
Arg+), there are significant deviations.  The standard protocol for alleviating this situation is to 
modify some of the atomic radii of the side chain atoms to bring the implicit approach in better 
agreement.  We found, for instance, that the following scheme, which we term S1, improves 
results for the charged groups:  reducing the Asp and Glu carboxylate oxygen radii by 0.3 Å, 
augmenting the amino nitrogen radii of Lys by 0.26 Å, and increasing the side chain nitrogen 
radii of Arg by 0.2 Å. 

While comparisons of solvation energies for small model compounds, such as capped amino 
acids, have been previously presented in the literature (22), little work has been done in 
comparing solvation energies of proteins (23).  In tables 5 and 6, comparisons of charging free 
energies in solvent for several protein conformations are made using various metrics such as root 
mean squared deviation (RMSD) and correlation coefficient (R).  We look at charging free 
energy, which includes the Coulomb energy, rather than just solvation energy, since the former is 
a more relevant measure of the conformational free energy.   The thermodynamic free energies 
for the hybrid method (10-Å layer) entail five 300-ps windows.  First, it can be seen that there is 
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Table 4.  Solvation free energies using hybrid 
and Poisson methods.   

Name Hybrid 
(kcal/mol) 

Poisson 
(kcal/mol) 

Nonpolar Groups 
Gly −12.0 −12.2 
Ala −13.9 −14.3 
Val −17.0 −16.6 
Leu −17.3 −16.6 
Ile −16.9 −15.2 
Pro −11.9 −11.0 
Phe −19.9 −19.4 
Trp −21.3 −22.5 
Met −16.9 −16.8 

Polar Groups 
Ser −23.7 −24.1 
Thr −24.3 −24.5 
Cys −19.1 −19.4 
Tyr −24.6 −25.1 
Asn −21.1 −21.6 
Gln −26.3 −26.7 
His −29.9 −29.9 

Charged Groups 
Asp- −100.3 −88.5 
Glu- −97.5 −86.4 
Lys+ −86.3 −93.8 
Arg+ −75.6 −84.7 

Note:  thermodynamic integration for the hybrid 
method (12-Å layer) was performed over five 
equally spaced 20-ps windows. 

 
a noticeable improvement in accuracy progressing from a cell size of 0.5 Å to 0.25 Å.  It should 
be noted, however, that the 0.25-Å calculations are approximately eight times slower than the 
0.5-Å calculations.  Second, it appears that a nonstandard water probe radius of 1.0 Å 
outperforms the conventional probe radius of 1.4 Å.  This is also illustrated in figure 2.  This 
result suggests that water molecules are able to access deeper into the crevices between atoms 
than was previously thought.   

Some researchers have suggested that if many atomic radii are scaled appropriately to obtain 
accurate small-molecule solvation energies, one would obtain a more accurate solvent 
description for proteins.  However, as one can see in tables 5 and 6 and figure 3, the elaborate 
prescription of Nina et al. (22), which involves the modification of over 20 atomic radii, appears  
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Table 5.  A comparison of various Poisson solvation schemes vs. the hybrid electrostatic 
scheme for charging free energies of 120 conformations of the villin headpiece.   

 
Method 

Cell  
Size  
(Å) 

Probe 
Radius

(Å) 

 
RMSD 

(kcal/mol) 

Shifted 
RMSDa 

(kcal/mol) 

Correlation 
Coefficient 

 
Slopeb 

MSc 0.5 1.4 19.0 8.3 0.953 0.96 

MS 0.5 1.0 8.4 7.6 0.961 0.87 

MS 0.25 1.4 38.7 7.3 0.973 1.08 

MS 0.25 1.0 19.2 5.3 0.981 0.99 

MS w/S1d 0.25 1.4 31.5 6.5 0.978 1.08 

MS w/S1 0.25 1.0 11.6 4.9 0.984 0.99 

MS w/NBRe 0.25 1.4 74.5 16.7 0.957 1.44 

Nullf NA NA 1318.0 27.0 0 NA 
Notes:  RMSD = root mean square deviation, NBR = Nina, Beglov, and Roux, and NA = not 

applicable. 
a The RMSD calculated after the two sets being compared are each subtracted by their mean. 
b The slope obtained from a linear least-squares fit. 
c The Poisson method with a molecular surface dielectric boundary.   
d A small set of scaled atomic radii (see text). 
e The radii set of Nina et al. (22). 
f A zero charging free energy.   

Table 6.  Comparison of various Poisson solvation schemes vs. the hybrid electrostatic 
scheme for charging free energies of 39 conformations of the B1 domain of 
protein L.   

 
Method 

Cell  
Size 
(Å) 

Probe 
Radius

(Å) 

 
RMSD 

(kcal/mol) 

Shifted 
RMSDa 

(kcal/mol) 

Correlation 
Coefficient 

 

 
Slopeb 

MSc 0.5 1.4 104.3 16.4 0.688 0.916 

MS 0.5 1.0 31.7 10.7 0.807 0.832 

MS 0.25 1.4 155.0 13.7 0.731 0.852 

MS 0.25 1.0 77.8 8.3 0.872 0.763 

MS w/S1d 0.25 1.4 100.5 12.7 0.752 0.837 

MS w/S1 0.25 1.0 30.7 9.2 0.839 0.712 

MS w/NBRe 0.25 1.4 207.0 18.2 0.646 0.908 

Nullf NA NA 1802.8 16.9 0 NA 
Notes:  RMSD = root mean square deviation, NBR = Nina, Beglov, and Roux, and NA = not 

applicable. 
a The RMSD calculated after the two sets being compared are each subtracted by their mean. 
b The slope obtained from a linear least-squares fit. 
c The Poisson method with a molecular surface dielectric boundary.   
d A small set of scaled atomic radii (see text). 
e The radii set of Nina et al. (22). 
f A zero charging free energy.   
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Figure 2.  A comparison of molecular surface Poisson with probe radii of 1.0 and 
1.4 Å vs. the hybrid method for charging free energies of 39 
conformations of the B1 domain of protein L.  The circles indicate the 
1.4-Å results, the diamonds signify the 1.0-Å results, and the triangles 
indicate the 1.0-Å results with a modified radii set S1 (see text).  The 
straight line indicates y = x. 
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Figure 3.  A comparison of molecular surface Poisson with standard PARAM22 
and modified atomic radii vs. the hybrid method for charging free 
energies of 120 conformations of the villin headpiece.  The filled circles 
indicate the standard PARAM22 radii results, and the open squares 
signify the modified atomic radii of Nina et al. (22).  The straight line 
indicates y = x. 
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to have a deleterious effect on electrostatic charging free energies for both sets of protein 
conformations.  For example, in the villin set (table 5), the shifted RMSD using the radii of Nina 
et al. (22) is twice as poor as the protocol that involves no radii scaling.  In fact, figure 3 
illustrates that the native states of villin, which are lower in energy, become artificially more 
favored compared to the nonnative states.  This may be appropriate for native protein structure 
prediction.  Nonetheless, the NBR scheme would be completely incorrect for modeling the 
transition between folded and unfolded states.  Our radii modification scheme S1, which only 
involves four atom types, does not generally affect the shifted RMSDs or correlation 
coefficients.  However, the S1 protocol does improve absolute solvation energies significantly.  
This could prove useful in simulations of ligand-binding interactions. 

4. Conclusion 

In this report, we have presented a new algorithm for performing biomolecular simulations in 
irregularly shaped volumes.  Proper electrostatic treatment is achieved by encapsulating the 
explicit simulation volume in an implicit solvent described by the GB theory.  Significant 
computational enhancement of this approach is achieved through the use of a pairwise multigrid 
technique, which has been extended to incorporate the GB model.   

It has been shown that force field-consistent bulk limit properties such as charging free energies 
can be achieved with an explicit water layer of 10–12 Å.  This permits a rather thrift number of 
water molecules compared to alternative approaches such as periodic boundary conditions and 
spherical clusters.  The computational advantage of the multigrid technique and the reduction in 
number of water molecules allow one to compute electrostatic solvation energies of small 
proteins in a reasonable amount of time.  We have illustrated how such explicit solvation 
energies provide a benchmark for implicit solvation schemes and indicate possible strategies for 
improvement of implicit solvent approaches. 

The methodologies that have been designed in this report can also be used to study dynamical 
solutes.  For instance, we have applied this method to accurately model protein-ligand binding 
and calculate binding free energies.  These simulations are often very time consuming because of 
the thousands of explicit water molecules that must be incorporated in a water box.  
Interestingly, in our studies of ligands binding to trypsin, implicit solvent methods such as GB 
often produce unstable trajectories.  Therefore, the hybrid method has provided a practical 
alternative that now makes these studies possible.    

Given this new technique, we are now better equipped to look at the effects of protein toxin 
mutation for potential vaccines and/or emerging threats.  Furthermore, this approach will be 
applied towards the development of improved computational chemistry methodologies for drug 
design and validation.
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