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1. Introduction 

1.1 Objective 

This report focuses on the design of a new family of local anomaly detectors for hyperspectral 
sensor imagery (HSI). These detectors employ an indirect sample comparison via the 
mathematics of semiparametric statistics and large sample theory to test the likelihood that local 
HSI random samples belong to the same population, or class. The employed notion is not based 
on a physical motivation but on a statistical one, and it is proposed as a viable alternative to 
testing a two-sample hypothesis using conventional methods. The aim is to achieve a significant 
reduction of meaningless detections via unsupervised learning methods, while maintaining a 
high probability of meaningful detections. The notion I seek to implement is relatively simple, 
but some of the mathematics presented in this report are nontrivial, as Normality is not assumed 
in the models. 

1.2 Survey of Prior Art  

Hyperspectral sensors are passive sensors that simultaneously record images for many 
contiguous and narrowly spaced regions of the electromagnetic spectrum. A data cube is created 
from these images in which each image corresponds to the same ground scene and contains both 
spatial and spectral information about objects and backgrounds in the scene. These sensors 
employ several bands and have been used in various fields including urban planning, mapping, 
and military surveillance. Good references to some of these topics in the context of remote 
sensing and descriptions of the most popular sensors since the mid 1960’s are included in the 
reference section.1,2,3 

With the introduction of sensors capable of high spatial and spectral resolution, there has been an 
increasing interest in using spectral imagery to detect objects or features of interest (targets). 
However, detection algorithms that presume a target signature are subject to signal mismatch 
losses because of the complications of converting sensor data into material spectra.4  Target 
matching approaches are further complicated by the large number of possible targets and 
uncertainty as to the reflectance/emission spectra of these objects. For example, the surface of a 
target may consist of several materials, and the spectra may be affected by weathering or other 
unknown factors. One may be interested in a large number of possible objects each with several 
signatures. Thus, the multiplicity of possible spectra associated with targets and complications of 
1 Schowengerdt, 1997. 
2 Coompbell, 1996. 
3 Lillesand, 1994. 
4 Schott, 1977. 
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atmospheric compensation have led to the development and application of anomaly detectors 
that seek to distinguish observations of unusual materials from typical background materials 
without reference to target signatures or target subspaces. Quite often objects consisting of 
unusual materials are detected as local anomalies in a scene; hence, anomaly detection will be 
used interchangeably in this paper with object detection.  

Anomalies are defined with reference to a model of the background. Background models are 
developed adaptively using reference data from either a local neighborhood of the test pixel or a 
large section of the image. Local and global spectral anomalies are defined as observations that 
deviate in some way from the neighboring clutter background and from the overall scene, 
respectively. Both approaches have their merits. The local spectral anomaly detector is 
susceptible to false alarms that are isolated spectral anomalies. An algorithm commonly referred 
to as RX algorithm,5 for instance, has become a benchmark for multispectral data, based on this 
principle. The RX algorithm is a maximum likelihood anomaly detection procedure that 
simplifies the clutter to being spatially white. Researchers have also adapted some classic 
approaches6 (e.g., Fisher’s Linear Discriminant [FLD], Principal Component Analysis [PCA]) in 
the same spirit of the RX algorithm to anomaly detection in hyperspectral sensor imagery. 
Global spectral anomaly detection algorithms, on the other hand, are not susceptible to this type 
of clutter-generated false alarms.  However, a global anomaly detector will not find an isolated 
target in the open if the signature is similar to that of previously classified background material. 
Examples of global detectors are the global normal mixture mode7 and the global linear mixture 
model.8  A comprehensive comparative analysis among different approaches for HSI anomaly 
detection can be found in.9,10,11,12 

Earlier laboratory experiments using SAR (synthetic aperture radar) imagery13 produced 
compelling evidences to suggest that using conventional approaches to compare sample pairs, 
i.e., two-sample hypothesis tests treating the two samples individually, promotes an intolerable 
high number of meaningless detections (false alarms [FA]) in areas characterized by region 
discontinuities in the imagery. At that time, I proposed a post-processing method from 
mathematical morphology to account for those observations and adapted it to a SAR target-
detection system.13,14 The approach produced some surprisingly good results using real SAR 
data. 
5 Yu, 1997 
6 Kwon, 2003. 
7 Stein, 2002 
8 Stein, 2002. 
9 Manolakis, 2002. 
10 Crist, 1999. 
11 Haskett, 1999. 
12 Grossmann, 1998. 
13 Rosario, 1999. 
14 Rosario, 2000. 
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The novelty in this paper is the mathematical means that is proposed to address HSI anomaly 
detection. The main contribution of this report is threefold: (i) a recently proposed local anomaly 
detector15 shall be discussed for the first time using extended details; I shall describe a suitable 
mathematical model16,17,18,19,20 that elegantly materializes a combining idea and shall study the 
model’s maximum likelihood method and its asymptotic behavior; I shall design an effective 
local anomaly detector based on the model’s asymptotic behavior, which for convenience shall 
be named the semiparametric (SemiP) algorithm; (ii) a second anomaly detector shall be 
proposed to the community, an approximation to the semiparametric (AsemiP) algorithm, which 
may be used to replace the complicated equations of the first model’s solution with simpler 
equations—yet describing the same phenomenon; I shall state a proposition of the second model 
and prove its statement.  Derivation of the AsemiP algorithm is motivated by the SemiP’s output 
properties, not by the semiparametric model itself—although, its derivation is also based on 
approximation theorems of mathematical statistics; and (iii) in order to promote the use of 
models whose mathematics are based on the statistical assumption of independent, identically 
distributed random samples, an inside/outside window mechanism shall be introduced aimed at 
transforming local HSI information into independent sample pairs. Comparative results are also 
presented between SemiP, AsemiP and other approaches commonly used with hyperspectral data. 

2. Approach 

2.1 Problem Formulation 

Figure 1 shows a hyperspectral scene that consists of 14 ground vehicles parked across a grassy 
area along a treeline. For surveillance applications in similar scenes, human analysts do well 
quickly ignoring most of the imagery and concentrating their attentions to those vehicles and 
their shadows. Humans, of course, use both global and local information to focus their attention 
to meaningful objects in the scene, a capability that can only be reproduced by applying, for 
instance, layers of unsupervised learning methods complementing each other to perform this 
single task. For example, a suite of algorithms that includes an edge detector, an edge elongation, 
a clustering method, and a morphological size test would probably reproduce the humans’ 
performance in such a scene, but with a huge cost: computational time.  

 
15 Rosario, 2004 
16 Qin, 1997. 
17 Fokianos, 2001 
18 Anderson, 1972. 
19 Prentice, 1979. 
20 Cox, 1996. 
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Figure 1. Nonhomogeneous, multicomponent scene from the hyperspectral 
digital imagery collection experiment (HYDICE). (A pixel in an 
HYDICE imagery is represented by a vector.) Typically, local anomaly 
detectors produce an intolerable high number of false alarms 
(non-anomalies) in similar scenes; local region discontinuities degrade 
detectors’ performances. The sampling mechanism is discussed in the text. 

 

My interest is to approach humans’ performance using a single unsupervised learning algorithm 
that functions as a local anomaly detector. Figure 1 illustrates the sampling mechanism I propose 
to transform local imagery information into sample pairs for our statistical models. It introduces 
three window cells from which samples will be drawn from the data. These windows are referred 
to as: test cell, reference cell, and variability cell. Information between the variability and 
reference cells will be used to form a control or reference feature vector, and information 
between the variability and test cells will be used to form an unknown test feature vector.  

The test cell provides a spectral sample average (µ1) from a (w x w) window; the reference cell 
provides a spectral sample average (µ0) from M vectors surrounding a guard region, i.e., a blind 
area between test and reference cells to account for larger than (w x w) targets; and the 
variability cell provides J individual spectral vectors (vj) each consisting of k = 1,…,K spectral 
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responses (λjk) for K distinct wavelengths in the visible to SWIR (shortwave infrared) region of 
the electromagnetic spectrum, i.e., region from 0.4 µm to 2.4 µm.  

Hyperspectral data have highly correlated—hence, dependent—spatial and spectral clutter, so to 
promote statistical independence, given that we will make this assumption in our models, I 
propose to apply a high-pass (HP) filter in the spectral domain, thus transforming vj into ∆j (see 
figure 1), and then use ∆j to compute a feature that promotes spatial independence. The feature is 
known as spectral angle mapper (SAM),21 which in essence computes the angle between two 
vectors, or 

 180 arccos ,
t
j i

j i
ijx µ

µ
π

∆ ∆

∆ ∆

 
=  

 
 (1) 

where ∆j = λjk - λj(k-1) (∆j is a [K-1] x 1 vector); ∆µi = λµi,k - λµi,(k-1) (using spectral components 
from vectors µ0 and µ1), xi = [xij]; i=0,1; j=1,…,J (J is the total number of vectors in the 
variability cell); xij range from 0 to 90 degrees (0 representing minimum class difference 
between reference and test samples and 90 representing the maximum class difference between 
these samples); the operator || z || denotes the squared root of  ztz; and [*]t denotes the vector 
transpose operator.  

Let x0 denote the reference feature vector, x1 the test feature vector, and let both vectors be 
distributed (~) by unknown joint distributions f0 and f1, respectively, or 
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=
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where, n0  =  n1  = J  in this particular implementation.  

The window cells are expected to systematically move throughout the imagery and at each 
location this question will be posed: Do x0 and x1 belong to the same population, or class, in the 
feature space? If the answer is no, the test sample will be labeled as an anomaly with respect to 
its surroundings at that location.  

A conventional two-sample hypothesis test would work very well if samples x0 and x1 do belong 
to distinct classes C0 and C1, or to one of these classes. Problems occur, however, when one of 
the samples (e.g., x0) belongs to a composite class consisting of both classes C0 and C1, denote 
x0(C0C1), and then it is compared to x1(C1). In those cases, standard statistical tests may reject the 
hypothesis that x0(C0C1) and x1(C1) belong to the same class. This rejection—correct as it may 
seem—is arguably the most dominant driving force affecting the number of FA produced by 
most—if not all—local anomaly detectors using sensor imagery. The reason is that region 
discontinuities (e.g., boundaries between tree clusters and their shadows) are abundant in sensor 
imagery, and they are not taken into account in conventional statistical models. 
21 Kelly, April 1989. 
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2.2 Statistical-Motivated Idea 

I propose an indirect comparison approach to circumvent the problem discussed in section 2.1. 
The approach is not based on a physical motivation but on a statistical one. The key is not to 
compare samples x0 and x1 directly, but to make that comparison indirectly by constructing a 
new sample z, consisting of both x0 and x1, and then by comparing z in some form to either x0 or 
x1.  To clarify this notion, consider the following case studies when comparing x0 and x1: (1) 
samples belong to distinct classes, x0(C0) and x1(C1); (2) samples belong to a single class, x0(C0) 
and x1(C0); and (3) one of the samples holds information from two classes while the other sample 
belong to one of these classes, x0(C0C1) and x1(C1).  Now consider the following, where U 
denotes the union of samples:      

 

                                 Case 1                                                            Plausible Result       

Conventional      x0(C0) =? x1(C1)                                                      No 

Proposed             z(C0C1) = {x0(C0) U x1(C1)} =? x1(C1)                  No 

 

                                Case 2                                                             Plausible Result             

Conventional      x0(C0) =? x1(C0)                                                      Yes 

Proposed             z(C0C0)  = {x0(C0) U x1(C0)} =? x1(C0)                 Yes 

 

                                Case 3                                                              Plausible Result             

Conventional      x0(C0C1) =? x1(C1)                                                   No 

Proposed             z(C0C1C1)  = {x0(C0C1) U x1(C1)} =?  x1(C1)          Maybe 

 

It is plausible that the proposed comparison approach would yield the same results produced by 
conventional methods for case studies 1 and 2, where No and Yes denote anomalies and non-
anomalies, respectively. In particular, z in Case 1 would have been labeled as a strong anomaly 
in respect to x1 for the same reason a conventional test would have rejected the hypothesis that a 
composite sample (e.g., tree and shadow) belongs to the same class of a relatively pure sample 
(e.g., shadow). In Case 3, however, the proposed and conventional approaches would probably 
disagree in the intensity of their results because z(C0C1C1) shows more evidence of C1 than does 
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x0(C0C1). Sample x1(C1) would seem statistically closer to z(C0C1C1) than to x0(C0C1), and that 
difference would help to interpret x1(C1) as a soft-anomaly (labeled in Case 3 as Maybe).  

My goal is to propose statistical models that are capable of accentuating, significantly, local 
anomalies (No) from soft-anomalies (Maybe) and non-anomalies (Yes). Such a capability would 
allow a detector to retain a high probability of correct detections while significantly reducing the 
number of nuisance detections. The first statistical model that I propose combines samples by 
relating in some form the probability distribution functions of x0 and x1. The model is discussed 
next.  

2.3 Logistic Model 

Let vectors xk have their components independently, identically distributed (iid). Let x0 be 
independent of x1. And consider the following: 

 1

0

1 11 1 1

0 01 0 0

[ , , ]   ~ ( )

[ , , ]  ~ ( ),
n

n

x x x iid g x

x x x iid g x

=

=
 (3) 

 1

0

( ) exp( ( )),
( )

g x h x
g x

α β= +  (4) 

where g1 is regarded as an exponential distortion of g0 and h(x) is an arbitrary but known 
function of x. Note in (3)-(4) that no parametric assumption is given to g0 and that g1 depends 
only on the unknown parameters α and β, hence, justifying the model’s name: semiparametric. 

The rationale for proposing to use (4), as our baseline, is that many common distribution families 
can be expressed as a canonical exponential function. These families fall under a category of 
probability density functions called exponential families, which are known to have many nice 
mathematical and statistical properties. (Some of these properties are discussed, for instance, 
in.22) One of these mathematical properties, for example, is that an exponential-family 
distribution can always be expressed as a shift of another exponential-family distribution, as 
shown in (4). Reference23 provides a good discussion on this topic. 

Model (3)-(4) is based on case-control data and its mathematical development depends on some 
of the advances made on the theory of semiparametric inference. Semiparametric approaches are 
commonly used in analyzing binary data that arise in studying relationships between disease and 

 

 
22 Casella, 1990. 
23 Kay, 1987. 
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environment of genetic characteristics.18,19,20  Equation 4 has its roots in the standard logistic 
function having the general form 

 ),(
)exp(1

)exp()( z
z

zzP η
βγ

βγ
≡

++
+

=  (5) 

where γ is a scale parameter and β interpreted as a constant rate both defining a proportion P, 
which is dependent on a variable z. The logistic function was invented in the 19th century for the 
description of the growth of populations and the course of autocatalytic chemical reactions. 
Pierre-Francois Verhulst (1804-1849), a Belgian statistician, named5 as the logistic function and 
published his suggestions between 1838 and 1847. For an elaborate historical account, see.24 

Using the independence assumptions in model (3)-(4), with h(x)= x, the MLE (maximum 
likelihood estimate) of α and β can be attained via the likelihood function, 
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where, n = n0+n1 and the combined feature vector t is  

 
1 011 1 01 0 1[ , , , , , ] [ , , ].n n nt x x x x t t= =   (7) 

Notice in (6) that the part involving g0(ti) (reference distribution) reflects the combined-sample 
property of a model we sought, and the part involving the exponential distortion reflects only the 
property of the sample that is not the reference. Both properties fit well into the proposed 
framework of merging samples and then, in some form, comparing this combined structure with 
one of its original samples. 

Notice also that g0 in (6) is unknown, thus, deriving MLE of α and β via standard procedures 
cannot be attained.  However, using profiling one can express g0 in terms of α and β and then 
replace g0 with its new representation back in (6). Using profiling, the method of Lagrange 
multiplier was proposed18 to attain the maximization of ζ by fixing (α,β) and then maximizing 
ζ with respect to g0(ti) for i=1,…,n, subject to constraints 
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5 Yu, 1997. 
18 Anderson, 1972. 
19 Prentice, 1979. 
20 Cox, 1996. 
24 Cramer, 2002. 
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where the last constraint reflects the fact that exp(α+βx)g0(x) is a distribution function.  
Following this approach, it can be shown16 that the maximum value of ζ is attained at 
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11)(

0
0

i
i tn

tg
βαρ ++

=
 (9) 

where ρ=n1/n0, and that ignoring a constant, the log-likelihood function is  
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A system of score equations that maximizes (10) over (α,β) is shown below, 
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Let (α∗,β∗) satisfy (11)-(12), then using (9) it can be shown16 that the MLE of g0(x) is 
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2.4 SemiP Algorithm 

In this subsection, I adapt the theory in section 2.3 to the framework of object (anomaly) 
detection. The mathematics for this adaptation is nontrivial, as we employ the asymptotic 
behavior of (α∗,β∗) under a model that does not assume Normality. We strive to reach a 
reasonable balance between showing the most important parts of the mathematical development 
and length of this report.   

First, notice that for g1(x) = exp(α + β x)g0(x) to be a density,  a hypothesis of β = 0 in (4) must 
imply α = 0, as the term exp(α) functions as a normalizing factor so that g1 integrates over x to a 
total mass unity. Second, notice that the hypothesis H0: β = 0 (given that α must also be equal to 
zero) in (4) implies that a test population and a reference (control) population are equally 
distributed, namely, g1 = g0. With this logic, one can design an anomaly detector from the 
following composite hypothesis test: 

 0 1 0

1 1 0

:     0    ( )       anomaly  absent  
:     0    ( )       anomaly  present.

H g g
H g g

β
β

= =

≠ ≠
 (14) 

 
16 Qin, 1997. 
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Under this test, local regions in the entire imagery would be individually tested to reject the null 
hypothesis (H0) yielding in the process a binary surface of values of 1, depicting a rejection of 
H0, and values of 0, depicting a non-rejection of H0. An isolated object in a scene would be 
expected to produce a cluster of 1 values (anomalies) in the resulting binary surface. But to 
design the hypothesis test in (14), one must know the asymptotic behavior of the extremum 
estimator β∗, which one can verify (see Appendix A) that it converges to Normality, or 

 
1 2

* (1 )0, .
( )

n N
Var t

ρ ρβ
− +

→   
 

 (15) 

Squaring the left side of (15) and normalizing the result by the asymptotic variance, one can 
conclude (see convergence results, for instance, in22) that the resulting random variable  

 2
1

*2*2 )()1( χβρρχ →+= − tVn  (16) 

converges to a chi square distribution with 1 degree of freedom, where V*(t) estimates Var(t). 

2.5 Approximating SemiP Performance: AsemiP Algorithm 

In reference to (16), there are two major factors working in harmony and in complementary 
fashion to promote maximum separation between signal (anomalies) and noise (non-anomalies), 
they are: the squared value of β∗ and the estimated combined variance, V*(t), which is also 
quadratic.  

These factors work in the following way: When two samples from the same class are compared 
(i.e., is H0: β=0 [g1=g0] true?), the term (β∗)2 tends to approach zero very fast, specially for β∗ 
values less than unity. On the other hand, if two samples from distinct classes are compared, the 
term V*(t) tends to a relatively high number, also very fast, asserting the fact that a combined 
sample vector t consists of components belonging to distinct populations.  

Motivated by these properties, I shall state and prove an approximation algorithm based on large 
sample theory that replaces complicated SemiP equations with simpler ones describing the same 
phenomenon. 

Proposition 1 (AsemiP Algorithm). Let     
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assume that x0 and x1 are independent and that, for some x0 and x1, the combined vector t 
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22 Casella, 1990. 
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and define        
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where, β̂  is an estimate of β , then the random variable 

 2
1

21 )(~~̂)1(~~ χβρχ →−= − tVn  (23) 

converges in distribution to a chi-squared distribution with 1 degree of freedom. 

I shall make some insightful comments on (23) and refer the reader to its proof in Appendix B.  

By inspection, one should readily recognize the behavior of the chosen function β~ , in 
Proposition 1, as it approximates the behavior of β. If two samples from the same population are 
compared using (23), the estimate of β~ , β̂~ in (20), would also tend to approach zero—as the 
sample size increases, and tend otherwise for samples belonging to distinct populations. 

The real challenge, however, is to derive a relatively simple estimate of Var(t), as defined in 
(7A), to replace V*(t), as shown in (16). Var(t) is a sum of squared errors individually weighted 
by their probability of occurrence. In Proposition 1, g(x1,x0) is proposed to provide that 
probability feature, but as an average probability of occurrence, instead. In this sense, comparing 
two samples from distinct populations would produce very high cumulative square errors using 
the combined vector t, but appropriately weighted by an average proportion. The proof of 
Proposition 1 is presented in Appendix B. 

In principle, the overall behavior of (23) seems to track that of (16), and both random variables 
are asymptotically identically distributed under 2

1χ . Note that the AsemiP’s performance will not 
asymptotically approach that of the SemiP’s performance, as the number of samples increases;  
the former approximates the general behavior of the latter, i.e., it promotes a high separation 
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between meaningful signals (isolated objects) from noise (homogeneous and non-homogenous 
local regions).   

3. Alternative Techniques 

In this section, I make a few general comments on four other anomaly detection techniques, 
which shall be used in this paper for comparison purposes:  their mathematical representations 
are presented in this section, without proofs, and a reference that fully describes their 
implementation issues and performances in the HYDICE dataset will be cited.  

The four techniques are known as: RX (reed-xiaoli), PCA (principal component analysis), EST 
(eigen separation transform), and FLD (Fisher’s linear discriminant). These techniques—or 
variations of them—are commonly used in the hyperspectral community. The RX technique is 
based on the generalized likelihood ratio test and on the assumption that the population 
distribution family of both test and reference samples are multivariate normal. The FLD 
technique is also based on the same assumption, but differs in its subtleties in answering the 
question whether the test and reference samples are drawn from the same normal distribution. 
The FLD technique promotes separation between classes and variance reduction within each 
class. The PCA and EST techniques are both based on the same general principle, i.e., data are 
projected from their original high dimensional space onto a significantly lower dimensional 
space using a criterion that promotes highest sample variability within each domain in this lower 
dimensional space. Differences between PCA and EST are better appreciated through their 
mathematical representations. 

These four techniques were implemented with the conventional inside-outside window approach, 
where optimum window sizes were chosen to account for the target-size range of interest (see 
section 4.1), i.e., 5x5 inside window embraced by a 9x9 outside window and leaving a guard area 
between pixels 6 and 7, inclusive, from the center of the inside window. These techniques are 
represented by the following set of equations: 

 )()( 1
outinout

t
outinRX xxCxxScore −−= −  (24) 

 )( outin
t
inPCA xxEScore −=  (25) 

 )( outin
t

CEST xxEScore −= ∆
 (26) 

 )(/ outin
t

SSFLD xxEScore
wb

−=  (27) 

where inx is a sample mean vector from the set of inside-window vectors, each having 150 

spectral bands (see section 7.1); outx  is similar but sampled from the outside window; 1
outC−  is 
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the inverse sample covariance using all vectors sampled from the outside window; t
inE  is the 

highest energy eigenvector of the eigenvector decomposition of the inside-window covariance; 
t
CE∆  is the highest positive energy eigenvector of the eigenvector decomposition of the 

covariance difference (inside-widow minus outside-widow); and /b

t
S SwE  is the eigenvector 

decomposition of the scatter matrices ratio 1
B WS S − , where  
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and totalX  is the total sample average using all samples from the inside and outside windows. 

For additional details on the implementation and performance of these techniques, see.6  

4. Results  

4.1 Data Description 

An experiment was carried out on the data set from the hyperspectral digital imagery collection 
experiment (HYDICE) sensor. The HYDICE sensor records 210 spectral bands in the visible to 
near infrared (VNIR) and short-wave infrared (SWIR) and, for the purpose of this paper, it is 
sufficient to know that each pixel in a scene is actually a vector, consisting of 210 components. 
An extended description of this dataset can be found, for example, in.25 

The results shown in this section for one data sub-cube are representative for other sub-cubes in 
the HYDICE (forest radiance) dataset. An illustrative sub-cube (shown as an average of 150 
bands; 640 x 100 pixels) is shown in figure 1 (left). (I only used 150 bands by discarding water 
absorption and low signal to noise ratio bands; the bands used are the 23rd-101st, 109th-136th, and 
152nd-194th.) The scene consists of 14 stationary motor vehicles (targets near a treeline) in the 
presence of natural background clutter (e.g., trees, dirt roads, grasses). Each target consists of 
about 7x4 pixels, and each pixel corresponds to an area of about 1.3 x 1.3 square meters at the 
given altitude. The main goals of local anomaly detection algorithms on these types of scenes are 
to detect objects that seem clearly anomalous to its immediate surroundings, in some 
predetermined feature space, and to yield in the process a tolerable number of nuisance 
detections. Targets are often found to be anomalous to its immediate surroundings. 
6 Kwon, 2003. 
25 Schweizer, 2000. 
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4.2 Implementation Notes 

I now present some helpful hints on the implementation of the SemiP and AsemiP algorithms. 

1.  SemiP Anomaly Detector 

• Sampling Mechanism: Use the mechanism described in section 2.1 to sample a pair of 
random feature vectors xij (i = 0 [reference], 1 [test]; j=1,…,J) from HSI. I used a 9-pixel 
(3x3) test window, a 56-pixel reference window, and a 60-pixel variability window, as 
shown in figure 1. Note that the size of the variability window determines the size of the 
feature vectors, that is, x0j and x1j have the same size, J = 60. 

• Statistical Independence: An attempt should be made to promote statistical independence in 
HSI. See discussion in section 2.1. 

• Function Maximization: Perform an unconstrained maximization of l(α,β) in (10), or 
minimization of   [-l(α,β)], to obtain the extremum estimates (α∗,β∗).  For this report, I 
used one of the standard unconstrained minimization routines available in MATLABΤΜ 
software (i.e., fminsearch), and set the initial values of (α,β) to (0,0). 

Variance Under the Null Hypothesis: V*(t) in (16) should be computed using (13) and a discrete 
version estimate of (7A): 

 )(ˆ)(ˆ)(;)(ˆ)(ˆ 122*
0

== −== ∑ kk
i i

k
i

k tEtEtVtgttE . (31) 

• Decision Threshold: Using (16), high values of χ reject hypothesis Ho, hence, detecting 
anomalies. Set a decision threshold based on the Type I error, i.e., based on the probability 
of rejecting Ho given that Ho is true. Using a standard integral table for the chi square 
distribution, with 1 degree of freedom, find a threshold that yields an acceptable 
probability of error (e.g., 0.001), or alternatively find and use a suitable threshold that 
yields a value at the knee of the SemiP’s corresponding ROC curve. 

2.  AsemiP Anomaly Detector 

In contrast to the SemiP algorithm, the AsemiP algorithm is significantly simpler to implement, 
as the latter suite does not require specialized subroutines (unconstrained minimization) to 
perform its function. Using the sampling mechanism described in section 2.1, the variables in 
Proposition 1 are straightforward to implement. One is also expected to promote statistical 
independence and to take a sufficiently large number of samples (larger than 30) to justify the 
use of approximation theorems of mathematical statistics. We used the sampling mechanism 
proposed in section 2.1 to obtain a pair of random feature vectors xij (i = 0 [reference], 1 [test]; 
j=1,…,J). I used a 9-pixel (3x3) test window, a 56-pixel reference window, and a 60-pixel 
variability window, as shown in figure 1, where J = 60. For a statistical decision, high values 
obtained by using (23), or equivalently (14B), reject the hypothesis Ho in Proposition 1, thus, 
detecting anomalies. Set a decision threshold based on a choice of type I error using, as the base 
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distribution, the chi-square distribution with 1 degree of freedom. Alternatively, find and use a 
suitable threshold that yields a value at the knee of the AsemiP’s corresponding ROC curve. 

4.3 Comparative Results 

ROC curves will be used in this subsection as a means to quantitatively compare the six 
approaches described in this paper.  

As described in section 4.1, the set of 14 ground vehicles near the treeline in figure 1 constitutes 
our target set.  However, since anomaly detectors are not designed to detect a particular target 
set, the meaning of false alarms is not absolutely clear in this context. For instance, a genuine 
local anomaly not belonging to the target set would be incorrectly labeled as a false alarm.  
Nevertheless, it does add some value to our analysis to compare detections of targets versus non-
targets among the different algorithms. 

Figure 2 shows ROC curves produced by the output of the six algorithms on the HYDICE data 
scene shown in figure 1. Detection performance was measured using the ground truth 
information for the HYDICE imagery. We used the coordinates of all the rectangular target 
regions and their shadows to represent the ground truth target set; call it TargetTruth. If we 
denote the region outside the TargetTruth as ClutterTruth, then the intersection between 
TargetTruth and ClutterTruth is zero and the entire scene is the union of TargetTruth and 
ClutterTruth. In this paper, for a given decision threshold, the proportion of target detection (PD) 
is measured as the proportion between the number of detected pixels belonging to TargetTruth 
over all pixels belonging to TargetTruth. On the other hand, the proportion of false alarms (PFA) 
is measured as the proportion between the number of detected pixels belonging to ClutterTruth 
over all pixels belonging to ClutterTruth. 
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Figure 2. ROC curves for the HYDICE data scene shown in figure 1. The SemiP and AsemiP detectors are 
noticeably less sensitive to different decision thresholds; their performances almost achieve an 
ideal ROC curve for that scene, i.e., a step function starting at point (PFA=0,PD=1). 

In general, the quality of a detector can be readily assessed by noticing a key feature in the shape 
of its ROC curve: The closer the knee of a ROC curve is to the PD axis, the less sensitive the 
approach is to different decision thresholds. In other words, PFA does not change significantly as 
PD increases. (An ideal ROC curve resembles a step function that starts at point 
[PFA=0,PD=1].) As it can be readily assessed from figure 2, the SemiP and AsemiP detectors 
clearly outperform the other four techniques on the tested scene. That difference in performance 
can be better appreciated in figure 2 (right), where PFA is further restricted to a maximum value 
of 0.02 compared to 0.4 in figure 2 (left). Beyond the value of PFA = 0.4, these ROC curves 
reach PD near 1.0. 

The significant display of performance shown in figure 2 by the proposed algorithms can be 
further appreciated by taking a closer look at the output surfaces produced by all six detectors, as 
they show evidences of local candidate anomalies in the scene. The intensity of local peaks 
shown in figure 3 reflects the strength of the evidence. It is evident from figure 3 that the 
surfaces produced by RX, PCA, EST, and FLD detectors are expected to be significantly more 
sensitive to changing decision thresholds then the ones produced by the SemiP and AsemiP 
detectors.  
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Although the 2-dim (2-dimensional) version of the output surfaces shown in figure 3 displays 
useful differences among the responses of the six detectors, they do not make full justice to the 
quality of the SemiP and AsemiP detectors, as a 3-dim perspective of their surfaces would. A 3-
dim perspective of the SemiP’s and AsemiP’s output surfaces are depicted in figure 4. 

Figure 3. Decision surfaces for a HYDICE data scene (far left). The intensity of local peaks reflects the strength of 
evidences as seen by different anomaly detectors. Boundary issues were ignored in this test; surfaces 
were magnified to about the size of the original image only for the purpose of visual comparison. 

Both surfaces in figure 4 were clipped at the value of 3,000, but some of their values do continue 
to significantly higher numbers. The dominant (clipped) peaks are the results produced by the 
fourteen targets near the treeline.  

Areas containing the presence of clutter mixtures (e.g., edge of terrain, edge of tree clusters), 
where other methods usually yield a high number of false alarms (false anomalies), are 
suppressed by the new approaches. The reason for this suppression is that, as part of the overall 
comparison strategy, the reference and test feature vectors are not compared as two individual 
samples.  Instead, a new sample is constructed—the union of both cells—and compared to the 
test sample. This indirect comparison approach, which is inherent in both detectors, ensures that 
a component of a mixture (e.g., shadow) shall to be detected as a local anomaly when it is tested 
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Figure 4. Decision surfaces (3-dim version) produced by the SemiP and AsemiP  detectors, their 
2-dim versions are shown in figure 3. The dominant peaks represent the presence of the 
14 targets parked near the treeline. Less-dominant peaks represent areas in the scene 
most prone to cause nuisance detections (e.g., region discontinuity). The SemiP and  
AsemiP detectors show a remarkable ability to accentuate genuine local anomalies from  
their surroundings. 

against the mixture itself (e.g., trees and shadows). Performances of such cases are represented in 
figure 4 in the form of softer anomalies (significantly less-dominant peaks). 

It is evident from figure 3 and figure 4 that both detectors perform remarkably well accentuating 
the presence of dominant local anomalies (e.g., targets and their shadows) from softer anomalies 
(e.g., region discontinuity). This ability explains the SemiP’s and AsemiP’s superior ROC-curve 
performances shown in figure 2.   

Processing Time: For completeness, we report the processing time in minutes (min) for a cube of 
size 640 x 100 (pixels) x 150 (bands) using a personal computer (CPU speed: 1.80 GHz; RAM 
memory: 1.0 Gbytes), MATLAB software (release 13), and three detectors (RX, AsemiP, and 
SemiP). The recorded times were: 20.6 min (RX), 22.1 min (AsemiP), 42.9 min (SemiP). 
Computing the local variance-covariance matrix and its inverse dominated the RX processing 
time. Applying locally a HP filter in the spectral domain and applying SAM on the resulting 
vectors dominated the AsemiP processing time. And, finally, applying locally a HP filter and a 
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spatial SAM, and using an unconstrained minimization routine (see section 4.3) dominated the 
SemiP processing time. 

5. Conclusion 

I have presented an indirect approach to test two-sample hypotheses in HSI. The approach is not 
based on a physical motivation but on a statistical one. Using this approach, I designed two fully 
unsupervised object detectors (SemiP and AsemiP) for HSI. I showed performance agreement 
between these detectors through ROC curves, and other means. Performances of both detectors 
in the visible to short-wave infrared region of the spectrum were compared to performances of 
four other techniques. The proposed algorithms clearly outperform the others. The asymptotic 
distribution of the test statistic under Ho in both proposed algorithms is independent of the 
unknown parameters, which implies that both SemiP and AsemiP have the constant probability-
of-error property. With this property, one can—in theory—select a decision threshold that yields 
a virtual zero probability of error. Error in this context means detection of non-anomalies, which 
is purely based on class similarities between test samples and their immediate surroundings, not 
necessarily non-targets (targets defined as particular objects of interest). This distinction should 
be noted. 
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Appendix A 

Proof of the SemiP algorithm: Lemma 1A is relevant to estimators based on function 
maximization with respect to unknown parameters.  

Lemma 1A.26  Assumptions: 

(i) Let Θ be an open subset of the Euclidean K-space. (Thus the true value θo is an interior point 
of Θ.) 

(ii) QT(y,θ) is a measurable function of vector y for all θ ∈Θ and /TQ θ∂ ∂  exists and is 
continuous in an open neighborhood N1(θo) of θo. (Note that this implies QT(y,θ)  is continuous 
forθ ∈ N1, where T is the sample size.)   

(iii) There exists an open neighborhood N2(θo) of θo such that T -1 QT(θ) converges to a 
nonstochastic function Q(θ) in probability uniformly in θ  in N2(θo), and Q(θ) attains a strict 
local maximum at θo. 

Let ΘΤ  be set of roots of the equation              

 0=∂
∂

θ
TQ  (1A) 

corresponding to the local maxima. If that set is empty, set ΘΤ equals to {0}. Then, for any ε >0, 

 
.0])()(inf[lim 0
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In essence, Lemma 1A affirms that there is a consistent root of (1A). (For the proof, see26). 
Under certain conditions, a consistent root of (1A) is asymptotically Normal. The affirmation is 
shown in Theorem 1A, where asymptotic convergence is denoted by BA → . 

Theorem 1A.26 Assumptions: 

(i) All the assumptions of Lemma 1.  

(ii) 
2

'
TQ

θ θ
∂

∂ ∂
 exists and is continuous in an open, convex neighborhood of θo. 

(iii) 
2

'
TQ

θ θ
∂

∂ ∂
 converges to a finite nonsingular matrix 

0

2
1

0 '( ) lim [ ( ) ]TQS E T θθ
θ θ

− ∂
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for any sequence *
Tθ  such that *

0.Tθ θ=  

26 Amemiya, 1985. 
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(iv) 
whereVNQT T )],(,0[)( 00
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Let ˆ{ }Tθ  be a sequence obtained by choosing one element from ΘΤ  defined in Lemma 1 such 

that 0
ˆ .Tθ θ→   

Then ( )    ),,0(ˆ 0 whereNT T Σ→−θθ  (5A) 

  1 1
0 0 0( ) ( ) ( ) .S V Sθ θ θ− −Σ =  (6A) 

For the proof, see also.26  

The semiparametric model’s MLE solution satisfies the assumptions of Lemma 1A, including of 
course (1A) via (11) and (12). Therefore, by Lemma 1, (α∗,β∗) is consistent and, as we shall see 
by Theorem 1A, it converges asymptotically to a Normal distribution. 

Under H0: β=0 (g1=g0), I shall use the following notation for the moments of t (the combined 
sample vector) with respect to the reference distribution g0: 
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Let (α0,β0) be the true value of (α,β) under model (3)-(4) and assume ρ = n1/n0 remains constant 

as both n1 and n0 go to infinity. Define ( ),α β
∂ ∂

∂ ∂∇ ≡  and notice from (11) and (12) that 

( )0 0, 0E l α β ∇ =  . Under the null hypothesis (H0: β = 0 [g1 = g0]), using (4), (9), (11), (12) 

and (7A) one can verify that 
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where K1 and K2 are constants involving (n1,n0) and ρ/(1+ ρ) = n1/n (where n = n1+n0). Using 
similar argument to arrive at (8A) and applying the weak law of large numbers (WLLN) (see, for 
instance,27), one can use assumption (iii) in Theorem 1A to recognize that 
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in probability as ∞→n . It follows that S is nonsingular and its inverse is 
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Our interest is only in the parameter β, so, let Sβ denote the lower-right component of the 
expanded version of S –1 and use (7A) to obtain 
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Using also the application of the central limiting theorem (CLT) in Theorem 1A (iv) and the fact 
that 

 [ ] ,0),( 00 =∇ βαlE  (12A) 

from (11) and (12), one can write 
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V(α0,β0) is a direct result from (4A), see, for instance16.  Using the conclusion of Theorem 1A, or 
(5A)-(6A), in terms of Sβ in (11A) and the lower-right component of the expanded version of 
V(α0,β0) in (14A), one can verify that 
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and having the left side of (15A) normalized by the asymptotic variance and then squared, one 
can conclude (see convergence results, for instance, in22) that the resulting random variable  

 2
1

*2*2 )()1( χβρρχ →+= − tVn  (16A) 

converges to a chi square distribution with 1 degree of freedom, where V*(t) estimates Var(t). A 
multivariate solution is presented in17. 
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Appendix B 

Proof of Proposition 1: If hypothesis H0: ( )1 ;0~
21 === ζζβ  is true in Proposition 1, then 

2
0

2
1

2 σσσ ==  and, using the independent assumptions of x1 and x0, and CLT, it follows that 
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β̂  as defined in Proposition 1; in addition, the following estimators of 2
1σ and 2

0σ  are known to 
be consistent [see, for example,26]:  
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Using both samples x1 and x0, let the following be another estimator of 2
0σ (or 2

1σ ), given that 
under H0  2

1
2
0 σσ = , 
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The estimator S2 is unbiased under H0, as its expected value E[S2] is equal to 2
0σ  and 2

1σ : 
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True because 2
0S  and 2

1S  are consistent estimators and, under H0 , 2 2
0 1σ σ= . I want to prove now 

a WLLN for S2 to verify that S2 is also a consistent estimator. Using Chebychev’s inequality28 
under H0: 
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and, thus, a sufficient condition that S2 converges in probability to 2
0σ , or 2

1σ , is that 
( ) ( ) 0

10 ,
2  → ∞→nnSVar .  

26 Amemiya, 1985. 
28 Serfling, 1980. 
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Note that Var(S2) can be expressed as 
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and, as 2
0S  and 2

1S  are both consistent estimators, their variances must converge to zero,  
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Using the same argument to arrive at (9B), we can also show that under H0: 
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where 2
tS  is a consistent estimator of 2σ  under H0, or 
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Furthermore, since 2
tS  is the sample variance of t (the combined vector) under H0, one can 

readily verify that 
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(see, for example,26 Chapter 5).  

To finalize the proof, consider Theorem 1B below.  
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Theorem 1B (Slutsky). Let Xn tend to X in distribution and Yn tend to c in probability, where c 
is a finite constant. Then 

(i) Xn + Yn tend to X+c in distribution; 

(ii) Xn Yn tend to cX in distribution; 

(iii) Xn/Yn tend to X/c in distribution, if c is not zero. 

See proof in.28 

Using (1B), (9B), (12B) and the Slutsky Theorem, one can conclude that 
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and that by squaring (13B) and using convergence results from,22 one can also conclude that    
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which can be readily reformatted into (23) using the definitions given in Proposition 1 and in this 
proof.  Equation (14B) concludes the proof.  
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