ARMY REseArRCH LABORATORY

Temporal Evolution of the LIBS Spectrum of Aluminum
Metal in Different Bath Gases

by Thuvan N. Piehler, Frank C. DelL ucia, Jr., Chase A. Munson,
Barrie E. Homan, Andrzej W. Miziolek, and Kevin L. McNesby

e
ARL-TR-3371 December 2004

Approved for public release; distribution is unlimited.



NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.



Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-3371 December 2004

Temporal Evolution of the LIBS Spectrum of Aluminum
Metal in Different Bath Gases

Thuvan N. Piehler, Frank C. DeLucia, Jr., Chase A. Munson,
Barrie E. Homan, Andrzej W. Miziolek, and Kevin L. McNesby
Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.



Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704.0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
December 2004 Final 15 August 2003—15 August 2004
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Temporal Evolution of the LIBS Spectrum of Aluminum Metal in Different Bath
Gases 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Thuvan N. Piehler, Frank C. DeLucia, Jr., Chase A. Munson, Barrie E. Homan, AHS0
Andrzej W. Miziolek, and Kevin L. McNesby 5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

U.S. Army Research Laboratory REPORT NUMBER

ATTN: AMSRD-ARL-WM-BD ARL-TR-3371

Aberdeen Proving Ground, MD 21005-5066

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
ASEE

1818 N. Street N.W., Ste 600 11. SPONSOR/MONITOR'S REPORT
Washington, DC 20036 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The spectral emission of gas phase aluminum (Al) and Al oxide was measured during and immediately after exposure of a bulk
Al sample to a laser-induced spark produced by a focused, pulsed laser beam (Nd:YAG, 10 ns pulse duration, 35 mJ/pulse,

A =1064 nm). The spectral emission was measured as a function of time after the onset of the laser pulse, and was also
measured in different bath gases (air, N,, O,, and He).

15. SUBJECT TERMS
spectroscopy, laser, LIBS, aluminum

16. SECURITY CLASSIFICATION OF: 18 LIMgATlocN 18'g UMBGE Rs 192 NAME OF RESPONSIBLE PERSON

‘ : FABSTRACT FPAGE Thuvan Piehler
a. REPORT b. ABSTRACT c. THIS PAGE UL 30 19b. TELEPHONE NUMBER (Include area code)
UNCLASSIFIED | UNCLASSIFIED | UNCLASSIFIED 410-306-0884

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

i



Contents

List of Figures v
List of Tables iv
1. Introduction 1
2. Experimental 2
3. Results and Discussion 3
3.1 Emission Spectra of an Al ROd i Ail.......c.oooiiiiieiiieiieeieeeie et 3
3.2 Temporal Evolution of Al and AIO EmiSSION....c..ccccevviiriiiiiniininiiiniiieeicneeeseesieeenn 4
3.3 Temperature Calculations............cceeviieiiiiriieiiieiie ettt et seae e enne 8
R TR S oA [Tt 8 o) o B B 1) PSR 10
4. Conclusions 12
5. References 13
Distribution List 15

i1



List of Figures

Figure 1. Schematic of the experimental setup used to measure LIBS spectra. ..........ccccceveveennnee 2
Figure 2. A portion of LIBS spectrum of an Al rod in air with a 20-us gate delay and 2-us

€AtE (300—420-NM TEZION)...cuvviiurieieieerieriieetieetteeteestteeteesteeeseesseeesseesseessseesseessseesseessseesseessseenns 3
Figure 3. A portion of LIBS spectrum of an Al rod in air with a 20-pus gate delay and 2-us

€At (450—550-N1M TEZIOMN)....eeeciiiieiiieeeiieeeiiie et e et e erteeestreeetreesaeeesseeessseeessseeeasseeensseeensseesnnns 4
Figure 4. A portion of LIBS spectrum of an Al rod in air with a 20-us gate delay and 2-us

€AtE (740—TO00-TIM TEZIOM).....eieiiieiiieiieeiieetieetteeiteeteestteeteessteeseessaeenseessseeseessseenseessseenseensseenne 4
Figure 5. LIBS spectrum of an Al rod in air, at various gate delays. The gate pulse width is

2 LS ttte ettt ettt e ettt e et e e et e e et e e e et ae et ae et bee et baeenteeentae e tteeenntaeennneeennteeennteeanseeeanbeeeanaeeennbeeeanneeenee 5
Figure 6. Temporal emission evolution of Al LIBS in O,. The gate pulse width is 2 ps.............. 5
Figure 7. Temporal emission evolution of Al LIBS in He. The gate pulse width is 2 ps. ............. 6
Figure 8. Temporal emission evolution of Al LIBS in N,. The gate pulse width is 2 ps............... 6
Figure 9. Comparison of time evolution of emission intensity for Al (396-nm) LIBS signal in

air, He, N, and O, with a 2-ps gate pulse width. ..........cocccooiiiiiiiiniii e, 7
Figure 10. A plot of logarithm of intensity at 396 nm vs. time for the different bath gases

USEd 1N thESE EXPEIIMENLS. ...veiiiiiiiiiiieeiiieeiieeeie e et e e et eesteeesbeeessbeeessbeessaeeeseeessseeessseeessseeennns 7
Figure 11. The maximum emission intensity of the A1O band near 484 nm as a function of

time for the bath gases air and Og. .......ooviiiiiiiiiii e 8
Figure 12. The maximum emission intensity of the AlO band near 484 nm as a function of

time for the bath gases He and No........coociiiiiiiiiiiiiiiiiiccee e 8
Figure 13. A Boltzman plot for 308.34-, 309.44-, 394.56-, and 396.26-nm Al I lines in O,.

The gate pulse width is 2 pus. The gate pulse delay 1S 15 US. couvvvecvieiciieeiieeie e 9
Figure 14. Excitation temperature vs. gate pulse delay with a 2-us gate width. .............c..c...... 10
Figure 15. Electron density of Al vs. gate pulse delay with a 2-ps gate width. .......................... 11
Figure 16. Excitation temperature vs. electron density profile in different atmospheres. ............ 12
List of Tables
Table 1. Spectroscopic parameters for Al I and Al II investigated lines. ........cccccoceeverieneencnnenne. 9

v



1. Introduction

Aluminum (Al) is a common ingredient of explosives and propellants. In explosives, Al is used
to augment air blast, raise reaction temperature, and create incendiary effects (1). In rocket
propellants, Al is used to increase thermal energy and elevate the flame temperature (2). A
proposed mechanism for the combustion of Al in O, follows(3):

Al (1) - Al (g) AH=317.7k] (1)
AlO + Al (I) - ALO AH =-224.0 kJ )
Al(g) +0, — AlO+0 AH=6.53 k] 3)
Al(g)+0+M— AlO+M AH =—492.1kJ (4)
AlO +0, > AlO, + O AH=-78.6 kJ (5)
AlO + AlO; — ALO; (1) AH =-1557.2kJ (6)
ALO + 0, — AlLO; (1) AH =-1562 kJ (7)

For some explosive materials, Al may be used to tailor performance to specific needs.
Measurements of relative amounts of Al metal and Al oxide (AlO) during explosions of
energetic materials may provide insight into increasing the performance of Al-containing
explosives. The experiments described here are a preliminary study of the application of laser-
induced breakdown spectroscopy (LIBS) to this problem.

Although best known for high selectivity for metals analysis (4), LIBS has also been used to
detect energetic materials (5), trace elements in liquids (6), organic compounds in ambient air
(7), and some biological materials (8). In LIBS, a pulsed laser focused onto a target material
converts some of the material into a plasma of ions and electrons, with temperatures that may
approach 20,000 K (9). As the plasma cools, some of the energy is radiated as light. When
measured using a spectrograph, the wavelengths of the emitted light are characteristic to the
elemental components of the target, while the intensity of light over a given wavelength range
may yield the proportion of that element within the target material (10). Additionally, the time
evolution of the emission following the laser pulse may be used to identify certain chemical
reactions occurring in the plasma as it cools.

In this report, we measure the emission from a laser-induced spark produced by focusing a
pulsed Nd:YAG laser onto the surface of an Al rod. The emission is spectrally and temporally
resolved, the effect of different bath gases (air, O,, N», and He) on the emission is measured, and
temperature and electron density are calculated.



2. Experimental

A schematic of the simple LIBS system used in this work is shown in figure 1. Briefly, a light
pulse (~10 ns, 35 mJ per pulse) from an actively Q-switched Nd-YAG laser (Big Sky Laser
Technologies Inc., Bozeman, MT) emitting at a wavelength of 1064 nm was focused by a 50-mm
convex lens onto the surface of an Al rod. A Si-Si optical fiber (600-um core diameter)
collected the emission from the plasma spark. A lens was placed in front of the fiber so that the
plasma spark was sufficiently defocused to eliminate any spatial effects. An echelle
spectrometer (Catalina Scientific Corp., Tucson, AZ) fitted with a gated, intensified CCD camera
(Andor Technology Com., Model DH 734-18-03) was used to measure the emitted light. The
entire experiment, including background measurement, laser control, data acquisition, and data
processing, was controlled by a laptop computer (Dell).
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SE 200 echelle
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dj) 50 mm convex lens

Si-Si optical fiber

Plasma spark

*
Q
Q
Q
D
Q
Q
Q
Q
Q
Q
Q

Q

-

Aluminum rod Gas flow

Figure 1. Schematic of the experimental setup used to measure LIBS spectra.

Prior to the measurement of each LIBS spectrum, a background spectrum was measured and
subsequently subtracted from the sample spectral data. In an attempt to minimize errors due to
shot to shot variations in the laser output power (~5%), each spectrum used in the data analysis is
the average of 50 “single shot” spectra. For each LIBS spectrum measured, the Al rod was



repositioned so only a new sample was exposed to the laser-induced spark. To enable
comparison with previous LIBS studies of Al (11), a detector gate width of 2 us was used for
these experiments. Detector gate delays (relative to the Q-switch of the Nd:YAG laser) ranged
from 0 to 30 ps. The composition of Al rods used in this study was Al 91.4%, Cu 5.67%,

Fe 1.28%, Li 1.11%, and minor constituents (Mg, Mn, Ti, and Zn percentage <0.5% by weight).
Bath gases (N3, O,, and He) were obtained from Matheson and were used without any further
purification. Typical flow rates were ~2 L/min. The gas flow was delivered via 4-mm [.D.
Tygon tubing. The exit port of the tubing was ~5 mm from the location of the plasma volume.

3. Results and Discussion

3.1 Emission Spectra of an Al Rod in Air

The most intense regions of the Al rod LIBS spectrum (bath gas = air [ambient], gate width

= 2 us, gate delay = 20 us) are shown in figures 2, 3, and 4. The first spectral window (figure 2)
from 300 to 420 nm includes emission from gas phase aluminum (Al I) at wavelengths of
308.34, 309.44, 394.56, and 396.26 nm. The second spectral window (figure 3; 420—580 nm)
includes emission from the gas phase molecular species AlO, with the most intense emission
near 484.58 nm. The third spectral window (figure 4; 740—760 nm) includes emission from gas
phase aluminum (Al II) at a wavelength of 747.14 nm. For Al combustion in air, previous
investigators have suggested that above the melting point of Al,O3 (2315 K) (12), the Al species
with highest partial pressures are Al and AlO.
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Figure 2. A portion of LIBS spectrum of an Al rod in air with a 20-us gate
delay and 2-ps gate (300—420-nm region).



AlO
6000 |

g 4000 -

z |

§ 2

RS

0 I I I I \
450 470 490 510 530 550
Wavelength (nm)

Figure 3. A portion of LIBS spectrum of an Al rod in air with a 20-us gate
delay and 2-us gate (450—550-nm region).
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Figure 4. A portion of LIBS spectrum of an Al rod in air with a 20-ps gate delay and 2-ps
gate (740-760-nm region).

3.2 Temporal Evolution of Al and AIO Emission

Figure 5 shows the LIBS spectrum of an Al rod in air at various gate delays (gate width = 2 ps).
As seen in figure 5, the Al I line (396.2 nm) reaches its maximum intensity in air ~5 us after the
laser pulse. The band from AIO emission (484.4 nm) reaches its maximum intensity ~20 us after
the laser shot. This is qualitatively consistent with the combustion mechanism for Al in oxygen,
outlined in reactions 1-7 earlier.



LIBS spectra of the Al rod (measured from 350 to 580 nm) at various gate delays (gate width

= 2 us) for the bath gases O,, He, and N, are shown in figures 6, 7, and 8, respectively. For
comparison, the peak intensities of the Al I line in each figure have been normalized. It is worth
noting that the emission near 484 nm (from AlO) in figure 7 (He bath gas) and figure 8 (N, bath
gas) is vanishingly small compared to the emission near 484 nm in figure 5 (air bath gas) and
figure 6 (O, bath gas).
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Figure 5. LIBS spectrum of an Al rod in air, at various gate delays.
The gate pulse width is 2 ps.
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Figure 6. Temporal emission evolution of Al LIBS in O,. The gate
pulse width is 2 ps.
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Figure 7. Temporal emission evolution of Al LIBS in He. The gate pulse
width is 2 us.
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Figure 8. Temporal emission evolution of Al LIBS in N,. The gate pulse
width is 2 ps.
Figure 9 shows that the decrease in Al emission (396 nm) with time appears exponential. Figure
10 shows a pseudo-first-order plot of logarithm of intensity at 396 nm vs. time. From this plot,
the deactivation of Al (fastest to slowest) as a function of bath gas is O,~He>air>N,. Figures 11
and 12 (expanded by a factor of 10,000) show the maximum emission intensity of the AlO band



near 484 nm as a function of time for reactive (air and O;) and nonreactive (He and N,) bath
gases, respectively. Figure 11 shows that the maximum emission from AlO occurs 10 ps after
the laser pulse in the pure O, atmosphere, while the intensity in air reached a maximum 20 ps
after the laser pulse. Therefore, we believe the main source of AlO emission in bath gases of O,
and air is AlO formed by the reaction of Al (g) with ambient O, analogous to reactions 3 and 4
for the combustion of Al in O,. This is also supported by the increase in AIO emission as the
bath gas is changed from air (figure 5) to O, (figure 6).
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Figure 9. Comparison of time evolution of emission intensity for
Al (396-nm) LIBS signal in air, He, N,, and O, with a
2-us gate pulse width.
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for the different bath gases used in these
experiments.
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Figure 11. The maximum emission intensity of the AlO band near 484 nm
as a function of time for the bath gases air and O,.

Figure 12 shows that, in the absence of ambient O,, the temporal behavior of the AIO emission is
similar to that of the Al emission; i.e., the temporal behavior of the AlO emission in the
unreactive bath gases is similar to emission from material (Al) native to the Al rod. Therefore,
we believe the source of the AlO emission in the absence of ambient O, is the Al,O; layer on the
Al metal.
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Figure 12. The maximum emission intensity of the A1O band near 484 nm as
a function of time for the bath gases He and N..

3.3 Temperature Calculations

For the temperature calculations reported, we assume that for the gate width used (2 ps), the time
rate of change of the plasma temperature is small, and that light emission collected and analyzed
is emitted from a gas region that is approximately homogeneous in temperature and composition.



This assumption of “local thermodynamic equilibrium” is necessary when calculating
temperatures using a Boltzmann distribution. The intensities of Al I spectral lines at
wavelengths of 308.34, 309.44, 394.56, and 396.26 nm were used to calculate temperatures at
different gate pulse delays according to the following equation:

Ln (I/ (g Axi))=— (Ex /kT) + Ln (CoF/ U(T)) , (8)

where I is the peak line intensity of atomic species o with concentration C, , Ex is the upper
energy level, T is the plasma temperature, Uy(T) is the partition function of the species a, k is
the Boltzmann constant, F is a constant depending on experimental conditions, Ay;is the
transition probability, and g; is the statistical weight for the upper level. Spectroscopic data
(table 1) were obtained from the National Institute of Standards and Technology database (13). A
plot of Ln (I/ (gi Axi)) as a function of Ex will have a slope equal to —1/kT. A typical Boltzman
plot using equation 8 is shown in figure 13.

Table 1. Spectroscopic parameters for Al I and Al II investigated lines.

Wavelength A Ex gi ®
(nm) (10°s™ (eVv) (nm)
All 308.34 0.63 4.021485 2 —
309.44 0.74 4.021650 4 —
394.56 0.49 3.142721 2 —
396.26 0.98 3.142721 2 —
Alll 466.30 0.53 13.25646 3 6.85x10°
747.14 0.94 15.30840 7 1.26 x 10
2357 4 394.56 1m
23
225 1 * y=-2.1778x +29.82
< 396.26nm R’ =0.9315
o0 22
5 2151 308.34nm
71 - Slope =-1/kT ¢
309.44nm *
20,5 T T T T T 1
3 3.2 3.4 3.6 3.8 4 4.2
Energy (eV)

Figure 13. A Boltzman plot for 308.34-, 309.44-, 394.56-, and 396.26-nm
Al T lines in O,. The gate pulse width is 2 ps. The gate pulse
delay is 15 ps.



Temperatures calculated using equation 8 and spectral line intensities from LIBS spectra
measured in different bath gases are shown in figure 14. These calculated temperatures are in
good agreement with previously reported calculated temperatures for similar systems (14-16).
In general, the calculated temperature exhibits an approximately exponential decay over the
emission lifetime.
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Figure 14. Excitation temperature vs. gate pulse delay with a 2-us
gate width.

3.4 Electron Density

The electron density (N.) was determined using the Stark broadening effect (17) and assuming
the plasma to be optically thin (negligible self absorption) for the Al II emission line at

747.14 nm. Stark broadening parameters are available for the lines at 747.14 and 466.3 nm (18).
The Al II line at 466.3 nm was not used because this line is partially obscured by the Al1O band
near 484 nm. The relation between the line width (full width at half maximum [FWHM]) of the
Stark broadened line and the electron density is given by equation 9:

Ahip=2m (Ne/10'%) +3.5 A (N./10'9)"* (1 -=BNp ) @ (N./ 10'%), 9)

where AL, is the line width (FWHM), o is the Stark broadening parameter, A is the ion
broadening parameter, Np is the number of particles in the Debye sphere, and B is a coefficient

equal to 1.2 for ions and 0.75 for neutral lines. The values of @ were taken from Coloa et al.
(18).

The measured line width was corrected to first order by subtracting the contribution of the
instrumental line broadening. The instrument line broadening was found to be 0.1 nm, as
determined by measuring the emission lines from a calibrated mercury lamp. The first term on
the right side of equation 9 is the contribution of electron broadening. The second term on the

10



right side of equation 9 is the quasistatic ion broadening contribution, which can to be neglected
in this analysis (19). Equation 9 then reduces to

Ay =2 (Ne/ 10'°). (10)

In order to make a determination as to whether the local thermodynamic equilibrium conditions
were satisfied for the selected spectral lines, the critical value of electron density distribution
(Ne) was evaluated by following the procedure described by Aragon et al. (20). The critical limit
of electron density distribution was determined from equation 11:

Ne> 1.6 x 10" T (B -Ey)* . (11)

For the experiments reported here, the critical electron densities varied from 3 x 10" t0 9.5

x 10" em™ for the temperature range from 4000 to 14,500 K. The lowest calculated electron
density value exceeded these critical values by a factor of 20 for the range of temperatures
calculated using the Boltzmann equation (equation 8). As seen in figure 15, there is a general
trend toward lower electron densities at later decay times (also see figure 16) as the plasma
cools.
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Figure 15. Electron density of Al vs. gate pulse delay with a 2-ps gate width.
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Figure 16. Excitation temperature vs. electron density profile in different
atmospheres.

4. Conclusions

Measurements of the emission of AlO following exposure of an Al metal surface to a laser-
induced spark have been carried out for bath gases of air, O,, N;, and He. Results of these
experiments indicate that virtually all of the AIO emission is from AlO formed by the reaction of
Al vapor with O, from the bath gas (if present). Emission from AlO initially present as an Al,O3
oxide layer on the metal sample was vanishingly small for emission spectra measured in bath
gases of N, and He, when compared to the AlO emission measured in air and in O, bath gases.
However, it is possible to distinguish the AlO emission from the Al,O; oxide layer from AlO
formed by reaction with ambient O, by examining the temporal behavior of the emission. The
temporal behavior of Al and AIO emission following Al metal exposure to a laser-induced spark
(in air and O5) is consistent with known chemical mechanisms for Al combustion in O,. Finally,
calculations of temperature assuming a Boltzmann distribution of Al emission lines gives results
in good agreement with calculations by previous investigators.
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