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Moments on a Coning Projectile by a Spinning Liquid in 
Porous Media 

G. R. Cooper* 
Weapons and Materials Research Directorate 

U.S. Army Research Laboratory 
Aberdeen Proving Ground, Maryland 

 
 

 Moments are predicted due to an inviscid liquid payload flowing in a sequence of end to 
uniform cylinders stacked in columns displaced off the spin axis of a coning projectile during 
free flight.  These moments are then compared to moments generated by flow of the same 
liquid that saturates porous media contained in a sequence of uniform cylinders along the 
projectile symmetry axis. A modification to the classical Stewartson theory and is added to 
describe inertial waves in porous media.  This theory is used to analysis the inertial waves 
produced in the liquid by the projectile coning motion. The resulting side moments are 
examined in reference to the type of porous media used and the assumed cylinder geometry 
subjected to applied coning frequencies.  Eigen-frequencies and their impact on liquid 
moments are discussed concerning the stability of the free flight projectile. 
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  Body fixed coordinate system 

∆   Sub-cylinder aspect ratio C/N2=∆  
ε   Damping rate of spiral motion 
ρ   Fluid mass density 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡φ

ψ
θ   Euler roll, pitch and yaw angles of the projectile 

 
I. Introduction 

 Predicting the moment due to a liquid payload in a spinning and coning projectile is a problem of considerable 
interest to Army.  Stewartson1 considered the linear problem of a liquid payload in a spinning right circular cylinder 
using separation of variables and eighenvalue expansions for an inviscid liquid. i First order viscous boundary layer 
corrections to the Stewartson1 theory were carried out by Wedemeyer2 and Murphy.3  A method for calculating the 
linear liquid moment using the full linear viscous equations with boundary layer corrections confined only to the 
endcanps was also presented by Hall and Sedney and Gerber4,5.   
 A further interest to the army is to consider a series of uniform circular cylinders stacked end to end separated by 
impenetrable end-caps (candle-sticks).  These candle-stick(s) may be situated along the symmetry axis or off set but 
parallel to the symmetry axis of the projectile.  Coning motion induced liquid moments are considered here for a 
number of candle-stick(s) configurations.  The eigen-frequencies for such configurations are shown to be identical to 
those found by Stewartson1.   
 Liquid payloads contained in a highly permeable material have also been of interest to the Army for some time.  
Laboratory tests and flight tests have shown that a highly preamble medium can significantly reduce the spin-up 
time of a liquid payload.6   Flight stability for liquid saturated permeable payloads has also been examined by 
D’Amico.7  The work here extends the Stewartson1 problem by considering a cylindrical cavity filled with a 
permeable medium that is impregnated with an invisicd liquid.  A further modification is introduced by segmenting 
the cavity, along the symmetry axes, into a sequence of equal length cylinders.  Each of these cylinders is separated 
by impermeable end-caps.  The porous media is modeled by a drag term, which is proportional to the liquid velocity 
relative to the assumed ridge porous media that is added to the linearized Euler equations.  This analysis examines 
the induced liquid moment as a function of parameters found by Stewartson1 plus parameters describing the porous 
media and the number of segments in the cylindrical cavity.   
 

II. Equations of Motion for the Candle-Stick Configurations 

Figure 1. shows the Z,Y,X ′′′  axes rotating uniformly about Z′  with angular speed ( )0,0,P=P .  The liquid 
is assumed initially to be rotating as a rigid body with the same angular speed 
P  so the velocity V′  of the liquid inside one the cylinders is 
 

 ( )θ+θ+′ sinrBsinR,cosrBcosR,x 00×= PV   (1) 
The unperturbed state for Eq. (1) satisfies the Euler equation: 
 

( )( )
ρ
PsinrBsinR,cosrBcosR,xP s

00xx
2 −∇=θ+θ+×× ee

 (2) 
for which sP  is the unperturbed liquid pressure.  Following Stewartson* and 

letting ( )θsinrBsinRθ,cosrBcosRx, 00 ++=R  gives the scalar 
potential 

X ′
X

∆

Y

0K

Figure 1 Coordinate Systems of 
configuration 
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   ( ) 2rPBcosRPP 22
0

2
S −θ−=ρ         (3) 

Now consider a perturbed angular velocity of the projectile for small zy ,ωω  given by 

   ( )zy ω,ω0,+= PΩ            (4) 
and adopting projectile-fixed ZY,X,  axes causes the liquid velocity to take the form 

  ( ) vPV +θ+θ+×= sinrBsinR,cosrBcosR,x 00        (5) 

where the components of v  have the same order of magnitude as zy ,ωω . 
The Euler equations for small perturbations written in the body fixed frame now read as 

           

0
xd
p̂d1

td
Ud

0
d

p̂d
r

1VP2
td

Wd

0
rd
p̂d1WP2

td
Vd

=
ρ

+

=
θρ

++

=
ρ

+−

         (6) 

where ( )U,W,V  are the cylindrical components of the perturbed velocity, p̂  is the perturbed pressure.   
The boundary conditions at the solid wall satisfy 

   ( ) nRΩn •×=• sU,W,V           (7) 
where n  is a outward unit vector on the wall and sR  a point on a cylinders wall.  Following Murphy/Cooper* the 
perturbation quantities zy ,ωω  are assumed to represent coning motion given by  

   
( ) ( ) ( )( )

( ) ( ) ( )( ) tTP
0z

tTP
0y

etTPcosTtTPsin1TPK

etTPcos1TtTPsinTPK
ε

ε

ε−−−=ω

−+ε=ω
        (8) 

where the coning damping rate is ε  the coning frequency is T  and 0K  is the magnitude of the coning angle.  
Equation (8) is now used in Eq. (7) so the boundary conditions now become: 

    

( )
( )( )

( )TiS,1i

e)iS(erRePKeÛ

e)iS(PKxeV̂
itSPi

0
iB

0

itSP
0

+ε≡−=

−+ℜ=

−ℜ=
θ+θ

θ+

.       (9) 

These boundary conditions suggest Eq. (6) is separable giving  

  tSPe

p
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w
v
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⎥
⎥
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⎡

            (10) 

and solving for the velocity components yields: 
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( )

( )

SP
xd
pd

u

4SPr
rd
pdr2S

d
pd

w

4SPr
d

pd2Sr
rd
pd

v

2

2

ρ
=

+ρ

−
θ=

+ρ
θ

+
=

             (11) 

Using the continuity equation, ( ) 0u,w,v =∇ , produces the following equation for the pressure p  

   

2

2
2

2

2
22

2

2

2

2
2

S
4S

0
xd
pdr

d
pd

rd
pdr

rd
pdr

+
−=σ

=σ−
θ

++

          (12) 

 At this point in the analysis it is useful to consider each cylindrical candle-stick ranging from, CxC ≤≤− , to 
consist of a end to end sequence of N  equal length, ∆ , cylinders with impentetrible end caps such that 

NC2=∆ .  Applying Eq. (9) to each of the sub-cylinders shows that separation of variables gives 

 
( )( )( ) ( )( )

( ) xFaPKeaDraExraPK

er)1j2JxC)1j2cosaPKAp
2

0
i222

0

i
1

22
0j

ρ++ρ+

∆σ+π∆++πρ=
θ

θ

     (13) 

where 

  

( ) ( ) ( )
( )( ) ( )

( ) ( )( ) ( )

( )
( )( )( )

( )
2,1,0j,Nn0

aSiS0RiBeF

2iSC21n2D
SiSE

21j22a2
a1j20jS1j2a

i2Sa1j21j
i2S2iS2n18

jA

=≤≤

−=
−−∆+=

−=

+π
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∆σ+πσ+π

−−∆∆σ+π
+−∆−

=

      (14) 

 
III. Candle-Stick(s) Liquid Moments 

 
 The moment induced by the liquid contained in the segmented cavity is calculated from the time derivative of 
the angular momentum field.  Non-dimensionalizing the moment with 24 PCaρπ2  it is convenient to write the 
side moment components as3 

  
( )

( ) ( )CN,T,CiCN,T,CC
eKPCa2 CτMiM

LIMLSMLM

tTP
1

24
LMZY

+=
ρπ=+

        (15) 

 Unit vectors of the body-fixed cylindrical coordinates, ( )θrX e,e,e  are written as the complex quantities in 

terms of ( )ZYX e,e,e  
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( )

( )θiexpicosθsinθ
θiexpsinθθcos

⇔+−=
⇔+=

ZYθ

ZYr

eee
eee

           (16) 

Placing these in the moment integral and using the Reynolds Transport Theorm10 yields the following expression for 
the liquid moment coefficient: 

 
( ) ( )[ ] [ ]{ }

( )uw,v,

dxdrrex2ri2iSrx

a
C2

1CT
N

0n
X

2
XLM

=

−−×+−×+
π

= ∑∫∫
= ∂

q

qeqee rX
      (17) 

The last result written terms of Eq.(11) is : 
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222222
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2
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⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
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−−+−+−

+

∑

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−σ+π

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

σ
−

σ
−

+−
π

=

        (14) 

 
For σ  not a resonance value and as the number of cylinders becomes large ( ∞→N ) the value of LMC  
approaches the frozen liquid limit given by: 

   

( ) ( )( )

( ) ( )( )
4

i1C4RBcosBsin2ei

T
12

i23C4TRBcosBsin2eiC

2
2
0

Bi

2
2
0

Bi
LM

+ε+
++ε+

+ε−
−+ε−→

−

−

       (15) 

The eigen-values for this problem can be found by inspecting Eq. (14) and after some algebra these are found to be 
zeros of  

    

( )
( )

( ) 222

22
0

1

N1j2
Czz4B

B
11B

zzJzz
zzJ

+π
≡

−+±
=

           (16) 

which gives the Stewartson1 values when zz  is solved for frequency T . 
 

IV. Equations of Motion for the Axial Porous Media Configuration 
 

 For this problem the moment arm 0R0 =  in Eqs. (3 & 5) and the position vector becomes 

( )θsinrθ,cosrx,=R since the candle-stick axis is the symmetry axis of the projectile.  However, the Euler 
equations are now modified to account for an inviscid liquid flowing through porous media.  The modification is 
assumed to have terms proportional to the liquids velocity relative to that of the porous media which is taken to have 
the same velocity as the coning projectile.  The Euler equations are now written as: 
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( )

( )

( ) 0
xd
p̂d1ÛUPC

td
Ud

0
d

p̂d
r

1ŴWPCVP2
td

Wd

0
rd
p̂d1V̂VPCWP2

td
Vd

x

t

t

=
ρ

+−+

=
θρ

+−++

=
ρ

+−+−

        (17) 

where the velocity of the media obtained from the rotation kinematics is given by 

     

( )
( )

( ) θ+

θ+

θ+

−−=

−=

−=

iStP
0

iStP

iStP
0

eiSPKrÛ

eiSP0KxiŴ

eiSPKxV̂

           (18) 

Separating variables according to 
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⎥
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⎤

⎢
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⎡
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⎥
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itSPe
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v

p̂
U
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            (19) 

leads to the solution of Eq. (16) 

   

( )

( )( )
( )

( )

( )( )
( )

( )

x

x

t

t
2

t

t

t

t
2

t

t

CS

iSPCr
xd
pd

P
1

u

i2CS
iSPCxi

4CSPr
rd
pd2pCSi

w

i2CS
iSPCx

4CSPr

CS
rd
pdpi2

v

+

−+
ρ−=

−+
−

+
++ρ

−+
−=

−+
−

+
++ρ

++
−=

          (20) 

Continuing with the continuity equation gives the following equation for the perturbation pressure p  

   
( )

( )( )xt

2
t2

2

2
22

2

2
2

CSCS
4CS

0
xd
pdrp

rd
pdr

rd
pdr

++
++

−=σ

=σ−−+

        (21) 

Solving and using the demands of Eq. (17) produces the following coefficients for expression Eq. (13) 
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( ) ( ) ( )
( )( ) ( )

( )( ) ( )( ) ( )

( )
( )( )( )

2,1,0j,Nn0

0F
iSC21n2D

SiSE

1j2
a1j2jCS1j2

i2CSa1j2j
i2CSiS18A

2

22

0t

t1

t
22n

j

=≤≤

=
−−∆+−=

−=

+π⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∆σ+πσ++π

−−+∆∆σ+π
++−∆−

=

    (22) 

 
V. Porous Media Liquid Moments 

 
 Using the above procedure for calculating liquid side moments results in the following expression for the porous 
media moments 

 

( )( )
( ) ( )

( ) ( )
( )( )

( ) ( ) ( )( )( )
( ) ( )( )( )

( ) ( )( ) ( ) ( )
( )

( ) ( ) ( )
( ) C2N1j2zz

;i2SN3CtCx2iC24iSiS

i2CSN3
CC2SiSiC2N34N3iS2NSCi

i2CSCSzzJN1j2
Ci4CSCSzzJ2

1j2zzJ

4CiCC2

S4Ci2C3CC22SiC3C2S2

i2CtSiS
CSCSN

Ci128CT

22
t

2
tx

22
2222

tt0

tt1

j

4
1

2
txt

t
2
txt

2
tx

3

2

xt
224

3

LM

σ+π≡
−+−−

+
−+

++−
−−−−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++σ+π

−−++
+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−+

+−++−++

++−
++σπ

−=

∑      (23) 

 
Here again the limiting case with ∞→N  gives the value of LMC  for the frozen liquid side moment 
 

  ( ) ( )( ) 121C4i3S3C4iSCT 22
LM +−+→          (24) 

 
The eigen-values for this problem are found from Eq. (22) and after some algebra they are zeros of 
  

 
( )
( )

( ) ( )( )
( )( )( )

( )
( )Bi2CC2

i4BCC
B16i4CCCC2

1616BCCBi2CC
zzJzz

zzJ

tx

tx

txtx

2
txtx

0

1

+−
−−

+
−+−−

−−−+−±
=      (25) 

 
This equation shows when tx CC =  yields eigen-values zz  are the same as those found by Stewartson1,Eq. (16), 
provided zzzz = .   
 



 
American Institute of Aeronautics and Astronautics 

 

8

VI. Calculation Method 
 
 The equations of the last sections need to be calculated for a wide range of flight and porous media parameters 
all of which need the values of Bessel functions.  For small values of zz  simply using power series expansions of 

each Bessel function works very well.  Bessel functions at large values of zz  were obtained by using asymptotic 
expansions for each Bessel funcion9.  Generally calculating Bessel functions for complex arguments for intermediate 
values of zz  is a non-trivial problem and the methods used here employs Gauss continued fractions.  This author 
has judged that a further discussion of these methods is not appropriate for this article but the reader should be aware 
of the numerical difficulties associated with calculating Bessel functions. 
 

VII. Results 

 Figures 2 and 3 show the side moment LSMC  and in plane moment LIMC  as functions of the non-
dimensional frequency T .  These moments show the eigen-frequencies for a candle stick that is displaced 
off the symmetry axis by 5.1R0 = . 
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Figure 3 Liquid In-Plane Moment 
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Figure 2 Liquid Side Moment 
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 The next two plots given in Fig. 4 & 5 present the liquid moments for three candle sticks uniformly distributed 
around the projectile symmetry axis for 5.1R0 = .  The value of ε  and N  are chosen so that Stewartson1  eigen-

values are not present for the given range of T .  Figure 5 also displays the frozen liquid moment which indicates 
that the liquid behaves like frozen liquid for increasing values on N  provided eigen-frequencies are avoided.  
 

 
 Next consider a centrally located candle stick containing a liquid in porous media.  Figures 6 and 7 presents 
examples of liquid moments for typical values of ,3.0CT = , 5.0,3.0Cx =  and 807.1,612.0 −−=ε .  Once 
again the moments display the eigen-frequency behavior of saturated porous media with increasing 1N = .  These 
indicate that porous media forces the eigen-frequencies to be complex when ever ε  is chosen to cause σ  to be an 
eigen-value 
 

 
VIII. Conclusions 

 
 The off axis candle stick problem has been shown to be equivalent to the inviscid Stewartson1 problem whenever 
porous media is not present or can be ignored.  Resonances are independent of the candle stick off axis position.  
 In the case of a candle stick, containing saturated porous media, located along the symmetry axis of the projectile 
generally forces resonances only for complex values of S .  In all cases the liquid moments approach the values for a 
frozen liquid when eigen-frequencies are not present.  In the particular case where XT CC =  it is possible find the 

resonances from the Stewartson1 tables but if XT CC ≠  requires a numerical search for resonances in the complex 
plane for zz  from which S  can then be calculated. 
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 Figure 4 Sum Of Three Side Plane Moments 
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