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ABSTRACT 
 

Current distributions of continuum mechanics codes 
used by the Army do not have the capability to model 
failure associated with plastic shear localizations in 
ballistic applications, such as plugging failure of targets 
due to ballistic impact by blunt-nosed projectiles.  This 
paper discusses the development and validation of a 
computational capability to accurately model highly 
localized deformations in complex projectile-target 
interactions germane to survivability and lethality 
technologies for the Army’s Future Combat Systems.  
Onset and propagation of adiabatic shear bands are 
investigated both experimentally and computationally by 
studying the ballistic impact of 20-mm steel fragments 
against Ti-6Al-4V plates.  Numerical simulations are 
carried out using a three-dimensional localization model 
being developed for CTH, an Eulerian wave propagation 
code.  A failure criterion that uses homogenous material 
response and scaling laws to estimate the plastic strain at 
which stress collapse due to adiabatic shear should occur, 
for rate dependent, work-hardening, thermally softening 
materials, has been implemented into CTH, and is used as 
a nucleation criterion.  Numerical results provided good 
agreement with experimental observations. 
 

1. INTRODUCTION 
 

By Zener and Hollomon’s widely accepted postulate, 
an adiabatic shear band (ASB) is a localized band-like 
narrow deformation zone of intense plastic shear strain 
that occurs when the strain rates are so high that there is 
not enough time for the heat due to plastic work to diffuse 
away from the deforming zone, causing a local thermal 
softening effect that exceeds the strain, or strain rate, 
hardening [Zener & Hollomon, 1944].  Under intense 
dynamic loading due to ballistic impact of a projectile 
against a target plate, the plate material is rapidly 
accelerated ahead of the projectile, creating a velocity 
discontinuity within the target, which gives rise to plastic 
localization under adiabatic conditions.  Near ballistic 
limit velocities, shear bands propagate towards the back 
of the target to form a plug.  The ballistic limit velocity 
(V50) is a measure of armor effectiveness, and is defined 
as the velocity at which a projectile has 50 percent 
probability of perforating the target.  Even though the 
impact speed (Vs) of the projectile may not be high 
enough to perforate the target, the armor plate still fails 
via plugging or discing, depending on the material 
properties of the plate.  The ballistic performance, crater 
morphology, and the dominant failure mechanism for Ti-

6Al-4V processed above and below β-transus temperature 
differ drastically [Burkins et. al, 1997].  However, shear 
bands were observed regardless of the annealing 
temperatures, influencing the dominant failure 
mechanism, and therefore the V50.  The capability to 
model failure associated with plastic shear localizations 
has long been desirable, but found to be difficult due to 
the complexity of the failure process.  This paper focuses 
on simulating shear band nucleation and propagation 
using an Eulerian hydrocode, CTH, being developed by 
Sandia National Laboratories [McGlaun & Thompson, 
1990].  
 

2. COMPUTATIONAL MODEL 
 

The first ASB model developed and implemented 
into CTH by Silling [Silling, 1993], was a two 
dimensional ad-hoc model.  The improved ASB model 
that constitutes the numerical framework for this study is 
more recently developed by Silling and is three-
dimensional (3D).  Fermen-Coker implemented a failure 
criterion by Schoenfeld and Wright [Schoenfeld & 
Wright, 2003] based on earlier work by Wright [Wright, 
1992, 1994], into Silling’s ASB model in CTH [Fermen-
Coker, 2004].  The criterion emphasizes homogenous 
behavior as defined by the material’s constitutive 
response, and does not require experimental 
determination of any additional parameters.  The failure 
strain is estimated by multiplying a scale factor with the 
perturbation in the velocity field: 



















−=−

β
1ln

πσ
σm2εε
εε, max

maxcr  (1) 

where, εcr is effective failure strain, εmax is effective strain 
that corresponds to peak stress in adiabatic response, 
subscript max indicates values at peak stress, σ is 
effective stress, εε,σ  is the curvature at the peak, and m is 
strain rate sensitivity.  Perturbation velocity is 
implemented as a variation in effective strain rate:  

β = ( aveεε && − )/ aveε& . (2) 
If a requirement for minimum distance to active and 
inactive shear bands is also satisfied, a shear band is 
allowed to nucleate by introducing a Lagrangian tracer 
particle at that location.  Upon nucleation, the shear band 
is allowed to grow at points along its edge, conforming to 
the local planes of maximum shear, provided that the 
prescribed growth strain and strain rate criteria are 
satisfied.  The yield stress of cells that contain the shear 
bands are significantly reduced.  Shear band nodes are 
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convected with the material according to the local cell 
face velocities. 
 

3.  FRAGMENT IMPACT RESULTS 
 

A three-dimensional rectangular mesh is used with 1 
mm cubic cells, resulting in 20 cells across the diameter 
of the projectile.  The Mie-Grüneisen equation-of-state, 
and Johnson-Cook constitutive model are used for both 
the projectile and the target materials.  Earlier 
experiments indicated that the V50 for 0º obliquity is 1.016 
km/s [Burkins et. al., 2001].  The dominant failure mode 
is not plugging but discing in this case, however shear 
bands still have an influence on the complex failure 
mechanism and the V50.  Without activating the ASB 
model, CTH predicts only a small bulge in the back of the 
target as shown in Figure 1. 

 

 
Figure 1.  CTH result for Vs = 1100 m/s Vs at 0° 
obliquity, prior to the implementation of theASB model. 

 
For an impact speed of 1009 m/s, i.e. just below V50, 

the sectioned plate shown in Figure 2a reveals ASB’s 
between the impact crater and the back surface of the 
target, along with the in-plane delaminations in the rolling 
direction.  Rolling creates directionality of properties, 
since pre-existing impurities are elongated in the primary 
rolling direction. These become sites for localized 
deformation and eventual cracking.  An accurate 
representation of microstructural effects and the 
mechanism that leads to in-plane cracking and 
delaminations do not currently exist in the computational 
model.  However, as indicated by the corresponding 
computational result obtained using the ASB model 
(Figure 2b), the morphology of shear bands match the 
experiment qualitatively and the overall ballistic 
performance prediction is improved significantly.  A time 
sequence of 3D images indicate a spiral pattern of growth, 
as also indicated by experiments [Fermen-Coker, 2004].  
Lighter colors indicate earlier nucleation, whereas shear 
bands that nucleate later in time are assigned 
progressively darker colors.  For an impact speed of 1021 
m/s, i.e. just above V50, both the experimental and 
computational result indicate that the shear bands reach 
the back of the target, as shown in Figure 3 (a) and (b), 
respectively.  Cracks formed around the outer edge of the 
disc shaped delaminated layer nearest to the back surface, 
where a chip flied out from the back of the target, 
confirming that the V50 was exceeded.  Additional 
numerical experiments indicated that, plugging failure 
becomes gradually more dominant as the shear band 

spacing is decreased, allowing more shear bands to 
nucleate in the armor material, which suggests a link 
between ease of ASB nucleation in a material due to its 
microstructure, and the dominant failure mode. 

 

  
(a) (b) 

Crater depth:        19 mm 18 mm 
Bulge thickness:   12 mm 11 mm 

Figure 2.  Results for Vs = 1009 m/s.  (a) Target cross 
section (b) Corresponding simulation using ASB model. 
 

 
 

(a) (b) 
Crater depth:        23 mm 20 mm 
Bulge thickness:  13 mm 13 mm 

Figure 3.  Results for Vs =1021 m/s.  (a) Target cross 
section  (b) Corresponding simulation using ASB model. 
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