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MATERIAL DESIGN PARADIGMS FOR OPTIMAL FUNCTIONAL 
GRADIENT ARMORS 

 
David S. Kleponis, Audrey L. Mihalcin and Dr. Gordon L. Filbey, Jr., 

US Army Research Laboratory, Aberdeen Proving Ground, MD 
kleponis@arl.mil, mihalcin@arl.mil, skip@arl.mil 

 
 
 
 
1. INTRODUCTION 
 
An assumption frequently made in choosing material property distributions in 
functionally graded material (FGM) armors is that the hardest and strongest layer should 
be at the front of the target. That is, maximum protection should be achieved when the 
hardest and strongest layer is the first element touched by the attacking penetrator.  The 
experience base of dual hard steel armors of the 1960s and the typical arrangements of 
SiC or Al2O3 tiles mounted on fiber-composite or aluminum substrates over the past 
thirty years support this view.  More recent views of what might constitute an optimal 
armor that employs ceramic materials is that advantages can be realized by layering 
elements of different materials and properties.  Advances in materials processing now 
allow the fabrication of graded materials, typically resulting in (but not limited to) 
discrete layers through the thickness.  In terms of strengths and hardness, materials 
experts have often attempted to produce a material with linearly decreasing properties 
progressing through the thickness.  It appears that this reasoning on how to vary 
properties is driven by the dual-hard and the ceramic-on-soft-substrate experience.   
 
A partially conflicting view to this layering presentation against an attacking penetrator 
comes from the experiments of Hauver et al. [REF].  This work demonstrates dwell 
phenomenon at the front surface of brittle ceramic targets, in which the attacking 
penetrator does not proceed into the target but rather flows laterally on the front surface 
in a manner similar to a water stream hitting a steel plate.  Their research studied 
conditions under which a period (dwell time) of non-penetration can be established at the 
front surface.  It is found that a region of soft material on the front of the target can 
actually greatly enhance the performance of certain ceramic targets.  Heuristically, the 
phenomenon can be thought of as pre-compressing the ceramic and preventing strong 
loading shocks from forming that could lead to premature tensile unloading conditions 
from any of the ceramic boundaries, including the front, first struck surface.  Hauver et 
al. experiments were usually in heavily confined ceramic conditions, including the rear 
surface. Dehn [REF] obtained computational results, agreeing favorably with experiment, 
that support this understanding of dwell phenomena. 
 
It would thus seem that guidelines for material ordering could be established, either with 
semi-empirical engineering or with computational models, to guide the materials 
engineer in layering objectives that yield the maximum benefit to armor performance. 
This premise is examined with the solid-mechanics wave-propagation code CTH, for all 
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iterations of materials layering, using the computational horsepower available at the 
Aberdeen Major Shared Resource Center.   
 
It is shown that once a rational problem configuration is established, the best target 
performance is not obtained with the conventional wisdom of placing the hardest material 
at the front of the target.  This is found when targets are comprised of a range of materials 
from weak to strong, and depth-of-penetration (DOP) metrics are used.  Best results from 
an armor point of view are generally to start with the softest at the front and build 
monotonically to the hardest layer laid intimately against thick Rolled Homogeneous 
Armor (RHA) backing material.  The residual penetrations are measured into this RHA 
backing.  It is also illustrated that layer thickness of target material less than the diameter 
of the attacking penetrator have little significant effect on the final penetration result.  
This too is an important result for the materials engineer.  Although most of the results 
presented are derived for a hemispherical nose penetrator at several impact velocities, 
results are also given for blunt-ended and ojival-nose penetrators. 
 
 
2. PROBLEM CONFIGURATION 
 
Given that the materials engineer can tailor FGMs, what 
are the optimal gradients to choose for strength, 
toughness, ductility, and possibly density, such that 
ballistic performance is maximized?  And how broadly 
tuned is the designer FGM to a range of threats?  
Thought must also be given as to which performance 
parameter is to used, whether DOP into a contiguous 
backup material, or residual length and velocity of the 
penetrator following a spaced FGM element, or total path 
weight of the armor required to defeat the penetrator.  
The approach chosen was to calculate residual depth-of-
penetration (DOP) into Rolled Homogeneous Armor 
(RHA) placed in intimate contact with the FGM material, using the solid-mechanics 
wave-propagation code CTH.  To illustrate an optimal FGM taxonomy, a constant 
thickness region of constant average strength was chosen for the candidate layered target.  
The plan is to subdivide the region into 2,3,4,6 and 12 levels of strength, which in every 
case average to the strength chosen for a monolithic material.  With a good experience 
base in armor steels, and an opportunity to experimentally check the code prediction, the 
first calculations were made for layered hard steel targets.  The Johnson-Cook visco-
plastic deformation law was chosen to represent the plastic large deformation plasticity 
region.  This can be written as follows for the flow stress Y: 

  
For the various strength level representations, it is reasonably accurate to vary only the 
single parameter ajo (the initial flow stress when the strain rate is 1/s) to represent the 

Figure1.  Through-thickness variations 
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different strength levels of hard steel armor.  It is well established that “6-inch” RHA can 
be accurately depicted with an ajo of 0.62 GPa.   For the optimization problem, we 
elected to represent the harder, stronger FGM surrogate as layered steel that has an 
average ajo of 1.0 GPa (order of 145 ksi.) All other Johnson-Cook parameters are kept 
the same as the “6-inch” RHA backing.  The rationale for this is that work hardened 
materials, from a stress-stain curve perspective, act like the original material but with the 
location of the elastic modulus load line shifted increasingly to the right before 
intersecting the plastic portion of the original curve. The Johnson-Cook parameters for 
the “6-inch” RHA steel are shown in Table 1. 
 

Table 1.  Johnson-Cook parameters for “6-inch” RHA 
 ajo bjo cjo m n Tjo Poisson 

Value 0.62 1.685 4.35E-3 0.800 0.754 0.15364 0.294 
Units GPa GPa [-] [-] [-] eV [1] 

 
The yield stress of the outer layers for two or more strength levels were always taken as 
ajo=1.38 GPa (order of 200 ksi) and ajo=0.62 GPa.  For greater than two levels (three, 
four, six and twelve were considered), strength increments were made equal from layer to 
layer.  The diagram in Figure 2 best illustrates this. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Mie-Gruniesen equation of state is used to describe the dilatational portion of the 
deformation.  The same values were used throughout for all strengths of steel considered, 
which is common practice in terminal ballistic computations. 
 
 
3. LINEAR DISTRIBUTION RESULTS 
 
These model constructs were computationally placed on thick “6-inch” RHA and tested 
for maximum depth of penetration when impacted by a hemispherical nosed, L/D =10 
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tungsten sintered metal (WSM) penetrator.  Penetrator initial velocity was chosen as 1300 
m/s, which allows a reality check with available published ballistic data.  Depths of 
penetrations were initially calculated for “hard-to-soft” and “soft-to-hard” lay-ups, for the 

cases of two, three, four, 
six and twelve yield 
strength levels along the 
penetration direction.  The 
surprising result is shown 
in Figure 3: for targets that 
operate by erosion, soft-to-
hard strength levels of the 
layers provide better 
armor protection than 
does the conventional 
wisdom of hard-to-soft.  It 
is also noted in Figure 3 
that at four or more levels 
of strength, there is little 
effect in the outcome by 

increasing the number of 
levels.  This is related to 
the size of components 
in the experiment, and 
not controlled by 
directly by the number 
of layers.  The four level 
case is shown in Figure 
4.  Penetrator 
dimensions control the 
sizing of components in 
the experiment.   Once 
the penetrator size and 
striking velocity are 

chosen, the layered construct total thickness is controlled by the desire to have sufficient 
overmatch so that residual penetration into the “6-inch” RHA shows sensitivity to 
variations in the layering.  With twelve layers, the consequences of these constraints are 
that the total thickness of the twelve layers shall be 31.75 mm and the layer thickness 
shall be 2.646 mm.  This is very close to one-third the penetrator diameter, so that in this 
layered FGM simulant, strength levels along the penetration path that vary significantly 
in less than a penetrator diameter have little additional effect on the outcome of the 
experiment.  This result has been obtained in another way by Segletes [REFS].  Segletes 
analytically examined the effect of periodic strength variation along a penetration path 
using a modified Tate procedure, and reached the same conclusion regarding fineness of 
material layers and their consequences on penetration behavior. 
 
 

Residual Penetration vs. Number of Levels
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Figure 3.  Results for linear strength distributions 
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4. ALL-PERMUTATION RESULTS 
 
 The linear hard-to-soft and soft-to-hard are but two of the 4! = 24 permutations available 
in a target made of four hardness level items.  Systematic iterations were done among the 
twenty-four possible stacking arrangements.  These numerical experiments were repeated 
for striking velocities of 1050, 1125, 1300, 1375, and 1450 m/s, so that in all, 120 
simulations were run.  (Each simulation requires 9+ cpu hours on an SGI Origin 2000 
class platform.)  If one denotes the four asending strength levels as “1”, “2”, “3” and “4”, 
an iteration table can be prepared for all the possibilities.  This table and the resulting 
maximum residual penetration are shown in Figure 5 for the 1300 m/s striking velocity 
case.  The pattern of the results are generally quite similar among all the striking 
velocties; only one has been illustrated here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A strong grouping of results by factor of six is evident in Figure 5.  Although the 1300 
m/s case is the one shown here, this pattern trend of rising throughout each group of six 
with or without slight reversals at the ends was evident at all impact velocities from 1150 
m/s to 1450 m/s.  Re-examination of the iteration table shows that the beginning element 
strengths are grouped by six elements each.  That is, the first group of six all have the 
weakest material (“1”) first, then the second group of six have the second weakest 
material (“2”) first, etc.  Internal ordering in each group almost always favors weakest 
material before a stronger one, as cross-examination of the graph and the table will 
reveal. 
 
 
5. PENETRATOR NOSE SHAPE EFFECTS 
 
Two extreme cases of nose shape geometry were examined.  Results show that the trend 
of best armor performance by ordering the target layering from weak to strong continues 
to hold for these cases as well.  The extremes considered were an equivalent mass WSM 

 

Figure 5.  Residual penetrations by Iteration #.  In the table, 1=Weakest and 4=Strongest 
material.  “Case #” and “Iteration #” are equivalent. 
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right circular cylinder of identical diameter but slightly reduced length to compensate for 
replacing the hemispherical nose with a blunt end.  Maximum residual penetrations are 
nearly identical to the hemispherical nose results, so that this order of change in nose 
geometry does not change the conclusion. 
 
The other extreme is a different experiment, which is directly supported by a series of 
ballistic range tests with 0.50 cal AP (armor piercing) projectiles at full service velocity.  
The projectiles have a long ogival nose shape.  In this case, the target was an originally 
homogeneous, high-strength-steel that had been induction zone hardened to produce two 
contiguous levels of strength through the thickness.  The plate was 15 mm in total 

thickness, with an 
extremely hard (strong) 
front layer for 60% of the 
thickness (9 mm) and a 
less hard rear layer for 
40% of the thickness (6 
mm.)  Results of 
simulations at 908 m/s 
(2800 fps) show slightly 
reduced DOP in Figure 6.  
The frames are shown at 
130 microseconds, shortly 

after forward motion is arrested.  Range experiments against plates simulated by this 
computation substantiate improved performance for soft-first.  The ballistic limit velocity 
is about 100 m/s higher for the soft-first configuration than the hard-first configuration.  
 
6. CONCLUSIONS 
 
Ordering of strength levels is an important consideration in setting goals for functional 
graded materials for armor systems.  Performance enhancements are available if 
conventional wisdom is ignored for more substantial evidence developed.  It is 
demonstrated that for minimum depth-of-penetration, lower strength levels of an FGM 
layered construct should be the first the projectile impacts.  It is also shown that strength 
level variations along the path occurring in less than a penetrator diameter have little 
effect on the penetration result. 
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Figure 6. Differences produced by soft-first (left) and hard-first (right). 
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