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1. Introduction 

Composite flywheels are currently being developed for energy storage.  The energy stored in the 
flywheel can be retrieved to supply power for electrical-drive machinery.  To satisfy the  
high-performance and low-weight constraints, high-strength carbon fiber composites are the 
materials of choice for flywheel construction.  Recently, several composite flywheels have been 
developed for commercial power generation and vehicles such as buses and trains.  In the 
government sector, National Aeronautics and Space Administration (NASA) intends to have 
composite flywheels in the space station for energy storage.  Flywheels have also been proposed 
for satellite attitude control.  There are investigations of hybrid and all-electric combat vehicles 
and weapons.  Composite flywheels are crucial components of the systems.  There have been 
numerous research and development (R&D) programs on composite flywheels in the past (1–3).  
Several programs have been conducted in National Laboratories for nuclear applications.  Some 
long-term programs were performed in academia and industry.  In spite of much effort, few 
successful composite flywheels have been built and used in practical applications.  The 
shortcomings that hinder the use of composite materials in flywheel applications will be 
illustrated and discussed.  A new approach for design and testing is also proposed in the 
following sections.  

The inertial stresses in a flywheel during operation (high-speed rotation) are dominant in the 
circumferential direction and, consequently, composite flywheel rotors are usually filament 
wound with the fiber reinforcements oriented in this direction.  However, tensile stress is also 
developed in the radial direction due to mismatches in the growth of the rotor as well as Poisson 
effects.  Because filament wound composite rotors lack reinforcement through the radial 
thickness, these rotors generally fail by radial delamination prior to fiber breakage in the 
circumferential direction.  An elastic thick-walled composite cylinder analysis was developed to 
determine the stress and strain profiles in a flywheel.  Figure 1 shows the definition of stress 
components and coordinate systems used in the analysis.  Figure 2 illustrates the stress profile in 
a graphite composite cylinder with 3-in and 6-in inner and outer radii, respectively, subjected to  
50,000 rpm rotational load.  As shown in the analysis, the maximum hoop stress is ~95 ksi and is 
below the strength limit.  However, the radial stress in this case is ~10 ksi—far exceeding the 
strength in that direction.  These stresses were calculated using the model developed in  
reference (4). 

By assembling the rotor with a press fit or shrink fit, compressive radial stress is built-in, which 
helps to mitigate the radial stresses that develop during operation.  Consequently, higher rotor 
performance is realized by avoiding premature failure by radial delamination.  The press fit 
process, however, might induce significant banding and shear stresses along the axial direction 
of the cylinder during fabrication.  Axial reinforcement might therefore be needed for a flywheel 
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Figure 1.  Definition of coordinate systems and stress components in a rotating 
cylinder.  
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Figure 2.  Stress profile in a hoop-wound composite cylinder with 3-in inner and 6-in outer radii, subjected to 
50,000-rpm rotational load. 

to achieve a higher speed or performance.  With this in mind, a series of material tests were 
performed to determine the tensile and shear properties of laminates in this investigation.  The 
test results will be used to design the layup of a composite rotor subjected to various loading 
conditions, including those induced by the manufacturing processes.    

To achieve high performance, the stresses in a composite rotor must be high during operation.  
Accordingly, the long-term behavior of the composite materials used in flywheel rotors is 
particularly critical.  Over time, the stress and strain profiles can change in a composite flywheel 
significantly affecting the structural performance.  Creep and fatigue crack growth are durability 
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concerns that lead to unbalance in the rotor.  To assist in evaluating the occurrence of such  
time-dependent phenomena, a viscoelastic analysis of flywheels was developed.  Fracture 
properties of the composite laminates of interest were also evaluated in conjunction with the 
potential crack growth and failure mechanism (5).   

The rotor deformation needs to be monitored in order to validate structural design and integrity.  
Currently, deformation of a rotating body can be measured by strain gage with a split ring at the 
spindle or a laser measurement.  The strain gage works only up to a moderate speed then fails 
because of high centripetal force.  The traditional laser device basically measures the distance 
change between the rotor surface and the device location.  However, neither method will be able 
to satisfy the measurement required of a high-speed rotor.  A noncontact optical-sensing 
technique was developed during the investigation.  The method will enable a real-time monitor 
of rotor conditions and will be discussed in detail.    

Recent flywheel developments for energy storage of U.S. Army electric weapons and hybrid 
vehicles are discussed in this report.  Technologies to achieve high-performance composite 
flywheels were developed during the course of this study.  In the following section, those 
technologies will be presented, including analytical models, material characterization, 
component spin tests, and flywheel life assessment. 

2. Analytical Models 

An analytical model is necessary to predict creep and preload loss due to the time-dependent 
behavior of composites.  A viscoelastic analysis has been developed that is relevant for  
thick-walled composite cylinders (6, 7).  The Boltzmann superposition integral is used for the 
complete spectrum of increments of anisotropic material constants with respect to time.  In the 
analysis, a thick composite cylinder is assumed to remain at a constant elevated temperature, and 
all boundary conditions are independent of time.  Accordingly, the linear thermal viscoelastic 
problem can be derived from the associated linear elastic problem by employing the  
elastic/viscoelastic correspondence principle.  In other words, the integral constitutive equations 
reduce to algebraic relations, which are essentially identical to those developed for elastic media 
when they are Laplace transformed by means of the rule for convolution integrals.  The elastic 
analysis can thus be used to derive the transformed viscoelastic solutions in the time domain. 

The coordinate system used to model a rotor is shown in figure 1.  The governing equation can 
be derived from the momentum equation with anisotropic constitutive material properties as 
follows:    
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where w is radial displacement and r is radius, ω is angular velocity, ε is axial elongation, and s 
denotes the Laplace transform variable.  The Cij terms are material properties (4). 

Equation 1 is the governing equation in the Laplace domain. Here and henceforth, an overbar 
denotes functions of the Laplace transform variable.  The elastic formulation has a similar form 
according to the correspondence principle.  While this equation can represent any composite 
layer (with one set of material properties) within a multiple-layer composite cylinder, properties 
are allowed to vary from layer to layer.  

Solving equation 1 for w  yields the complete solution as follows: 

 –
1 2 pw A r A r w= + + %λ λ , (2) 

where 1 2 and  A A are coefficients determined from boundary and continuity conditions.  The 

particular solution is obtained in the following expression: 

 .r
C~9
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ρω
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A set of simultaneous equations can be assembled for a multiple-layer composite cylinder.  The 
total number of equations is determined by the number layers in the cylinder.  A numerical 
technique was developed, which applies the continuity boundary condition during the assembly 
process of the equation set (6).  This process reduces the total number of the equations to one half.  
Finally, traction-boundary conditions are applied to the assembly of equations that comprise the 
multiple-layer cylinder.     

The analysis previously described is used to simulate a composite press fit assembly.  The 
simulation is composed of two concentric cylinders.  The inner cylinder has a 3-in inner radius and 
a wall thickness of 1.5 in.  The outer cylinder has a 4.5-in inner radius and also has a wall thickness 
of 1.5 in.  Both cylinders are hoop wound and constructed of graphite/epoxy composite.  The shear 
and transverse material properties (compliances) are treated as time dependent, and are given in 
figure 3.  The fiber direction compliance and Poisson’s ratios are assumed to be elastic.   

Figure 4 shows that the preload at the interface of cylinders decreases over a period of time.  Stress 
relaxation is observed in the initial preload (radial stress at the interface between the inner and 
outer cylinders), which decreases over time from 5000 to 4000 psi.  In response to this decrease in 
preload, it would be necessary to reduce the rotational speed of the rotor (i.e., knockdown the 
mechanical performance) because the preload is essential for preventing radial delamination.  
Figure 5 illustrates the change in the radial stress profile over a period of time for the flywheel 
subjected to constant rotation at 50,000 rpm.  The hoop-stress profile changes also, as illustrated in 
figure 6.  There is significant redistribution of stresses that should be considered in the design.
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Figure 3.  Composite time-dependent unit ply properties.  Transverse and shear properties are  
time-dependent and expressed with power forms.   
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Figure 4.  Decrease of the preload (radial stress at 4.5-in radius) at the interface of a pressfit 
assembly due to creep and stress relaxation of composite. 
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Figure 5.  Change of the radial stress profile in a rotating wheel due to creep and 
stress relaxation of composite. 
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Figure 6.  Change of the hoop-stress profile in a rotating wheel due to creep and stress 
relaxation of composite. 
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3. Material Testing  

Composite cylinders with an inner diameter of 20 in were fabricated at the U.S. Army Research 
Laboratory (ARL) in-house facilities as shown in figure 7.  David Spagnuolo, Robert Kaste, and 
Dennis Henry contributed to the fabrication of cylinders including mandrel fabrication, filament 
winding, and cure kinetics study.  The details of manufacture will be documented in a separate 
report.  The cylinder was made of T1000G graphite/epoxy composite.  Several thin cylinders 
(0.1 in thick) were fabricated and sliced into 0.5-in-wide ring specimens for hydro-burst testing.  
A test matrix was conducted to measure the strength and stiffness of these composite ring 
specimens.  This procedure works well for evaluating the circumferential strength of cylinders 
fabricated with various fiber volume fractions, matrix materials, and fabrication methods.  High 
strength is obtained through careful engineering and manufacturing of the cylinders.  The 
strengths measured from the ring samples were between 500 to 600 ksi for the fabrication 
methods and material systems used. 

 

ARL 20 inch diameter 
cylinder

 

Figure 7.  Twenty-inch diameter composite cylinders fabricated at 
ARL facilities.
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As discussed previously, the performance of a composite flywheel can be enhanced through a 
proper laminate architecture design with axial reinforcements.  A series of tests was performed to 
evaluate the enhancement of S-2 Glass* axial reinforcement on the transverse, shear, and fracture 
properties of laminates.  Effects of glass ply content on shear strength were evaluated using 
carbon/glass hybrid laminates.  T1000G composite laminates with various axial glass contents 
were tested using Iosipescu shear tests.  Figure 8 shows the trend of the enhancement of shear 
strength (τ23) of the T1000G laminate with increasing glass content.  These results can be used in 
the design of laminated composite cylinders.  An identical test matrix was also performed for 
transverse tensile tests.   
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Figure 8.  Iosipescu test specimen represents the loading condition and rotor construction.  Shear strength 
increases as the glass content increases. 

Fracture toughness is a critical property for composite flywheels subjected to a very high 
operating stress.  Microcracks developed in the matrix can propagate and cause delamination in 
the rotor.  A composite system with high fracture toughness has a slow rate of crack propagation 
and, thus, a longer fatigue life.  The fracture toughness of composite cylinders can also be 
enhanced by adding glass content in the rotor axial direction (5).  Figure 9 shows how the glass 
content affects the fracture toughness.  Reference (8) gives details of the test method, results, and 
fracture mechanism predicted for composite cylinders.  The dependence of loading rate on the 
fracture toughness is also evaluated, which is useful for a high-rate loading condition.  In 
conjunction with this study, a fatigue study on combined shear and compressive loading of 
composite laminates was performed (9).  

                                                 
* S-2 Glass is a registered trademark of Owens Corning. 
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Figure 9.  Fracture increases as the glass fiber content increases in the composite laminate.  
The glass is oriented to arrest the crack propagation. 

4. Rotor Testing:  Vibration and Strain Measurement 

Several techniques exist for measuring strains in the rotors of flywheels during operation, 
including strain gages with slip rings or telemetry, x-ray diffraction, and optoelectronic strain 
measurement (OESM).  The OESM technique (described in detail in references [10] and [11]) is 
capable of simultaneously measuring and isolating flexible-body displacements (strain) and 
rigid-body displacements (vibration) in a noncontact fashion on flywheels rotating at several tens 
of thousands of rpm.  In addition, the computer control of the OESM sensor enables the 
displacements to be measured in a quasi-continuous fashion (i.e., without postprocessing), and 
the OESM technique includes built-in compensation for drift/aging of the sensor.  The 
combination of these previously-mentioned features, as well as its compact size, makes the 
OESM technique suitable for long-term autonomous operation in the field. 

The OESM technique consists of two components:  a reflective pattern applied to the axial face 
of the flywheel, and a sensor that “looks at” the pattern as the flywheel rotates.  The OESM 
sensor projects a stationary spot of light onto the axial face of a rotating disk.  The reflective 
pattern on the axial face of the disk modulates the reflectivity of the light spot.  This pattern, 
which deforms in unison with the disk, is designed such that the in-plane displacement of the 
disk is effectively “encoded” into a stream of reflected pulses of light.  A photodetector on the 
sensor converts this stream of reflected light pulses to electrical pulses and sends these electrical 
pulses to the gate of a timer/counter circuit in a digital computer.  The computer uses a 

6% v.c. 
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tachometer signal to convert the (temporal) pulse widths to angular widths of the reflective 
features of the pattern.  Figure 10 shows an illustration of a rotor with inner and outer radii, ri 
and ro, respectively, with a pattern that has one reflective patch (the cardioid shape shown in 
white).  Also shown in figure 10 is the corresponding swept-angle, φ, or so-called duty cycle, 
output from the sensor. 

 

φ

ri
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fixed
sensor

sensor
path 

Top 
view 

Oblique 
view 
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Logic 
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π/2 

π 
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Figure 10.  Illustration of a pattern and sensor configuration with corresponding duty  
cycle (10). 

The instantaneous displacement, u, of the rotor at the location of the projected spot of light is 
determined by comparing the instantaneously measured angular widths to a calibration record of 
pulse width vs. radial location on the rotor.  Figure 11 shows the duty cycle before deformation, 
φ 1, and after deformation, φ 2, for a sensor fixed in space at a location corresponding to an initial 
radial location r1 on the under-formed rotor. 

� 

u r1
= r1 − r2
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0
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φ2 
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Cycle, 

φ 

radial position 
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Figure 11.  Illustration of change in duty cycle at one radial location before and after  
deformation (10).
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4.1 Improvements to ARL OESM System 

Recent changes have been made to many aspects of the OESM system since the original system 
was developed.  These changes encompass improvements to the pattern shape, the technique for 
applying the pattern to the rotor, the sensor geometry, and configuration and control of the 
sensor. 

4.2 Pattern Shape 

While the shape of the pattern shown in figures 10 and 11 is a spiral boundary shape (10, 11), the 
pattern shape used in practice possessed geometric features with linear boundaries.  Figure 12 
shows a comparison of these two types of pattern shapes on an identical annular rotor.  Note that 
the patterns shown in figure 12 possess four reflective lobes, while the patterns shown in  
figures 10 and 11 have only one lobe (for illustrative purposes). 
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Figure 12.  Illustration of a four-lobe linear boundary and four-lobe spiral boundary pattern. 

A linear boundary pattern possesses a region near the inner radius where the duty cycle exhibits a 
large change with respect to radial position.  This large change corresponds to a large “slope” of 
the calibration record and, therefore, is a pattern with favorable sensitivity to radial displacement 
(figure 12).  It has been found, however, that the portion of the linear boundary pattern near ri 
(where this large slope is an advantage) is not practical to use.  In the usable radial locations in a 
linear boundary pattern, the duty cycle of a spiral boundary pattern exhibits equivalent or better 
sensitivity to radial displacement than a linear boundary pattern.  The sensitivity of a linear 
boundary pattern quickly decays away from the inner radius, while the sensitivity of a spiral 
boundary pattern remains essentially constant over the entire radial region.  Based on these 
findings, the current rotor-testing protocol employs a spiral boundary reflective pattern.
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4.3 Pattern Application 

The reflective pattern in the OESM system is essentially analogous to a strain gage in as much as 
the pattern must not significantly reinforce the rotor, and it must deform with the rotor.  With the 
previous OESM technique, the pattern was applied to the axial face of the rotor with a spray-on 
photographic emulsion.  The emulsion was developed in a contact-print fashion using a mask 
with computer-generated geometric features.  The main drawbacks of this pattern application 
technique are that it is very laborious, and it results in a delicate pattern.  The new technique for 
applying the reflective pattern uses a thin layer of reflective paint followed directly by a thin 
layer of ink that is applied using a pen and compass.  The resulting pattern is able to be applied 
faster and is much more resistant to damage that may occur during handling of the rotor. 

4.4 Sensor Geometry 

During testing of the original OESM system, it was found that when the vertical distance 
between the rotor and the sensor changed more than ~50 µm, significant errors were introduced 
into the measurement of the apparent duty cycle.  It is believed that some of this sensitivity was 
attributable to drifting of the spot in the active area of the photodetector, as the original OESM 
sensor projected the spot of light onto the rotor surface at an angle that was ~10° away from 
perpendicular.  Also, the original sensor had a stand-off distance between the sensor and the 
rotor surface of ~4.5 mm; thus, vertical displacements resulted in defocusing of the projected 
spot.  With these design issues in mind, the current OESM sensor has a stand-off distance of  
~50 mm and projects the light perpendicularly to the surface. 

4.5 Configuration and Control of the Sensor 

The OESM system described in references (10) and (11) was configured with 10 positions 
equally spaced along a radial line at which a sensor could be located.  The sensors in this 
configuration remained stationary during operation.  The displacements measured at these 10 
locations, therefore, were only useful for constructing a rather coarse full-field “picture” of the 
state of strain in the rotor.  The current OESM setup uses a single sensor, which is bolted to a 
linear stepper motor stage.  The stroke length of this linear stage is capable of scanning a large 
radial range (125 mm) in radial increments as small as 1 µm, thus enabling the construction of a 
very fine full-field “picture” of the state of strain in the rotor.  Also, a new algorithm for 
controlling the inevitable drift of the sensor (12) will be employed in the current OESM system 
at ARL.  

4.6 OESM System at ARL 

Measurement of radial growth is an essential piece of data for validating the structural design 
and analysis of the flywheel rotor.  It is unlikely that any rotor will be accepted for operation in 
the field without validation by testing.  The previously developed OESM technique was capable 
of measuring displacements with 1-µm sensitivity on a disk rotating at 20 krpm.  While not yet 
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fully tested, the improvements embodied in the current OESM system as previously described 
should enable a several-fold increase in the sensitivity to displacement.  Figure 13 shows a 
picture of the spin test facility at ARL, which is ready to be used in the component tests in 
support of the efforts for developing a pulsed power rotating machine.   
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Figure 13.  Picture of the rotor testing facility at ARL. 

5. Conclusion 

A comprehensive research program has been conducted to develop high-performance composite 
flywheels for energy storage applications.  Modeling techniques including elastic, viscoelastic, 
and fatigue analyses were developed for design as well as prediction of rotor behaviors.  A 
laminate architecture for achieving high mechanical performance of flywheels was proposed 
based on lessons learned from previous programs.  A material test matrix at the laminate level 
was also proposed from a design point view of high-performance flywheels.  The optical strain 
measurement technique can be used to validate flywheel design and construction.  Particularly, 
the proposed design and test procedure indeed considers the long-term behavior of flywheel such 
as creep, stress relaxation, fatigue, and fracture of composites.    
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