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1. Introduction 

A robotic system depends on a variety of on-board sensors providing information concerning its 
environment in order to accomplish required mission objectives.  Examples of typical mission 
objectives for robotic systems are autonomous mobility and object detection.  In general, most of 
these sensors are capable of very accurately perceiving only a narrow aspect of the environment.  
For example, ladar1, radar, and sonar sensors provide depth and displacement information, while 
infrared (IR) sensors provide data about thermal emissions within the environment.  On the other 
hand, machine vision systems using a “daylight” camera(s) can be one of the most informative 
sensors, providing information across a wide range of sensor modalities (e.g., color, shading, 
texture, etc.).  As Bischoff and Graefe (1998) observed, “Vision is the most powerful sensor 
modality for providing rich and timely information on a robot’s environment.”  Unfortunately, 
the versatility of the vision system information is often accompanied by the complexity of the 
data analysis.  Even a seemingly simple question such as the color of an observed object is 
confounded by factors such as illumination (i.e., the color consistency problem), which often 
lead to inconsistent results. 

Faced with this disparity in the information provided by the sensors about robotic systems, we 
naturally exploit the possible benefits offered by the “integration” or “fusion” of data from 
multiple sensors to construct a broader and more inclusive model of the robot’s environment.  
While multi-sensor data fusion appears to be a common approach in the target recognition and 
automatic target recognition communities (e.g., Hall, 1992; Stevens, Beveridge, and Goss, 1997), 
much less work is reported in the literature about data fusion relative to constructing the 
environment of a robotic system.  The work by Abidi and Gonzalez (1992) provides an 
introduction to the subject.  Of interest to us in this research is the fusion and integration of ladar 
sensor data and imagery data from a stereo camera pair. 

Output of a ladar sensor is range (distance) information based on the time of flight of a laser 
pulse emitted by the sensor that is reflected off an object and back to the sensor.  Thus, the range 
information is a direct measure and is generally accurate.  Figure 1 provides typical ladar range 
data for real-time ladar sensors represented as an image using false color to quantify range.  As 
can be observed in the figure, the resolution of the range image is substantially less than that 
available with most camera data.  In addition, the ladar data suffer from what is known as the 
“mixed point problem” (Dias, Sequeira, Goncalves, & Vaz, 2001).  Essentially, the mixed point 
problem results from the fact that the laser pulse has a non-zero width (i.e., appears more like a 
disc than a point).  At edges or depth discontinuities in the scene, the laser pulse reflects from 
objects in both the foreground and background.  In this case, the measured distance is a 
                                                 

1An acronym of laser detection and ranging, ladar uses laser light for detection of speed, altitude, direction and 
range; it is often called laser radar.  See the photonics dictionary – web site: http://www.photonics.com/dictionary/. 
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combination of the distances to foreground and background objects.  As a result, edges often 
tend to exhibit sawtooth-like patterns, several instances of which are evident in figure 1.  The 
image of the same scene as viewed from the left camera of a stereo camera pair is shown in 
figure 2.  Clearly visible are many features not present in the ladar range image (e.g., shadows, 
color, and clear boundaries at depth discontinuities).  Camera data are a measurement of the 
energy (intensity) of reflected light off object surfaces and changes depend on the scene 
illumination.  Thus, most of the information obtained from camera data is the result of some 
form of analysis.  The most important derived information for a stereo camera pair is the three-
dimensional (3-D) reconstruction of the scene (i.e., world model) via a geometric analysis.  For 
relatively “simple” environments2, both ladar and stereopsis tend to provide acceptable results.  
However, the same is not necessarily true for more “complex environments”.   

 

Figure 1.  False color ladar range image (Oberle & Haas, 2002).  

 

Figure 2.  Left-hand camera image from stereo camera pair of ladar 
scene in figure 1 (Oberle & Haas, 2002). 

                                                 
2A “simple” environment is one in which there are few depth discontinuities and object surfaces tend to be 

smooth. 
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To summarize, ladar data consist of accurate spatially low resolution range data while stereo 
camera data consist of spatially high resolution but generally noisy reflectance data from which 
range data can be derived.  In addition, the stereo camera data provide scene information not 
available with the ladar (e.g., color or sharp depth discontinuities).  The research described in 
this report focuses on improving the calculated world model of complex environments through 
the use of data integration and fusion (Abidi & Gonzalez, 1992) of ladar sensor data and stereo 
camera imagery. Our specific research objectives are to 

1. Improve the solution to the stereo correspondence problem3 and by extension, the 3-D 
stereo reconstruction4 problem by using data integration5 with ladar range data as a priori 
disparity information; and 

2. Improve the 3-D world model through the data fusion6 of the improved 3-D stereo 
reconstruction information with ladar data. 

A number of researchers have used data fusion of ladar and vision data to enhance the 3-D world 
model.  For example, Dias, Sequeira, Goncalves, and Vaz (2001) used fusion to address the 
mixed point problem for both indoor and outdoor environments. Nickels, Castano, and Cianci 
(2003) presented a unified architecture for fusing lidar7 and stereo range data to create a summary 
map of obstacles and free space surrounding a robot.  Spero and Jarvis (2002) detailed their 
efforts to fuse imagery data and ladar to construct a high resolution model of the environment in 
terms of surface shape and color (a common approach to obstacle detection and tracking in the 
unmanned ground vehicle community (e.g., see Chang, Hong, Rasmussen, & Shneier, 2002).  
However, our literature review yielded no research addressing the use of the ladar data as a priori 
information to improve the solution of the stereo correspondence problem. 

The purpose of this report is to describe a proposed approach to accomplish the research 
objectives as enumerated and to detail the current status of the research.  In section 2, a proposed 
architecture to accomplish the stated objectives is presented and discussed.  Section 3 describes 
relevant characteristics of the application domain (i.e., complex environment) and their influence 
on the selection of the “stereo matching” algorithm (used to solve the stereo correspondence 
problem) selected for the initial proof-of-concept experiments. Results of these experiments are 
provided in section 4.  Finally, in section 5, a summary and outline of future work are presented. 
 

                                                 
3Correspondence Problem: “Which parts of the left and right images are projections of the same scene element?” 

(Trucco & Verri, 1998) 
4Reconstruction Problem: “Given a number of corresponding parts of the left and right images, and possibly 

information on the geometry of the stereo system, what can we say about the 3-D location and structure of the 
observed object?” (Trucco & Verri, 1998) 

5Synergistic use of sensor data to accomplish specific task. 
6Combining data to generate a single model representation. 
7Another acronym of laser detection and ranging, same principle as ladar. 
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2. Architecture 

A flow diagram of the necessary steps to accomplish the research objectives is shown in figure 3.  
As illustrated in the figure, the processes are separated into five different functional layers.  
Within the pre-processing and data integration layers, individual algorithms necessary to achieve 
the research objectives are identified.  At the present time, a number of the algorithms in these 
layers have been completed.  Much less specific is the data fusion layer; algorithms in this layer 
will augment the work of Dias et al. (2001); Nickels, Castano, and Cianci (2003); Spero and 
Jarvis (2002); Chang et al. (2002), and others as we continue our work.  A discussion of the first 
three functional layers follows. 

2.1 Input Layer 

The ladar and camera data listed as input in the input layer of figure 3 represent the minimal 
input required to perform the analysis.  Additional input that would be useful to the analysis 
include range or intensity images from the ladar and left-right camera registration.  Sources of 
input error that can propagate throughout the analysis involve the camera calibration information 
and the 3-D ladar data.  On a moving vehicle, especially over rough terrain, vibrations can result 
in changing camera settings that affect the camera calibration.  Although range is a direct 
measurement of the ladar sensor, 3-D coordinate data are a derived measure.  Essentially, the 
ladar system uses a spherical coordinate system (ρ,θ,φ) in determining the 3-D coordinates.  The 
range, ρ, is directly measured while the two spherical coordinate angles, θ and φ, are associated 
with the location of the laser emitter.  For real-time systems, the angles and the emitter location 
are often based on a pre-operation calibration.8  This calibration, as with the camera calibrations, 
could change during periods of operation.  

2.2 Pre-Processing Layer 

The pre-processing layer is optional if the ladar sensor and cameras are registered off line and the 
registration does not change during operation, i.e., the ladar sensor and cameras are rigidly 
mounted and move as a single unit.  If this is not the case, then three registrations (ladar-left 
camera, ladar-right camera, and left-right camera) are required in order to complete the analysis.  
However, given any two of the registrations, the third can be determined.  The pre-processing 
layer as shown assumes that the cameras are not registered.  If the cameras are registered, then 
only the ladar-left or ladar-right camera registration needs to be determined.  In either case, it is 
necessary to determine a set(s) of matching, corresponding, or homologous points between the  
3-D ladar data and the 2-D image data (left, right, or both cameras).  If the input from the ladar 
sensor includes either a range or intensity image, the image can be used in the matching.  
                                                 

8Private communications, G. Haas, U.S. Army Research Laboratory, April 2004. 
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Otherwise, a range image for the ladar data must be created.  A number of procedures can be 
used to create the range image, the simplest being to use false color to quantify the range and to 
use the scanning properties of the ladar (e.g., number of emission per horizontal line, number of 
vertical positions, etc.) to define the image size.8  Figure 1 is an example of this approach.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Proposed architecture for research effort. 
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Once a ladar image (intensity or range) is available, details of the matching algorithm must be 
addressed. The most direct approach is to manually select the corresponding points.  Although 
potentially time consuming, this approach should result in a relatively accurate set(s) of matching 
points and is the approach used in this work.  However, this approach is only applicable if the 
registration(s) need to be calculated infrequently.  If the ladar and cameras are not rigidly 
mounted, the registration(s) will have to be performed on a continuous basis and the matching 
process will have to be automated.  Corners (Elstrom, 1998) or edges (Dias et al., 2001) are two 
common features frequently used in the determination of corresponding points.  However, since 
one of the images is based on ladar range or intensity and the other is based on a camera, care 
must be taken in using an automated evaluation of the “goodness” of the match.  Standard 
correlation techniques may not be viable in these circumstances. 

Ladar-camera registration involves determining the rigid body transformation between the ladar 
and camera coordinate systems based on a matched set of 3-D (ladar) and 2-D (camera) 
coordinates.  A comparison of approaches to accomplish this calculation has been performed 
with several acceptable methods identified (Oberle & Haas, 2004).  Two methods, one by 
DeMenthon and Davis (1995) and another by Bouguet (2003) were used. 

2.3 Data Integration Layer 

It is within the data integration layer that the major effort of our work has been focused to date.  
The principal novelty of this work is the integration of 3-D ladar information as an a priori 
image disparity map to improve the solution to the stereo correspondence problem. 

The first step in creating the a priori disparity map from the 3-D ladar data is to project the ladar 
data onto the left and right camera images while simultaneously building a table of left and right 
image pixel pairs that are images of the same 3-D ladar point.  A pin-hole, projective camera 
model is used to perform the projections.  As each 3-D ladar point is projected onto the left and 
right camera images, a “partial mapping” between left-image pixels and right-image pixels is 
generated. The mapping is termed partial since not every pixel in either the left or right image is 
guaranteed to be in the range of the projection of the 3-D ladar points.  Although the calculation 
of the projection of a 3-D point onto an image is straightforward, the overall mapping must be 
constructed in such a way to ensure that the resulting correspondence between pixels in the left 
and right images is unique.  Given two 3-D ladar points, there are four possible results for the 
mapping as illustrated in figure 4.  In cases 1 and 4, the correspondence between the image 
pixels is unique.  However, in cases 2 and 3, a single pixel in the left (right) image corresponds 
to two pixels in the right (left) image.  To resolve this ambiguity, the 3-D ladar point with the 
greatest range and the associated pixel correspondence is discarded.  The motivation for this 
decision is based on the fact that if two 3-D points map to the same point in an image plane, only 
the closest point is visible with the other point being occluded.  Code to perform this particular 
algorithm has been completed. 
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Figure 4.  Possible outcomes of mapping two 3-D ladar points onto left and right camera images. 
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1993, or Trucco & Verri, 1998).  Unfortunately, if the camera calibration or registration 
information is erroneous, the rectified images tend to be vertically shifted (Oberle, 2004).  As 
mentioned earlier, because of vehicle vibration, the camera calibration and/or registration 
information will most likely change during operations.  Thus, for this work, a rectification 
algorithm not dependent on either camera calibration or registration information will be 
implemented.  The algorithm will be based on the work of Lim, Mittal, and Davis (2004); 
Pollefeys, Koch, and Van Gool (1999); and Loop and Zhang (1999).  At the same time that the 
images are rectified, the table of left-right pixel correspondences is adjusted to remain consistent 
with the rectified images. 
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Once the images are rectified and the table of left-right pixel correspondences is adjusted, the a 
priori disparity map can be constructed.  If 1 1 1( , )p x y=  represents the coordinates (in pixels) of 
a point 1p  in the left image and 2 2 2( , )p x y=  represents the coordinates of the corresponding 
point in the right image in the table, the disparity is defined as 

1 2 1 2
1 2

,
( , )

0, otherwise
x x y y

d p p
δ − − <= 


 

The disparity map assigns to each pixel of the left-camera image the disparity with its 
corresponding right image point (if one exists) from the table.  If no corresponding pixel exists in 
the table, a value of 0 is assigned; δ in the above definition represents a user-assigned parameter.  
Appropriate values for δ remain to be experimentally determined. 

The next stage of the data integration layer is to solve the stereo correspondence problem with 
the a priori disparity map.  Details concerning the initial algorithm selected for the proof-of-
concept experiments are provided in section 3 with results in section 4. 

Once the stereo correspondence problem is solved, the final stage of the data integration layer 
(stereo 3-D reconstruction) is performed.  A standard geometric triangulation algorithm is used.  
Details about the algorithm are given in Oberle and Haas (2002). 
 

3. Application Domain and Stereo Correspondence Algorithm 

3.1 Application Domain 

As mentioned in the introduction, we are predominantly concerned with scenes representing 
complex environments.  We define a complex environment as one in which there is a “large 
number” of depth discontinuities.  Generally, this implies that the scene contains a relatively 
“large number” of individual objects at different depths.  In addition, the individual objects will 
tend to be rather “thin” (e.g., trees or poles) and are called “narrow occluding objects” (Brown, 
Burschka, & Hager, 2003).  An example of a complex environment is shown in figure 5. 

In a stereo image pair, depth discontinuities result in occluded9 points, i.e., scene elements 
visible in only one of the two images.  This situation is illustrated in figure 6 where the portion of 
the object highlighted in red is visible in only the right camera.  Since the stereo correspondence 
problem is already ill posed (Scharstein, Szeliski, & Zabih, 2001), occluded points only increase 
the difficulty of obtaining an accurate solution.  Besides creating occluded points, narrow 
occluding objects create situations in which the “ordering constraint” is violated, further 
complicating solutions to the correspondence problem.  Many of the algorithms developed to 

                                                 
9Also referred to as half-occluded points. 
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solve the correspondence problem at some point in their execution must choose between a 
number of potential correspondences (e.g., a pixel in the left image, depending on the criteria 
being used, may have several equally likely correspondences in the right image).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Example of a complex environment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Example of occluded region.  
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surface is not at a constant depth relative to the cameras.  This situation is illustrated in figure 7.  
However, if several distinct objects (especially if the objects are thin) are in the field of view of 
the cameras, the ordering constraint could fail, as shown in figure 8 (red and yellow points have 
switched order).  See Dhond and Aggarwal (1992) for additional details involving the ordering 
constraint and stereo matching in the presence of thin occluding objects. 

In summary, our desire to work with complex environments imposes two conditions on whatever 
algorithm is selected to solve the correspondence problem.  First, the algorithm must be robust in 
terms of identifying occluded regions.  The second condition is that the algorithm must not rely 
on the ordering constraint in resolving ties between possible matches. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Example where ordering constraint holds. Figure 8.  Example where ordering constraint fails. 

3.2 Stereo Correspondence Algorithm 

Stereo correspondence algorithms and their development is one of the most active research areas 
within the computer vision community.  Thus, numerous stereo correspondence algorithms exist, 
which employ a variety of approaches available for use in our proof-of-concept experiments.  In 
the end, as many as 30 different stereo correspondence algorithms were considered.  Besides the 
two conditions stated before, other important considerations in the final algorithm selection are 
dense disparity maps10, accuracy, and execution time.  Fortunately, researchers at Middlebury 
College, Vermont (http://cat.middlebury.edu/stereo/; Scharstein & Szeliski, 2002; Scharstein, 
Szeliski, & Zabih, 2001) have maintained a web site over the past several years which contains 
stereo pairs (non-complex scenes with occlusions) with ground truth to permit the comparison of 
different stereo correspondence algorithms.  The results compiled by the Middlebury College 
researchers are used in our final selection. 

                                                 
10A dense disparity map assigns to almost every pixel in one image a corresponding pixel in the other image or 

identifies the pixel as being occluded in the other image.  
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Following the taxonomy of Brown, Burschka, and Hager (2003), stereo correspondence 
algorithms are classified as local methods or global methods.  Local methods base matching 
decisions on a small number of pixels surrounding a given pixel.  For example, matching 
depends on intensity values within regularly sized neighborhoods of the pixels and some form of 
similarity (dis-similarity) measure, such as sum-of-squared differences or census metric (Banks 
& Corke, 2001; Sebe, Lew, & Huijsmans, 2000; Scherer, Werth, & Pinz, 1999; Bhat & Nayar, 
1998), is used to establish the correspondences.  Global methods base the matching decisions on 
scan lines or the entire image.  Dynamic programming algorithms across scan lines and “graph 
cut” algorithms that determine the disparity map for the entire image simultaneously are 
examples of global methods.11 

Local method algorithms are also referred to as window-, area-, or correlation-based algorithms.  
These algorithms represent some of the earliest developed to solve the stereo correspondence 
problem.  Algorithms in this category tend to execute rapidly and form the basis for practically 
all “real-time” stereo implementations (Brown, Burschka, & Hager, 2003; Hirschmuller, 2001; 
Kimura, Shinbo, Yamaguchi, Kawamura, & Nakano, 1999).  Although most of the local methods 
produce dense disparity maps, those methods based on matching features (e.g., occlusion edges, 
corners, or domain-specific features such as road surface markings) do not.  On the other hand, 
feature-based methods tend to be less sensitive to depth discontinuities than other local methods.  
However, as Brown, Burschka, and Hager (2003) state, “Due to the need for dense depth maps 
for a variety of applications and also due to improvements in efficient and robust block-matching 
methods, interest in feature-based methods has declined in the last decade.”  Because of the lack 
of dense disparity maps, we rejected feature-matching algorithms for this work. 

Two recent local method implementations that do not rely on the ordering constraint or feature-
based matching have been submitted to the Middlebury College site for comparison with other 
methods.  Muhlmann, Maier, Hesser, and Manner (2001) developed a correlation-based method 
using a median filtering to remove outliers and left-right consistency to eliminate false matches 
to generate a sub-pixel accurate disparity map.  Although efficient, the algorithm is ranked 
approximately 27th of the 30 algorithms compared on the Middlebury College site.  The most 
recent (April 15, 2004) results for the site are provided in appendix A.  Hirschmuller (2001) also 
uses a correlation-based method.  He uses a novel multiple window approach and a border 
correction filter to decrease matching errors at depth discontinuities.  A general error filter is 
used to further invalidate uncertain matches.  Although Hirschmuller’s algorithm produces 
improved results for the Middlebury College comparisons, it still ranks approximately 17th.  
Based on these results, we made the decision not to use a local method. 

 

                                                 
11Other global methods, some of which perform rather well in the Middlebury College comparisons, include 

layered approaches (Baker, Szeliski, & Anandan, 1998; Shade, Gortler, He, & Szeliski, 1998), belief propagation 
(Sun, Zheng, & Shum, 2003), and Markov random fields (Boykov, Veksler, & Zabih,1998). Our analysis indicated 
that these approaches were not the most suitable for our work. 
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Our analysis of global methods indicated that the best choice to achieve our objectives is a 
graph-cut algorithm.  Specific details concerning our choice are provided next.  However, 
numerous other global methods exist and have been evaluated (e.g., see footnote 11).  One 
method that is often used in stereo correspondence global methods is dynamic programming 
(Redert, Tsai, Hendriks, & Katsaggelos, 1998; Tsai & Katsaggelos, 1999), and we felt that 
several remarks about this method and why it was not selected are warranted.  Cormen, 
Leiserson, and Rivest (1990) define dynamic programming as a mathematical method that 
reduces the computational complexity of an optimization problem by decomposing it into 
smaller and simpler sub-problems.  Thus, dynamic programming is not specific to stereovision.  
A global cost function across scan lines is computed in stages.  Going from one stage to the next 
is determined by a set of constraints.  One of the necessary constraints is the ordering constraint 
(Amini, Weymouth, & Jain, 1990).  Since one of our conditions for the stereo correspondence 
algorithm is that it cannot depend on the ordering constraint, no algorithm using dynamic 
programming is acceptable for our work. 

Starting in the mid-1990’s, a new global method approach to the stereo correspondence problem 
was developed, based on the minimization of an “energy function” using graph cuts (Boykov, 
Veksler, & Zabih, 2001(A), 2001(B); Boykov & Kolmogorov, 2001; Kolmogorov & Zabih, 
2001; Kolmogorov & Zabih, 2002; Kolmogorov, Zabih, & Gortler, 2003).  Minimization of an 
energy function is well suited to our situation.  It is reasonable to expect that the solution to our 
correspondence problem will not vary far from the a priori ladar disparity information.  In 
addition, graph-cut algorithms do not require the use of the ordering constraint.  Thus, we chose 
to use a graph-cut methodology for solving the stereo correspondence problem. 

Kolmogorov and Zabih (2002) describe the graph-cut approach as “The basic technique is to 
construct a specialized graph for the energy function to be minimized, such (sic) that the 
minimum cut on the graph also minimizes the energy (either globally or locally).  The minimum 
cut in turn can be computed very efficiently by max (sic) flow algorithms.”  Unfortunately, as 
they state, “Minimizing an energy function via graph cuts, however, remains a technically 
difficult problem.  Each paper constructs its own graph specifically for its individual energy 
function, and in some of these cases, the construction is fairly complex.”  Since our goal is 
directed toward data integration and fusion, not the development of a graph-cut algorithm, we 
elected to modify an existing graph-cut algorithm.  An algorithm by Kolmogorov and Zabih 
(2001) described in Computing Visual Correspondence with Occlusions Using Graph Cuts was 
selected for its explicit handling of occlusions.  Code for their algorithm is available on line at 
http://www.cs.cornell.edu/People/vnk/software.html. 

The basic steps for using a graph-cut algorithm are 

1. Define the energy function, 

2. Construct the appropriate graph, and 

3. Use a maximum flow algorithm to minimize the energy function via graph cuts. 
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As mentioned, the algorithm used in our work is a modification of the Kolmogorov and Zabih 
(2001) algorithm.  Our modification is the inclusion of an additional term in the energy function 
representing the cost or penalty of assigning a disparity to a pixel different from that assigned by 
the a priori ladar disparity data.  As long as this term is non-negative, the results of their 
algorithm (i.e., computation of a strong local minimum12 for the energy function) remain valid 
(Kolmogorov & Zabih, 2002). 

A brief description of the modified energy function using the notation of Kolmogorov and Zabih 
(2001) is provided.  This illustrates our modification of the original Kolmogorov and Zabih 
energy function.  For details concerning the construction of the appropriate graph and the use of 
a new maximum flow algorithm based on α-expansion (Boykov & Kolmogorov, 2001) to 
minimize the energy function, the reader is referred to Kolmogorov and Zabih (2001). 

Notation: 

  set of all pixels, i.e., pixels left image  pixels right image.=P U  
 { }, |  and  are pixels in different imagesp q p q=A , 

i.e., a set of unordered pairs of pixels that could potentially correspond.  An element of A  is 
termed an “assignment.” 

( )d , disparity between pixels  and .p q p q=  

:  assigns a 1 or 0 to every element (assignment) of f A , referred to as a “configuration.”  An 
assignment of A  is termed active if it is assigned a value of 1.  Active assignments can be 
thought of as pixels that correspond. 

 ( )  subset of  consisting of active assignments according to the configuration .=A f A f  
 { }( ) , ( ) ,p p q= ∈N f A f set of active assignments in f that involve pixel p. 

Unique configuration f : ( ) 1,pp∀ ∈ ≤P N f  i.e., each pixel is involved in one active 

assignment at most.  Note that occluded pixels satisfy ( ) 0.p =N f  

( ) 1,  argument true or non-zero
.

0, otherwise


⋅ = 


T  

 

{ } ( ) ( )1, 2 1 , 2 ,d 1 d 2 ,  and if 1 ,  and 2 ,  with  and 

in the left image,  then  and  or  and  are adjacent pixels

a a a a a a a p q a r s p r

p r q s

 ∈ ∈ = = = 
 
  

A A
N =  

                                                 
12Within a known factor of the global minimum 
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Energy Function: 

Employing the previous notation, our modification of the Kolmogorov and Zabih (2001) energy 
function is written in general as 

( ) ( ) ( ) ( ) ( )data ladar occ smoothE E E E E ,= + + +f f f f f  

with our modification being the ( )ladarE f term.  The data term is the cost associated with an 

assignment being identified as active and is given by 

 ( ) ( )
( )

dataE D ,
a

a
∈

= ∑
A f

f  

in which for an assignment ( ) ( ) ( )( )2
, , Da p q a I p I q= = − , with I the intensity of the pixel.  

The ladar term is the cost associated with an active assignment that has a disparity different from 
the a priori ladar disparity data and is given by 

 ( ) ( ) ( )( ) ( )( )
( )

2
ladarE d .

a
a p p

∈

= − ⋅∑
A f

f TL L  

In the expression, p is the left-image pixel of the assignment a, and L(p) is the a priori ladar 
disparity assigned to pixel p.  Note that if no disparity is assigned to the pixel from the ladar 
information, L(p) = 0 and no cost is incurred.  Thus, the a priori ladar data only influence those 
pixels that are in the range of the projection of the ladar data onto the left and right camera 
images.  In addition, if the resolution of the ladar data is low, L(p) will equal 0 for most active 
assignments.  A major research effort of this work is to investigate the effect on the solution to 
the correspondence problem resulting from different approaches for extending the a priori 
disparity information to all active assignments.  The occlusion term imposes a cost for 
identifying a pixel as occluded.  This term is given by 

 ( ) ( )( )occE 0 .p p
p

C
∈

= ⋅ =∑
P

f T N f  

The value of Cp is defined next.  Finally, the smoothness term imposes a cost if adjacent pixels in 
the same image do not have the same disparity.  In terms of assignments, this is equivalent to 
imposing a cost if one assignment is present in the configuration and another close assignment 
with the same disparity is not.  Specifically the smoothness term is given by 

 ( ) ( ) ( )( )
{ }

1, 2
1, 2

E 1 2 .smooth a a
a a

V a a
∈

= ⋅ ≠∑f T f f
N

 

Details of the function 1, 2a aV are provided next. 

The goal is to determine the unique configuration, *f , that minimizes ( )E f .  The solution to the 

stereo correspondence problem follows from the minimizing configuration.  Active assignments 
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identify corresponding pixels from which the disparity can be determined, while all pixels not 
included in an active assignment are classified as occluded. 

To complete the description of the energy function 1, 2 and p a aC V must be defined.  Let 

1 ,  a p q= and 2 ,a r s= be two assignments with p and r in the same image.  1, 2 and p a aC V  are 

then defined as 

 ,pC λ=  

and  

 
( ) ( ) ( ) ( )( )

1, 2

   if max , 8
.

3  otherwise 
a a

I p I r I q I s
V

λ

λ

 − − <= 


 

The value of λ is chosen empirically, or in the case of the Kolmogorov and Zabih implemen-
tation that we use, λ can also be automatically determined.  We chose to allow the code to 
automatically determine λ, since results presented by Kolmogorov and Zabih (2001) indicated 
that their method is relatively insensitive to the specific choice of λ. 
 

4. Proof-of-Concept Calculations 

Since we do not have simultaneous ladar and stereo camera data supported by ground truth for 
scenes from complex environments, the ground truth imagery from the University of Tsukuba, 
Japan (Scharstein & Szeliski, 2002, 2003) is used.  The Tsukuba imagery used is the left and right 
camera images (figure 9) and the ground truth images of disparity and occluded pixels (figure 10).13 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.  Left (left) and right (right) Tsukuba stereo images. 

                                                 
13The University of Tsukuba imagery set is available on line at the Middlebury College Vision web site. Y. Ohta 

and Y. Nakamura of the University of Tsukuba supplied the imagery data set. 
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The images are 384 by 288 pixels.  The ground truth images (figure 10) have a border of 18 
pixels in which there is no information.  In the disparity image (left side of figure 10), this is the 
black border. 

For the proof-of-concept calculations, the a priori ladar disparity data are taken to be the ground 
truth disparity data (left side of figure 10).  Some differences exist between the ground truth 
disparity data and what would be expected from actual a priori ladar disparity data.  The  
18-pixel border of the ground truth disparity data will be incorrectly interpreted as occluded 
when treated as the a priori ladar data.  In addition, the ground truth disparity data has been 
“filled in” so that all pixels are assigned a disparity even if the pixel is actually occluded (i.e., the 
pixels identified as occluded in the image in the right of figure 10 are assigned disparities in the 
image in the left of figure 10).  Results of calculations with and without the use of the a priori 
ladar disparity data are presented in table 1.  Comparisons are relative to the ground truth 
information and the calculated results. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.  Ground truth for Tsukuba imagery, disparity (left) and occlusions (right). 

Table 1.  Results of proof-of-concept calculations. 

 Percentage of Pixels Whose Disparity 
Correctly Labeled  

(pixels labeled as occluded by both the 
calculation and ground truth ignored)

Percentage of 
Occluded Pixels 

Correctly Labeled 

Percentage of Pixels 
Incorrectly Labeled 

as Occluded 

Calculation with a priori 
ladar disparity data 92.955 77.4 1.40 

Calculation without a 
priori ladar disparity data 92.343 67.6 1.45 

 

Based on the results of the Middlebury College comparisons (appendix A), the Kolmogorov and 
Zabih algorithm is either 1 or 2 in terms of its performance for the Tsukuba image pair.  Thus, 
the small increase in the percentage of correctly labeled pixels using the a priori ladar disparity 
data is encouraging.  More encouraging is the improvement in the results related to occluded 
pixels for the calculation using the a priori ladar disparity data.  As discussed before, the a priori 
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ladar disparity data used in the calculation provided erroneous occlusion information, yet the 
calculation with the a priori ladar disparity data correctly identified approximately 15% (77.4% 
versus 67.6%) more occluded pixels compared to the calculation without the a priori ladar 
disparity data.  Those pixels identified as occluded in both calculations are shown in figure 11.  
Results for the calculation with the a priori ladar disparity data are shown on the left of 
figure 11, and results for the calculation without the a priori ladar disparity data are shown on 
the right.  The results for the calculation with the a priori ladar disparity data (left side of 
figure 11) appear for the most part to be cleaner (e.g., areas inside red circles) than for the results 
without the a priori ladar disparity data (right side of figure 11). 

 
 
 
 
 
 
 
 
 
 

Figure 11.  Occluded pixels for calculation with (left) and without (right) a priori ladar disparity data. 

In addition, the a priori ladar disparity data calculation incorrectly labeled roughly 3.5% (1.40% 
versus 1.45%) fewer pixels as occluded compared to the other calculation. 

Improved results for the calculation with the a priori ladar disparity data are also evident in an 
analysis of the pixels that were incorrectly labeled.  The maximum disparity that could be 
assigned to a pixel for the calculations is 15.  For both calculations (with and without a priori 
ladar disparity data) the largest difference between any calculated disparity and the ground truth 
disparity is 13.  As illustrated in figure 12, the errors in the disparity assignments for the 
calculation with a priori ladar disparity data are generally smaller, compared to the calculation 
without a priori ladar disparity data, with no disparity error greater than 6 compared to 13 for the 
other calculation. 

Finally, a series of calculations was performed in which “white noise” was added to the left and 
right stereo images.  As expected, the results degraded with the difference between the 
calculations using the a priori ladar disparity data increasing as the severity of the noise 
increased.  Details of these calculations are not provided. 

Based on the overall results for the different calculations, it appears that improvements in the 
solution of the stereo correspondence problem can result from the use of a priori ladar disparity 
data.  Improvements relative to the solution without the a priori ladar disparity data are observed 
in the number of correctly labeled pixels (disparity and occlusions) and a reduction in the 
magnitude of the error in the disparity for those pixels that are incorrectly labeled. 
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Figure 12.  Cumulative percentage of total pixels in error versus error in disparity. 

 

5. Summary and Future Work 

In this report, we described an approach and architecture to incorporate data integration and 
fusion of ladar sensor data and stereo camera imagery to produce high resolution, ladar-quality 
3-D world models.  Of particular interest is the construction of world models for scenes 
involving complex environments—a situation that is extremely difficult for traditional stereo 
algorithms because of the large number of occluded regions.  As stated earlier in the report, the 
principal novelty of our work is the integration of 3-D ladar information as an a priori disparity 
map to improve the solution to the stereo correspondence problem.  Proof-of-concept14 
calculations were performed with a modified energy function based upon the work of 
Kolmogorov and Zabih.  The approach uses recently developed algorithms for computer vision 
incorporating minimum cut-maximum flow paradigms.  Our results indicated that data 
integration of ladar data as an a priori disparity map and stereo data can produce improvements 
in the solution to the correspondence problem.  Of particular note is the improvement in the 
identification of occluded regions with the data integration. 

                                                 
14Data integration can improve the solution to the stereo correspondence problem. 
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Although we describe a detailed architecture, a number of the necessary algorithms in the data 
integration and fusion layers have not been developed.  This is especially true for the data fusion 
layer.  However, in this layer, we expect to draw heavily on the many efforts involving data 
fusion described in the vision literature.  Near-term future work will be directed toward 
completing the algorithms of the data integration layer.  Hopefully, this will include an 
evaluation of additional stereo correspondence algorithms specifically developed for complex 
environments. 
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Appendix A.  Results from Middlebury College Stereo Vision Comparison 
(April 15, 2004) (http://cat.middlebury.edu.stereo/) 

Welcome to the Middlebury Stereo Vision Page  
This web site contains material accompanying our taxonomy and experimental comparison of 
stereo correspondence algorithms [1].  It contains stereo data sets with ground truth, the overall 
comparison of algorithms, instructions on how to evaluate your stereo algorithm in our 
framework, and our stereo correspondence software.  

Also available are two new stereo data sets with ground truth obtained using our structured 
lighting technique [2].  These data sets have a more complex geometry and larger disparity 
ranges than the original data sets.  

We are continually inviting other researchers to run their stereo algorithms on the four image 
pairs used in our overall comparison, and to send us the results.  We will then run our evaluator, 
and report the resulting disparity error statistics.  If you are interested in participating, please go 
to the evaluation page.  

How to Cite the Materials on This Web Site: 

We grant permission to use and publish all images and numerical results on this website. 
However, if you use our data sets, and/or report performance results, we request that you cite the 
appropriate paper(s) [1, 2].  If you want to cite this website, please use the “stable” URL 
“www.middlebury.edu/stereo”.  (This URL is currently auto-forwarded to 
“cat.middlebury.edu/stereo”, but that may change.)  

References: 
[1] D. Scharstein and R. Szeliski. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence 

Algorithms. 
IJCV 47(1/2/3):7-42, April-June 2002. PDF file (1.15 MB) - includes current evaluation. 
Microsoft Research Technical Report MSR-TR-2001-81, November 2001. PDF file (1.27 MB).  

[2] D. Scharstein and R. Szeliski. High-accuracy stereo depth maps using structured light. 
In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), volume 1, 
pages 195-202, Madison, WI, June 2003. PDF file (1.2 MB)  

Support for this work was provided in part by NSF CAREER grant 9984485. Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National 
Science Foundation.  
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Table A-1.  Comparison of the performance of different stereo algorithms on four test image pairs 
 

Algorithm Tsukuba Sawtooth Venus Map 
  all untex. disc. all untex. disc. all untex. disc. all disc. 
Segm.-based GC 
[23] 1.23 3 0.29 2 6.94 4 0.30 3 0.00 1 3.24 3 0.08 1 0.01 1 1.39 1 1.4919 15.4624

Segm.+glob.vis. 
[25] 1.30 5 0.48 5 7.50 6 0.20 1 0.00 1 2.30 1 0.79 4 0.81 5 6.37 7 1.6321 16.0726

Layered [16]  1.58 7 1.06 9 8.82 8 0.34 4 0.00 1 3.35 4 1.5210 2.9619 2.62 3 0.3710 5.2410 
Belief prop. [3]  1.15 1 0.42 3 6.31 1 0.9810 0.3014 4.83 8 1.00 6 0.76 4 9.1313 0.8416 5.2711 
MultiCam GC [21] 1.8510 1.9415 6.99 5 0.62 8 0.00 1 6.8612 1.21 8 1.9610 5.71 6 0.31 7 4.34 9 
Region-Progress. 
[24] 1.44 6 0.55 6 8.18 7 0.24 2 0.00 1 2.64 2 0.99 5 1.37 8 6.40 8 1.4920 17.1127

GC+occl. [2b] 1.19 2 0.23 1 6.71 2 0.73 9 0.11 9 5.7110 1.6413 2.7517 5.41 5 0.6113 6.0512 
Improved Coop. 
[19]  1.67 8 0.77 7 9.6711 1.2113 0.1712 6.9013 1.04 7 1.07 6 13.6818 0.29 5 3.65 6 

GC+occl. [2a]  1.27 4 0.43 4 6.90 3 0.36 5 0.00 1 3.65 5 2.7921 5.3922 2.54 2 1.7922 10.0818

Disc. pres. [18] 1.78 9 1.2211 9.7112 1.1712 0.08 8 5.55 9 1.6112 2.2513 9.0612 0.32 8 3.33 5 
Symbiotic [20] 2.8715 1.7114 11.9013 1.0411 0.1310 7.3215 0.51 2 0.23 2 7.8810 0.5012 6.5413 
Graph cuts [1a]  1.9412 1.0910 9.4910 1.3015 0.06 7 6.3411 1.7916 2.6116 6.91 9 0.31 6 3.88 7 
Var. win. [17] 2.3513 1.6513 12.1715 1.2814 0.2313 7.0914 1.23 9 1.16 7 13.3517 0.24 3 2.98 3 
Graph cuts [5]  1.8611 1.00 8 9.35 9 0.42 6 0.1411 3.76 6 1.6915 2.3014 5.40 4 2.3925 9.3516 
Multiw. cut [13]  8.0827 6.5324 25.3328 0.61 7 0.4617 4.60 7 0.53 3 0.31 3 8.0611 0.26 4 3.27 4 
Comp. win. [4]  3.3618 3.5418 12.9118 1.6118 0.4516 7.8716 1.6714 2.1811 13.2416 0.33 9 3.94 8 
Realtime [7]  4.2522 4.4722 15.0522 1.3216 0.3515 9.2117 1.5311 1.80 9 12.3314 0.8115 11.3521

Cooperative [6]  3.4919 3.6519 14.7720 2.0319 2.2923 13.4122 2.5720 3.5220 26.3827 0.22 2 2.37 1 
Bay. diff. [1b]  6.4926 11.6229 12.2916 1.4517 0.7218 9.2918 4.0023 7.2125 18.3922 0.20 1 2.49 2 
Stoch. diff. [9]  3.9520 4.0821 15.4924 2.4523 0.9020 10.5819 2.4518 2.4115 21.8424 1.3118 7.7915 
Genetic [11]  2.9616 2.6617 14.9721 2.2121 2.7625 13.9623 2.4919 2.8918 23.0425 1.0417 10.9120

SSD+MF [1c]  5.2325 3.8020 24.6627 2.2120 0.7219 13.9724 3.7422 6.8224 12.9415 0.6614 9.3516 
Max flow [14]  2.9817 2.0016 15.1023 3.4724 3.0026 14.1925 2.1617 2.2412 21.7323 3.1326 15.9825

Pix-to-pix [12]  5.1224 7.0627 14.6219 2.3122 1.7921 14.9326 6.3026 11.3728 14.5719 0.5011 6.8314 
Scanl. opt. [1e]  5.0823 6.7825 11.9414 4.0625 2.6424 11.9020 9.4429 14.5929 18.2021 1.8423 10.2219

Dyn. prog. [1d]  4.1221 4.6323 12.3417 4.8428 3.7128 13.2621 10.1030 15.0130 17.1220 3.3327 14.0423

Realtime DP [26] 2.8514 1.3312 15.6225 6.2530 3.9829 25.1928 6.4227 8.1426 25.3026 6.4529 25.1628

MMHM [15]  9.7629 13.8530 24.3926 4.7627 1.8722 22.4927 6.4828 10.3627 31.2928 8.4230 12.6822

Shao [8]  9.6728 7.0426 35.6329 4.2526 3.1927 30.1430 6.0125 6.7023 43.9130 2.3624 33.0130

Max. surf. [10]  11.1030 10.7028 41.9930 5.5129 5.5630 27.3929 4.3624 4.7821 41.1329 4.1728 27.8829
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Our implementation: 

[1] D. Scharstein and R. Szeliski. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence 
Algorithms, IJCV, 2002. Five algorithm have been implemented: 
a - Graph cuts using alpha-beta swaps (Boykov, Veksler, and Zabih, PAMI 2001);  
b - Bayesian diffusion (Scharstein and Szeliski, IJCV 1998);  
c - SSD + min-filter (i.e., shiftable windows), window size = 21;  
d - Dynamic programming, similar to Bobick and Intille (IJCV 1999);  
e - Scanline optimization (1D optimization using horizontal smoothness terms).  

Other authors' implementations: 

[2] V. Kolmogorov and R. Zabih. Computing visual correspondence with occlusions using graph cuts. ICCV 
2001. 
a - original submission 
b - new submission with automatic parameter setting (same as in [21])  

[3] J. Sun, H. Y. Shum, and N. N. Zheng. Stereo matching using belief propagation. PAMI 2003 (also in ECCV 
2002).  

[4] O. Veksler. Stereo matching by compact windows via minimum ratio cycle. ICCV 2001.  
[5] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. PAMI 2001.  
[6] L. Zitnick and T. Kanade. A cooperative algorithm for stereo matching and occlusion detection. PAMI 2000.  
[7] H. Hirschmüller. Improvements in Real-Time Correlation-Based Stereo Vision. CVPR 2001 Stereo Workshop 

/ IJCV 2002.  
[8] J. Shao. Combination of Stereo, Motion and Rendering for 3D Footage Display. CVPR 2001 Stereo Workshop 

/ IJCV 2002.  
[9] S. H. Lee, Y. Kanatsugu, and J.-I. Park. Hierarchical stochastic diffusion for disparity estimation. CVPR 2001 

Stereo Workshop / IJCV 2002.  
[10] C. Sun. Fast stereo matching using rectangular subregioning and 3D maximum-surface techniques. CVPR 

2001 Stereo Workshop / IJCV 2002.  
[11] M. Gong and Y.-H. Yang. Multi-baseline Stereo Matching Using Genetic Algorithm. CVPR 2001 Stereo 

Workshop / IJCV 2002.  
[12] S. Birchfield and C. Tomasi. Depth discontinuities by pixel-to-pixel stereo. ICCV 1998.  
[13] S. Birchfield and C. Tomasi. Multiway cut for stereo and motion with slanted surfaces. ICCV 1999.  
[14] S. Roy and I. J. Cox. A maximum-flow formulation of the N-camera stereo correspondence problem. ICCV 

1998.  
[15] K. Mühlmann, D. Maier, J. Hesser, and R. Männer. Calculating Dense Disparity Maps from Color Stereo 

Images, an Efficient Implementation. CVPR 2001 Stereo Workshop / IJCV 2002.  
[16] M. Lin and C. Tomasi. Surfaces with Occlusions from Layered Stereo. Ph.D. thesis, Stanford University, 2002. 
[17] O. Veksler. Fast Variable Window for Stereo Correspondence using Integral Images. CVPR 2003.  
[18] M. Agrawal and L. Davis. Window Based, Discontinuity Preserving Stereo. Submitted to CVPR 2003.  
[19] H. Mayer. Analysis of Means to Improve Cooperative Disparity Estimation. ISPRS Conf. on Photogrammetric 

Image Analysis, 2003.  
[20] J. Y. Goulermas and P. Liatsis. A Collective-based Adaptive Symbiotic Model for Surface Reconstruction in 

Area-based Stereo. IEEE Trans. Evolutionary Computation, vol.7(5), pp.482-502, 2003.  
[21] V. Kolmogorov and R. Zabih. Multi-camera Scene Reconstruction via Graph Cuts. ECCV 2002.  
[22] (Withdrawn)  
[23] L. Hong and G. Chen. Segment-Based Stereo Matching Using Graph Cuts. CVPR 2004.  
[24] Y. Wei and L. Quan Region-Based Progressive Stereo Matching. CVPR 2004.  
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[25] M. Bleyer and M. Gelautz. A layered stereo algorithm using image segmentation and global visibility 
constraints. Submitted to ICIP 2004.  

[26] Real-Time Stereo by using Dynamic Programming. Anonymous, submitted to CVPR 2004.  
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