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1. Introduction 

The structural information of man-made targets (ground-based vehicles) in forward-looking 
infrared (FLIR) imagery appears different from that of their surrounding background.  Automatic 
target detection techniques use the radiated energy from a man-made target in FLIR imagery to 
detect targets (1-2).  Energy distribution patterns on the targets are determined by the operational 
conditions of the vehicles, weather conditions and solar loading, atmospheric conditions, and 
other factors.  Similarly, the apparent temperature of background objects is determined by 
environmental conditions. 

The research work in infrared imaging system and automatic target detection/recognition 
(ATD/R) were started approximately at the same time nearly 40 years ago; see the review paper 
by Ratches et al., (3). The survey papers by Bhanu (4-5) summarize various algorithms for 
ATD/R in static FLIR images that were developed up to early 1990s; these algorithms 
predominately use traditional image processing approaches for (optical) picture processing.  
Since early 1990s, combinations (or mixtures) of classical/traditional image processing and 
emerging techniques have been proposed for the FLIR target detection problem.  For instance, 
the traditional approach of segmenting the target from the background still draws attention of the 
FLIR researchers.  Meanwhile, various emerging techniques are also being studied in 
segmentation algorithm.  For example, Sang et al., (6) use Hopfield neural network with edge 
constraint, and Sun et al., (7) exploit fuzzy thresholding and edge detection in their segmentation 
algorithms.   

There have also been studies of “matched filtering” algorithms that assume a specific 
shape/model for the FLIR signature of a man-made target.  For instance, Erinsse et al., (8) use 
DOG (difference of Gaussian) filter as a bandpass filter to enhance the signature of man-made 
targets in FLIR imagery, and use the resultant information to detect (“pull”) these targets.  Park 
et al., (9) assume that a man-made target exhibits a peak response when a Mexican hat filter is 
applied to FLIR imagery; in this case, the Mexican hat filter is used as the mother wavelet of the 
multidimensional wavelets.  The filtered image is thresholded to obtain the location of man-made 
targets.  Zhou et al., (10) use five simple matching patterns (shapes of rectangle, square, oval, 
rounded-rectangle, and circle) for all targets.  They applied the Gabor function (a sinosoidal 
function weighted by a Gaussian function) to both their matching patterns and the IR image to 
generate Gabor feature vectors.  The similarity measure between the Gabor feature vector at each 
image point and that of the matching patterns is calculated.  The similarity values are then 
thresholded to obtain the locations of the targets.  Weber et al., (11) use six Gabor function 
filters; these are two directional RGFs (real Gabor functions) to detect object height and width 
and four directional IGFs (imaginary Gabor functions) to detect the left, right, top and bottom 
edges of the object.  The input image is correlated with each of the six Gabor filters, and these 
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six correlation outputs are then quadratically combined; the final detection is performed using a 
threshold.   

Neural network technologies are usually used as a classifier for an automatic target recognition 
system; see Roth (12) and Rizvi et al., (13) for a survey.  Neural networks have also been 
exploited to classify each pixel in the FLIR imagery as either man-made structures or 
background (clutter) in order to detect targets.  For example, see the articles by Dwan et al., (14) 
and Ramanan et al., (15).   

Multiscale fractal method is another emerging technique that has been used for FLIR target 
detection.  Xue et al., (16) compute fractal dimensions through several resolution levels of an 
image.  The K-mean method is then used to classify the target and background based on the 
resultant fractal dimensions.  Shekarforoush et al., (17) have also used a multi-fractal formalism 
for object detection and tracking in FLIR sequences.   

The apparent temperature contrast between a man-made target and its surrounding is a key factor 
in most FLIR target detection algorithms.  A target with high contrast (temperature) is relatively 
easy to detect; this property is exploited by most of the above-mentioned algorithms.  However, 
for low contrast targets, some form of structural information needs to be exploited.  In most of 
the above-mentioned algorithms, the image characteristics are globally analyzed either in the 
filtering operation or in the feature extraction process.  This is achieved by comparing the pixels 
representing the target with the other pixels in the entire image.  This global-based approach 
neglects the local variations between the signatures of the target and its surrounding medium.  
Some researchers have used double-gated filters that exploit these local variations for target 
detection:  see Gregoris et al., (18) and Der et al., (19).  In these methods, the authors identify an 
inner target window surrounded by an outer window.  The inner window carries information on 
the FLIR signature properties of the target zone, and the outer window is used to identify the 
signature properties of the nearby background.  In reference (18), a filter is used to measure the 
difference in the mean pixel values of the inner target window and the outer background 
window, and the pixel standard deviation in the background window.  The ratio of the mean 
difference to the standard deviation, that is, a “normalized” mean difference, is compared to a 
pre-assigned threshold.  The inner windows with ratios exceeding the threshold are labeled as 
possible man-made targets.  In reference (19), more comprehensive features (such as contrast 
difference, gradient strength, straight edge information, etc.) are computed from the inner 
window and the outer window, and exploited for target detection purposes. 

In this paper, the local similarity measure between the inner and outer window is used to explore 
the differences between structural information of a target and its surrounding scene in FLIR 
imagery.  Due to the signature variability of FLIR images, the presence of individual structural 
patterns, such as edges, shapes, textures, etc., cannot be reliably predicted.  We use an 
eigenspace analysis to represent the variations of the structural information of a target and its 
background.  We first construct the inner and outer image vectors that represent the multi-
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dimensional signal properties of the FLIR signatures of the target and its background, 
respectively.   While the inner image vector is solely constructed from the inner window (box), 
the outer image vectors are constructed from a more extended outer window that consists of 
many overlapping outside boxes that are of the same size as the inner box.  These two image 
vectors are then processed by two directional gradient operators.  The resulting image gradient 
vectors are mapped by two transformations, P1 and P2, via principle component analysis (PCA) 
and the eigenspace separation transform (EST) (20), respectively.  The first transformation P1 is 
a function of the inner image vector.  The second transformation P2 is a function of both the 
inner and outer image vectors.  The target detection problem is formulated as a statistical 
hypothesis testing problem.  That is, for the hypothesis H1 (inner image vector is a target):  the 
difference between the components of P1 and P2 is small.  For hypothesis H0 (inner image vector 
is clutter):  the difference between these two functions is large. 

This paper is organized as follows.  The image feature set is described in section 2 using image 
vector construction and gradient signals.  The adaptive target detection algorithm is discussed in 
section 3, where EST and PCA are outlined, and the hypotheses and target detection procedure 
are presented in detail.  In section 4, results of testing the proposed algorithm on two large FLIR 
image databases are presented using ROC (receiver operation characteristics) curves.  The 
proposed algorithm is also compared with other detection algorithms.  Conclusions are given in 
section 5.   

 

2. FLIR Imagery Feature Set 

In this section, we describe how the image vectors are constructed to represent both a target 
region and it surrounding scene.  Directional gradient filters are used to preprocess the image 
vectors.  The resulting gradient image vectors are used as the feature set in our target detection 
algorithm.   

2.1 Image Vectors 

For a given pixel in the image, a window (called inner box) centered at the pixel is constructed as 
shown in figure 1.  The size of the inner box is determined by the largest target size in the target 
library, which is based on a known or estimated range.  Similarly, an outer window, Xout, as 
shown in figure 1, is constructed by a bigger window that surrounds but does not include the 
inner window.  The size of the outer window in our implementation is three times the width and 
height of the inner window.  The outer window is then partitioned into N small overlapping outer 
boxes (shift by 1 pixel in x or y direction) which have the same size as the inner box.  The inner 
image vector that is denoted by Xin is the vectorized image data of the inner box.  It is written as 

 ],,,[ 21 min xxxX L=  
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Where m = w × h, w and h are the width and height of the inner box, and xj is the image pixel 
value,  j = 1,2,…,m. 

 

Figure 1.  Image vectors construction. 

The outer window, Xout, which contains N smaller outer boxes represented by xout,i where i = 
1,2,…,N.  Each of the N small outer boxes is the vectorized image data representing each of N 
overlapping boxes that have the same dimension m as the inner box.  It is written as  

 ],,,[ ,2,1, Noutoutoutout xxxX L=  

 Niyyyx miout ,,2,1],,[ 21, LL ==  

where yj is the image pixel value,  j = 1,2,…,m. 

2.2 Gradient Image 

The performance of many image processing algorithms is improved by first applying gradient 
operators to enhance the edge information within the image.  Many studies of the human visual 
system provide evidence that the brain extracts edge and motion information early in the visual 
processing (21-22).  Our experiments likewise show that the proposed algorithm performs much 
better using the gradient images than the pixel gray levels of the original FLIR imagery.   

Two gradient images are formed by passing the input image through two directional high pass 
filters.  Filter Fh is designed to high pass filter the image in the horizontal direction x.  Similarly, 
Fv is the vertical high pass filter used to enhance the vertical edges in the y direction.  The two 
directional high pass filters are defined as two separable differentiation operations, that is,  

 .
1
1

2/1];11[2/1 






−
=−= vh FF  

Examples of gradient images are shown in figure 2.  Note that the gradient (edge) information 
about the target (truck) in all directions is preserved.  However, the edge information about hot 
roads are suppressed in the x direction but emphasized in the y direction.  Usually a target 
contains edge information in all directions.  The background scene might only contain edge 
information in a particular direction.  In this paper, the gradient images in both directions are 
passed to the detection technique where a detection decision is made by using the detection result 
from both of the input gradient images.  
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Figure 2.  Examples of gradient images:  (a) original image, (b) gradient image obtained  
by the highpass filtering in the x direction, and (c) gradient image obtained by  
the highpass filtering in the y direction. 

 

3. Adaptive Detection of Target in FLIR Imagery 

The two image vectors Xin and Xout that were defined above are mapped into two transformations 
P1(Xin) and P2(Xin, Xout) via EST and PCA, respectively.  Note that P1(Xin) is a function of Xin 
only, while P2(Xin, Xout) is a function of Xin and Xout.   

The target detection problem is formulated as a hypothesis test.  For hypothesis H1:  target being 
within the inner box, the difference between P1(Xin) and P2(Xin, Xout) should be small.  For 
hypothesis H0:  clutter being within the inner box, the difference between these two functions 
should be large.  That is: 

 δ>−= 2
210 ),()( outinin XXPXPH  (1) 

 δ<−= 2
211 ),()( outinin XXPXPH  

where δ is pre-selected as a threshold.  The two functions P1(Xin) and P2(Xin, Xout) that are 
obtained via EST and PCA are discussed in the following subsection. 

3.1 EST and PCA 

The EST has been proposed by Torrieri as a preprocessor to a neural binary classifier in (20).  
The EST calculates the difference covariance matrix C  

 inout CCC −=  
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where Cout and Cin are the covariance matrices of the outer and inner image vectors, respectively.  
That is,  

 [ ] [ ] T
XinXinin inin

XXC µµ −−=  

 [ ][ ] T
Xiout

N

i
Xioutout ioutiout

XX
N

C
,, ,

1
,

1 µµ −−= ∑
=

 

where µx is the mean value of either x = Xin or x = Xout,i.  N is the number of small outer boxes 
forming the outer window.  The eigenvalues and eigenvectors of difference covariance matrix C 
are calculated.  Some of these eigenvectors are associated with the positive eigenvalues.  They 
are referred to as EST positive eigenvectors Vest+.  The eigenvectors associated with the negative 
eigenvalues are referred to as EST negative eigenvectors Vest–.  Based on the eigenvector 
properties, all EST positive and negative eigenvectors are orthogonal to each other.  The positive 
eigenvectors Vest+ mainly represent the outer image vector subspaces.  Similarly, the negative 
eigenvectors Vest– represent the inner image vector subspaces.  In the design of the covariance 
matrix in this paper, only one inner image vector forms the inside covariance matrix, so there is 
only one non-zero EST negative eigenvector.   

An example of showing EST property is illustrated in figure 3, where two target chips (truck and 
tank) are considered as the outer and inner image vectors, respectively.  In this example, the 
truck image is considered as the outer image vector (however, in a real scenario, it would be a 
clutter chip), while the tank image is considered as the inner image vector.  The original images 
of the truck and tank are shown in figures 3a-b.  The positive eigenvector Vest+ and the negative 
eigenvector Vest– are shown in figures 3c-d.  From figure 3, we can observe that Vest+ contains 
truck and the shadow of the tank.  The negative eigenvector Vest– contains mainly tank but the 
shadow of the truck is still visible.   

 

Figure 3.  Examples of EST and PCA. 
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In PCA analysis, the eigenvectors of the inside covariance matrix Cin and outside covariance 
matrix Cout are calculated separately.  We call the eigenvectors obtained from Cout PCA outside 
eigenvectors Vpca,out.  Similarly, the eigenvectors obtained from Cin are called PCA inside 
eigenvectors Vpca,in.  PCA inside eigenvector Vpca,in is, of course, not expected to be orthogonal to 
PCA outside eigenvectors Vpca,out.  Since there is only one inner image vector to form the inside 
covariance matrix, there is only one non-zero PCA inside eigenvector.  Therefore, Vpca,in is the 
normalized version of Xin, that is, 

 ininpca XV β=,  

where β is the square root of the energy (norm) of the inner image vector, which is the same as 
the corresponding eigen value.   

3.2 Hypotheses 

A visual motivation for the formulation in equation 1 is illustrated in figure 4.  For simplicity, 
assume that the outer window consists of only two vectors, Xout,1 and Xout,2.  The inner image 
vector is Xin, which is aligned in the same direction as the PCA inside eigenvector Vpca,in.  After 
the EST procedure, the positive and negative eigenvectors Vest+1, Vest+2, and Vest– are aligned 
approximately with the inner and outer image vectors, respectively.  In addition, all positive and 
negative eigenvectors are orthogonal to each other. 

 

Figure 4.  Visualization of hypotheses. 

Consider the EST properties as demonstrated by the results in figure 3.  The negative EST 
eigenvector predominately exhibits features that originally appear in the inner window (the tank) 
and the positive EST eigenvector contains the features that appear mainly in the outer window 
(the truck).  Thus, the negative and positive EST eigenvectors approximately align with the inner 
and outer windows, respectively.  We use these properties for our hypothesis testing problem in 
the following fashion.  For hypothesis H0, where clutter is within the inner box, the re-alignment 
of EST eigenvectors with respect to the PCA eigenvectors causes the negative EST eigenvector 
Vest– to be distant from the PCA inside eigenvector Vpca,in.  For hypothesis H1, where the target is 
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within the inner box, the EST negative eigenvector Vest– is more closely aligned to the PCA 
inside eigenvectors Vpca,in.   

When there is clutter within the inner box that is somewhat similar to its surroundings, the 
difference between the inner and outer image vectors is not large.  The EST procedure mixes the 
inner and outer image vectors and generates the positive and negative eigenvectors.  The EST 
positive eigenvectors present mainly the subspace corresponding to the outer image vectors, 
which are also similar to the inner clutter image vector.  Because the EST negative eigenvector 
has to be orthogonal with the EST positive eigenvectors, the EST negative eigenvector is more 
distant from the inner image vector.  This causes the residual energy between the EST negative 
eigenvector Vest– and the PCA inside eigenvector Vpca,in to be large.  On the other hand, when 
there is a target in the inner box, there is a larger difference between the inner and outer image 
vectors.  The EST negative eigenvector is generated to be orthogonal with the EST positive 
eigenvectors, which are already very different from the inner image vector.  The EST negative 
eigenvector is then closer to the inner image vector that is proportional to the PCA inside 
eigenvector.  Therefore, the residual energy between the EST negative eigenvector Vest– and the 
PCA inside eigenvector Vpca,in is small.   

A common method of measuring the difference between two sets of vectors is to project 
elements of one set upon the other.  One way we could accomplish this is by projecting the inner 
image vector into the subspaces that are generated by the EST positive or PCA outside 
eigenvectors.  The relative error energy is calculated as follows,  

 1
ˆ

2

2

≈
−

=
+

in

inin

X

XX
E  

where +inX̂  is the reconstruction of Xin using the subspace generated by the EST positive 
eigenvectors.  However, this relative error energy is close to 1 for both target and clutter inside 
the inner box.  This is because that the inner image vector Xin is almost orthogonal to the positive 
eigenvectors.  Therefore, this is not an effective measurement.  We use the following hypothesis 
test instead: 

a. Under the null hypothesis (clutter inside), mixing of outer and inner image vectors, Cout and 
Cin, via EST results in a measurable change in “alignment” of EST positive and negative 
eigenvectors with respect to PCA inside and outside eigenvectors.  That is,  

 δ>−= −

2

,0 estinpca VVH  

b. Under the alternative hypothesis (target inside), mixing of outer and inner image vectors, 
Cout and Cin, via EST does not alter the “alignment” of EST positive and negative 
eigenvectors with respect to PCA inside and outside eigenvectors.  That is, 



 

9 

 δ<−= −

2

,1 estinpca VVH  

Comparing the PCA outside eigenvector and EST positive eigenvector could also be used for 
exploring the differences between inner and outer image vectors.  However, this analysis is in a 
multi-dimensional space.  In the following discussion of detection criterion, we use only the PCA 
inside eigenvector and EST negative eigenvector.   

3.3 Target Detection Procedure 

The overall procedure of the target detection algorithm is outlined in the following (as shown in 
figure 5.)  

 

Figure 5.  Procedure of the target detection algorithm. 

1. The input FLIR image is passed through the gradient operators as mentioned above, to 
obtain two gradient images lx and ly, which represent the gradient images in the x and y 
directions, respectively.   

2. For each pixel of the gradient images, the inner window and outer window are formed to 
obtain the inner and outer image vectors, Xin and Xout.   

3. Two transformations P1(Xin) and P2(Xin, Xout) are calculated via PCA and EST, where 
P1(Xin) represents the PCA positive eigenvector Vpca,in and P2(Xin, Xout) represents the EST 
negative eigenvector Vest–.  That is, 

 inpcain VXP ,1 )( =  

 −= estoutin VXXP ),(2  

4. The residual energy Evi is obtained.  That is, 

 0, ,

2

, >∗−= −− estinpcaestinpcavi VVifVVE  

 0, ,

2

, <∗+= −− estinpcaestinpcavi VVifVVE  
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 If Vpca,in and Vest– are the same sign, the residual energy is the mean square difference of 
these two vectors.  If Vpca,in and Vest– are different signs, the residual energy is the mean 
square sum. 

5. For each pixel, two values of residual energy, Evi,x and Evi,y are calculated, corresponding to 
the x and y directions.  The minimum of these two residual energies is retained.   

 ),min( ,,min yvixvi EEE =  

6. If this minimum Emin is above a threshold δ, the pixel is declared clutter.  If this minimum 
is below δ, the pixel is declared as target.   

 

4. Results and Discussion 

4.1 Image Database  

We used two image databases yuma9207_roi and huli9204_roi from Comanche database to test 
the proposed target detection algorithm.  Yuma9207_roi is the more difficult database because 
the images were taken in the summer in the Arizona desert and the background contains many 
high temperature spots.  Huli9204_roi is an easier database.  The images were taken in the spring 
in central California and the background is cool compared with most of the targets in the 
database.  Figure 6 shows image examples from the two databases. 
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 (a) (b) 

Figure 6.  Examples of FLIR images:  (a) an image from the database yuma9207_roi, where the  
background contains many high temperature spots and (b) an image from the database  
huli9204_roi, where the background is cool compared with the targets in the image. 

The proposed algorithm is based on exploring the structural differences between a target and its 
surroundings.  For targets in a close range, the structural features of the targets are prominent 
within the image.  For targets in a longer range image, the target appears very small and the 
structural information is not obvious.  In order to test the algorithm performance, the algorithm is 
run at the different ranges.  We broke the ranges down into three categories, short, medium, and 
long.  Table 1 shows the information about these two databases.  In the database, some images 
contain targets and some do not.  When ROC curves are calculated for these databases, a roughly 
equal number of images, with and without targets, are randomly selected.  This makes the 
experiment less biased.   

Table 1.  Database. 

 Total 
number 
of image 

Number 
of image 
without 
targets 

Number 
of image 

with 
targets 

 
 
Range:  number of images/ 
number of targets 

yuma9207_roi 2644 839 1805 Short range:       804/804 
Medium range:  430/640 
Long range:       571/1010 

huli9204_roi 1910 686 1224 Short range:       971/974 
Medium range:  253/403 
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Table 1 shows the details of the image databases.  Images are stored in 10 bits.  For the image 
database yuma9207_roi, the total number of images is 2644.  Among these, the number of 
images without target is 839 and the number of images with target is 1805.  For the images with 
targets, the numbers of images in short, medium, and long ranges are 803, 430, and 571, 
respectively.  For these three ranges, numbers of targets are 804, 640, and 1010, respectively, 
since some images have more than one target.  For the image database huli9204_roi, the total 
number of images is 1910, where 686 images have no targets and 1224 images have targets.  For 
the images with targets, there are 971 images in short range, where 974 targets are found, and 
there are 253 images in medium range, where 403 targets are found.   

4.2 ROC Results 

Ideally, the proposed algorithm should calculate the residual energy at all pixels in the image.  
However, to reduce the computation time, the algorithm only calculates the residual energy for 
points that are separated in distance by a quarter of the size of the inner window.  As we show in 
the following, this would not significantly affect the performance of the proposed algorithm.   

In figure 7a, the solid line window corresponds to an inner window that is centered at a target 
coordinates.  The bold dashed line window corresponds to one of the inner windows that our 
algorithm selects.  Consider the ratio of the overlapping area of these two windows to the area of 
a single window; we call this ratio the overlapping area ratio.   When this overlapping area ratio 
is 1, the calculating point is at the center of the target.  When this overlapping area ratio is less 
than 1, the calculating point is away from the center of the target.  Figures 7b-d show the 
normalized histograms of the overlapping area ratios for the images at short, medium, and long 
ranges, respectively, of yuma9207_roi database.  From figures 7b-d, about 90% of the images 
have the overlapping area ratios above 0.70 at all ranges.  The huli9207_roi database illustrates 
the similar distribution of the overlapping area ratios.   
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(a)  (b)  

(c)  (d)  

Figure 7.  (a) Overlapping area ratio.  The solid line window corresponds to an inner window that is centered at a 
target coordinates.  The bold dashed line window corresponds to one of the inner windows that the 
algorithm selects.  Overlapping area ratio is defined as the ratio of the overlapping area of these two 
windows to the area of a single window, (b) normalized histogram of the overlapping area ratios for short 
ranges, (c) normalized histogram of the overlapping area ratios for medium ranges, and (d) normalized 
histogram of the overlapping area ratios for long ranges. 

ROC results are shown in figure 8.  For the huli9204 database, as is shown in figure 8a, the two 
curves are for the short and medium range targets.  The ROC results are very similar.  For a 
threshold corresponding to 1 false alarm per frame (per image), the detection rate is about 81%.  
If the false alarm is increased to 20 per frame, the detection rate reaches 96%.    
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(a) (b)(a) (b)
 

Figure 8.  ROC results from the proposed implementation:  (a) database huli9204_roi and (b) database 
yuma9207_roi. 

For the yuma9207 database, as is shown in figure 8b, the ROC results are plotted for short, 
medium, and long ranges.  The performances of these three range bins are quite different.  As 
discussed above, for long ranges, the target appears very small in the image.  In this case, there is 
not enough structural information available in the target chip.  At 1 false alarm per frame, the 
detection rate is about 23%.  When 20 false alarms are allowed per frame, the detection rate is 
about 46%.  For medium ranges, the performance is improved to a detection rate of 40% for 1 
false alarm per frame and 71% for 20 false alarms per frame.  The best performance is achieved 
for short ranges.  The detection rate is 58 % at 1 false alarm per frame and 84% at 20 false 
alarms per frame.   

4.3 Discussion 

As we mentioned early, to reduce the computation time, the proposed implementation only 
calculates the residual energy for points that are separated in distance by a quarter of size of the 
inner window.  In order to assess the performance of this implementation, we compare this result 
with an ideal situation.  In this ideal situation, the algorithm calculates the residual energy for 
points that are separated in distance with the same size as the inner window.  The algorithm starts 
by replacing the inner window at the center of the target, which is obtained from the ground truth 
information.  Subsequent inner windows are placed so that the inner windows are adjacent, non-
overlapping, and cover as much of the image as is possible consistent with both inner and outer 
windows being completely contained within the image.   

Figure 9 shows the ROC results for the proposed implementation and the ideal situation for the 
database yuma9207_roi.  Figure 9a shows the results for 0 to 25 false alarms per frame.  Figure 
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9b shows the enlarged portion of the false alarm rates between 0 to 5.  The solid lines are the 
ROC results for the ideal situation.  The dash lines are the ROC results for the proposed 
implementation that is obtained in figure 8b.  The upper lines in the figure are ROC results for 
the short ranges, the middle lines are for the medium ranges, and lower lines are for the long 
ranges.  The overall results show that similar results are obtained from the proposed 
implementation and the ideal situation.  For the long ranges, the detection rate of the proposed 
implementation is 23% versus 25% of the ideal situation at 1 false alarm per frame, and 46% 
versus 48% at 20 false alarms per frame.  For the medium ranges, at 1 false alarm rate, the 
detection rates of the proposed implementation and the ideal situation are 40% and 49%, 
respectively; at 20 false alarms per frame,  71% and 72%, respectively.  For the short ranges, at 1 
false alarm per frame, the detection rates of the proposed implementation and the ideal situation 
are 58% and 63%, respectively; at 20 false alarms per frame, 84% and 85%, respectively.   

(a) (b)(a) (b)
 

Figure 9.  ROC results of the proposed implementation comparing with the ideal situation for the database 
yuma9207_roi:  (a) ROC results of false alarm rates between 0 and 25; (b) ROC results of false 
alarm rates between 0 and 5. 

This result demonstrates that the algorithm performance is not significantly changed when the 
center of the inner window is not exactly located at the center of the target.  However, the 
measure of closeness of the center of the inner window and the center of the target is required to 
be within a certain degree.  For example, the overlapping area ratio that was defined above needs 
to be over 0.70 as shown here.    

The proposed algorithm is also compared with another target detection algorithm, called spatial 
anomaly detection algorithm (SADA) which was described in [19], for the database yuma9207.  
The ROC curves are shown in figures 10a-b.  Figure 10a shows the results for 0 to 25 false 
alarms per frame.  Figure 10b shows the enlarged portion of the false alarm rates between 0 and 
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5.  The solid lines represent the results for the SADA algorithm and the dash lines are for 
proposed algorithm.  The upper lines in the figure are ROC results for the short ranges, the 
middle lines are for the medium ranges, and the lower lines are for the long ranges.  The overall 
results show that the proposed algorithm has a higher detection performance than the SADA at 
low false alarm rates.  At higher false alarm rates, the SADA gives slightly higher detection 
rates.  See figure 10b; at short ranges, the detection rates of the proposed algorithm and the 
SADA are similar.  For medium ranges, at 1 false alarm per frame, the detection rate of the 
proposed algorithm is 40% from the 29% obtained by the SADA.  For long ranges, at 1 false 
alarm per frame, the detection rate of the proposed algorithm is increased to 23% from 18% 
obtained by the SADA.   

(a) (b)(a) (b)
 

Figure 10.  ROC results of the proposed algorithm comparing with the SADA for the database yuma9207_roi: 
(a) ROC results of false alarm rates between 0 and 25 and (b) ROC results of false alarm rates 
between 0 and 5. 

The results of testing on each point for two images (both containing one target) showed that the 
hit points are concentrated in the target area, suggesting that the performance of the algorithm 
does not deteriorate significantly by not testing on every image point.  Detection results obtained 
by testing each point on one image are shown in figures 11a-c.  Figure 11a shows the gradient 
image obtained by highpass filtering the FLIR image in the x direction.  The values of the 
residual energy Emin are displayed as the image gray-level values in figure 11b.  The image is 
displayed in an inverse mode such that the lower Emin values appear brighter.  All brighter areas 
appear in the target area and the transition areas between vegetation and ground, where strong 
structural information exists.  In figure 11c, the points with Emin values that are less than the 
threshold (0.3 in this case) are superimposed into the gradient image.  All hit points are within 
the target area.    
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 (a) (b) (c) 

Figure 11.  Detection results:  (a) gradient image obtained by the highpass filtering in the x  
direction, (b) residual energy Emin values, and (c) the points with Emin < 0.3 are  
superimposed into the gradient image in (a) as markers (+). 

As discussed earlier, the range between a target and the sensor changes the target structural 
information that appears in FLIR images.  The proposed algorithm is designed to detect targets 
that appear at short and medium ranges within the FLIR imagery.  For targets at long ranges 
(where targets appear as “blob” if it is hot), a different algorithm (such as an energy detector), 
that does not rely on a detailed structural information, is needed. 

 

5. Conclusions 

An adaptive target detection algorithm based on exploiting the structural information within a 
target and its background is presented.   The algorithm calculates the inner and outer image 
gradient vectors representing the target and its background, respectively.  The EST and PCA 
transforms are locally generated from the inner and outer image gradient vectors.  The 
differences between the EST and PCA eigenvectors are used to distinguish the target from its 
background.  Results of testing the proposed algorithm on two large FLIR databases were 
presented.   
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